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Abstract

:

Solar radiation is the main source of energy on the Earth’s surface. It is very important for the environment and ecology, water cycle and crop growth. Therefore, it is very important to obtain accurate solar radiation data. In this study, we use the highest temperature Tmax, lowest temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H and maximum sunshine duration Hmax as input variables to construct a deep learning prediction model of solar radiation in the Yellow River Basin. It is compared with the recommended and corrected values of the widely used Å-P method. The results show that: (1) The correction results of the Å-P equation are better in the upstream and downstream of the Yellow River Basin but worse in the midstream. (2) The prediction result of the deep learning model in the Yellow River Basin is far better than that of the Å-P equation using the FAO-56 recommended value. It is the best in the downstream of the Yellow River Basin: R2 increases from 0.894 to 0.934; MSE, RMSE and MAE decrease by 43.12%, 27.73% and 25.80%, respectively. The upstream prediction result comes in second: R2 increases from 0.888 to 0.921; MSE, RMSE and MAE decrease by 33.27%, 20.02% and 19.04%, respectively. The midstream result is the worst: R2 increases from 0.869 to 0.874; MSE, RMSE and MAE decrease by −0.50%, 0.07% and 3.82%, respectively. (3) The prediction results of the deep learning model in the upstream and downstream of the Yellow River Basin are far better than those of the Å-P equation using correction. The R2 in the upstream of the Yellow River Basin increases from 0.889 to 0.921. MSE, RMSE and MAE decrease by 22.11%, 11.84% and 8.94%, respectively. R2 in the downstream of the Yellow River Basin increases from 0.900 to 0.934, and MSE, RMSE and MAE decrease by 13.21%, 11.40% and 5.55%, respectively. In the midstream of the Yellow River Basin, the prediction results of the deep learning model are worse than those of the Å-P equation using correction: R2 increases from 0.870 to 0.874, but MSE, RMSE and MAE decrease by −24.93%, −10.83% and −11.56%, respectively.
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1. Introduction


Solar radiation is not only the most basic energy source on Earth but is also an important driving factor of various physical, chemical and biological processes in the natural environment. It has a wide range of applications in many aspects, such as the infrastructure and construction industry, atmospheric physics and the practical utilization of renewable energy [1,2], the estimation of reference crop evapotranspiration [3], evapotranspiration simulation in hydrology [4], photovoltaic power generation [5,6], etc. Therefore, it is particularly important to obtain accurate solar radiation data.



Despite the wide range of applications of solar radiation data, there are few radiation stations for the routine observation of solar radiation in our country. According to statistics, in China, only about 4% of the national ground meteorological observation networks can measure solar radiation. Moreover, solar radiation is usually measured at a specific location through a variety of instruments. The cost of these instruments, including measurement and maintenance costs, is high, Therefore, compared with other meteorological factors such as rainfall, sunshine and wind speed, the data of solar radiation are relatively scarce. The scarcity of solar radiation measurement requires people to adopt corresponding methods to estimate it and obtain more accurate solar radiation data in a finer spatial distribution. Over the years, scholars at home and abroad have done a lot of research on the estimation of solar radiation and have successively put forward some methods. Among them, the Ångström-Prescott equation based on sunshine (hereinafter referred to as the Å-P equation) has been proved to be the best in many studies [7,8,9,10]. FAO irrigation and drainage Document No. 56 (hereinafter referred to as FAO-56) recommends the Å-P equation to estimate solar radiation in the absence of measured solar radiation data or low-quality solar radiation data and recommends the parameters of a = 0.25 and b = 0.50.



Although the Å-P equation performs well and is widely used, due to the influence of climate and geographical location factors in different regions, the FAO-56 recommended values in different regions are different. Therefore, the application of the Å-P equation in different regions is usually limited by the lack of corrected parameters. To solve the limitations of the Å-P equation, we need to develop more accurate methods to predict solar radiation.



In recent years, with the rapid development of artificial intelligence and neural networks, many machine learning models, such as artificial neural networks, support vector machines and random forest, have been successfully applied to the prediction of solar radiation: Alawi et al. [11], Mohandas et al. [12], Reddy et al. [13] and Yildiz et al. [14] in Oman, Saudi Arabia used artificial neural networks to estimate solar radiation in India and Turkey; Chen et al. [15] used the data of three meteorological stations in Liaoning Province to establish seven support vector machine models with different input attributes and evaluate them and five empirical models based on sunshine; Ibrahim and Khatib [16] proposed a hybrid hourly solar radiation prediction model based on random forest technology and the firefly algorithm and compare it with the traditional artificial neural network model, the traditional random forest model and an artificial neural network model optimized by the firefly algorithm. The above research results show that machine learning models can predict solar radiation.



Deep learning is similar to artificial neural networks and belongs to the field of machine learning, but it has a deeper neural network, which means that deep learning has a stronger learning ability and needs larger data sets to improve its prediction performance. Nowadays, deep learning has become more and more mature in the field of computer vision. Remarkable achievements have been MAEe in the fields of perception, speech recognition and natural language processing. Deep learning models have been successfully applied to predict the reference crop evapotranspiration ET0 [17,18], but there is little literature related to the deep learning model in predicting solar radiation.



Therefore, based on the measured meteorological data of 28 stations in the Yellow River Basin for many years, this study establishes a deep learning model for predicting solar radiation in the Yellow River Basin in China. There are three main purposes: (1) Based on the measured solar radiation data of 28 stations in the Yellow River Basin for many years, we want to correct the parameters of the traditional Å-P equation and analyze the correction results through the evaluation metrics; (2) We want to develop and establish a DL model for accurately predicting solar radiation in the Yellow River Basin by using widely available input variables; (3) By comparing the DL model with the recommended and corrected values of Å-P parameters, the feasibility of the DL model replacing the Å-P equation to predict solar radiation in the Yellow River Basin is studied.




2. Materials and Methods


2.1. Study Location and Data


In this study, we select 28 stations with measured daily solar radiation long-term data in 9 provinces and regions in the Yellow River Basin. All of these stations are located in or near the Yellow River Basin. The detailed geographical information of each station is shown in Table 1. The Yellow River Basin covers an area of 795,000 square kilometers, with latitude ranging from 26.58° N to 49.22° N, longitude ranging from 94.68° E to 122.27° E and altitude ranging from 32.6 m to 3719.0 m. The basin is characterized by water shortage, serious water and soil loss and high sediment content. Since the 1990s, it has become more frequent that river water cannot enter the sea. China attaches great importance to the sustainable utilization of water resources in this basin. However, the information about the coefficients of the Å-P equation in this basin is very limited. In addition, even for the same site, the coefficients of Å-P equations given by different researchers often vary greatly, which causes confusion and difficulties in the application of the model [19].



Due to various factors, such as the influence of solar radiation and sunshine time observation data in different degrees, there are missing data and exceptions. To avoid missing values and the effects of outliers, before the statistical analysis of data, we apply the following preprocessing:




	(1)

	
If one or all of the measured meteorological data on a day is missing, the data of that day shall be deleted;




	(2)

	
If Rs/Ra or n/N is greater than 1, we delete the data of that day to ensure that the data has real physical meaning (where Rs and Ra are global and extraterrestrial solar radiation (MJ/(M2 · d)), respectively; n represents the actual sunshine hours in a day; N represents the maximum sunshine hours on the same day);




	(3)

	
If there are more than 10 missing data in a month, the data of that month will be deleted.









The corrected values of the Å-P equation of each station are fitted by the least square error method, and the data of each station are grouped by years. The first 3/4 of the data is used as the training data set to fit the corrected values of the Å-P equation, and the remaining 1/4 of the data is used as the test data set to verify the corrected values of the Å-P equation. R2, RMSE, RE, MAE and d evaluate its performance. The DL model selects the highest temperature Tmax, lowest temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H and maximum sunshine duration Hmax as input values and selects 70% of the data set as the training set, 15% as the verification set and 15% as the prediction set. The training set is used to train the model. The validation set is used to evaluate the performance of the model and calculate the evaluation metrics. The prediction set is used to evaluate the generalization and prediction ability of the model. The training set, validation set and prediction set are selected independently without repetition.




2.2. Ångström-Prescott Equation


The Å-P equation was originally a simple linear equation proposed by Angstrom [20] in 1924. In essence, it is a linear function relationship between the ratio of daily total irradiance to daily clear sky radiation on the horizontal plane and the ratio of daily average sunshine hours to maximum possible sunshine hours. The parameters of the equation are determined by Stockholm data. To solve the difficulty of obtaining clear sky radiation data, Prescott [21] suggested using extraterrestrial radiation to replace it in 1940, which finally promoted the formation of the Å-P equation.



To commemorate the great contributions MAEe by Ångström and Prescott to the estimation of solar radiation, later generations call the relationship between the sunny index and relative sunshine (or other meteorological parameters) the Ångström-Prescott equation. The basic form of the equation represents the simple linear relationship between the sunny index and relative sunshine:


    R s   R a   = a + b   n  N   



(1)




where Rs and Ra are global and extraterrestrial solar radiation (MJ/(M2 · d)), respectively; a and b are empirical coefficients between 0 and 1 and their sum is clear sky transmittance; n represents the actual sunshine hours in a day; N represents the maximum sunshine hours on the same day.




2.3. Deeping Learning Model


The earliest neural network originated from the neuron model proposed by McCulloch and Pitts in 1943. In 1986, Rumelhart and McClelland [22] invented the back-propagation (BP) algorithm. In 2006, Hinton et al. [23] formally proposed the concept of deep learning. In this paper, a method of using deep learning to predict solar radiation is proposed. By considering multiple hidden layers, different numbers of neurons in hidden layers and the modified linear function ReLU, a multi-layer DL model is established. In addition, our model is optimized by the stochastic gradient descent method. Figure 1 shows the framework of the deep learning model.



The research shows that selecting appropriate input parameters is very important for a more accurate prediction of solar radiation. In this paper, through multiple tests on the number of prediction model layers and neurons, the optimal number of hidden layers and the optimal number of hidden neurons are finally determined, which are 40 neurons in the first hidden layer, 60 neurons in the second hidden layer and 40 neurons in the third hidden layer, respectively. In addition, the modified linear function ReLU is selected as the activation function, because its calculation is simple and fast and the convergence rate of the stochastic gradient descent (SGD) optimization algorithm for the ReLU function is faster than others. Therefore, this paper establishes a DL model with three hidden layers (40 60 40) and a ReLU function as the activation function.



The ReLU function is given by the following equation:


  f  x  = m a x   0 , x    



(2)







The derivative of the ReLU function is:


   f ′   x  =      1 ,   i f   x > 0     0 ,   o t h e r w i s e       



(3)







The cross-entropy loss function J is:


  J   W , B   = −  1 N    ∑   i = 1  N    ∑   j = 1  k   y j   i    l o g   y ^  j   i     



(4)







The learning process of the DL model consists of forward-propagation and back-propagation. During forward-propagation, the input values go through the input layer, the hidden layer and the output layer. If the output layer does not get the desired output, the back-propagation is carried out. The stochastic gradient descent method back-propagates the error along the original channel and modifies the weight of each neuron in the hidden layer. Thus, the output error is minimized.


   Z   1    = R e l u     ∑   i = 1  n     x i  ∗  w 1    +  b 1     



(5)






   Z   2    = R e l u     ∑   j = 1  n     h j  ∗  w 2    +  b 2     



(6)






   Z   3    = R e l u     ∑   k = 1  n     h k  ∗  w 3    +  b 3     



(7)






   Z   4    = S o f t m a x     ∑   L = 1  n     h L  ∗  w 4    +  b 4     



(8)






  Y = S o f t m a x    x k    =   e x p    x k        ∑   k = 1  n  e x p (  x  k   )    



(9)






   w 1  =  w 1  − α   ∂ J   ∂  W 1     



(10)






   b 1  =  b 1  − α   ∂ J   ∂  b 1     



(11)







Figure 1 presents a DL structure composed of an input layer, three hidden layers and a final output layer; Y is the output of the output layer; xi is the input layer input; w1, w2, w3 and w4 are the weight matrices connecting layers; b1, b2, b3 and b4 are the bias terms of hidden neurons for each hidden layer. Equations (10) and (11) denote the stochastic gradient descent method in back-propagation, w1  ∈  w, b1  ∈  b.




2.4. Model Evaluation Metrics


The metrics to evaluate the performance of the model include the determination coefficient R2, mean square error MSE, rooted mean square error RMSE, mean absolute error MAE, relative error RE and consistency index d. Their calculation equations are as follows:


   R 2  =         ∑   i = 1  m     p i  −  p ¯       o i  −  o ¯       2      ∑   i = 1  m       p i  −  p ¯     2    ∑   i = 1  n       0 i  −  0 ¯     2     



(12)






  MSE =  1 m    ∑  1 m    (  y i  −    y i   ¯  )  2   



(13)






  RE =    1 m    ∑  1 m    (  y i  −    y i   ¯  )  2     



(14)






  MAE =  1 m    ∑  1 m     y i  −    y i   ¯     



(15)






  RE =   RMSE   o ¯    



(16)






  d = 1 −     ∑   i = 1  n    (  p i  −  o i  )  2      ∑   i = 1  n           p i  −  o ¯    +      o i  −  o ¯           2     



(17)




where Oi is the i-th observation data (MJ/(M2·d); Pi is the i-th prediction data (MJ/(M2·d);   O ¯   is the average value of the observation data group (MJ/(M2·d);   P ¯   is the average value of the prediction data group (MJ/(M2·d);    y i  −    y i   ¯    is the difference between the i-th prediction values and the measured values (MJ/(M2·d), i = 1, 2, …, m; m is the number of statistical samples.



Among them, the lower the values of MSE, RMSE and MAE, the better the performance of the model. The determination coefficient R2 reflects the fitting degree between the measured and predicted solar radiation values of the station. When the determination coefficient R2 > 0.80, RE < 0.20 and d ≥ 0.95, the prediction effect of the model is better.





3. Results


3.1. Corrected Å-P Parameters and Performance Evaluation


The corrected values of the Å-P equation of each station are fitted by the least square error method, and the data of each station are grouped by years. The first 3/4 of the data is used as the training data set to fit the corrected values of the Å-P equation, and the remaining 1/4 of the data is used as the test data set to verify the corrected values of the Å-P equation. R2, RMSE, RE, MAE and d evaluate its performance. Table 2 shows the corrected values of the Å-P parameters and their performance evaluation of each station.



It can be seen from Table 2 that the values of a range from 0.11 to 0.29 and the values of b range from 0.50 to 0.69. The trend of coefficient a is that the average altitudes and longitudes of the upstream, midstream and downstream of the Yellow River Basin are (2191.73 m, 103.82°), (656.23 m, 111.37°) and (75.5 m, 117.02°), respectively. The maximum value of coefficient a is 0.29, which appears in Ganzi, Sichuan Province, with altitude and longitude of 3393.5 m and 100°, respectively. The minimum value is 0.11. It appears in Jinan, Shandong Province, with altitude and longitude of 51.6 m and 116.98°, respectively. The trend of coefficient b is opposite to that of coefficient a. In the upstream of the Yellow River Basin, the values of coefficient b are higher, with an average value of 0.60, and in the midstream and downstream of the Yellow River Basin, the values of coefficient b are lower, with average values of 0.56 and 0.55. The relationship between coefficient b and altitude is similar to that of coefficient a and tends to increase with the increase in altitude, but the relationship between coefficient b and longitude is opposite to that of coefficient a and tends to increase with the increase in longitude. The maximum value of b is 0.69, which appears in Wuwei, Gansu Province, with altitude and longitude of 1530.9 m and 102.67°, respectively. The minimum value of b is 0.50, which appears in Jinghe River, Shanxi Province, with altitude and longitude of 410 m and 108.97°, respectively.



It can be seen from the evaluation metrics that the corrected Å-P parameters have a good prediction effect. The average value of R2 of 28 stations in the Yellow River Basin is 0.89, the maximum value is 0.96 at Golmud station and the minimum value is 0.74 at Yushu station. Except for Yushu station in Qinghai Province, the R2 values of the other 27 stations are greater than 0.80, and the R2 values of 14 stations are greater than 0.90. The average values of RMSE, MAE, RE and d of all stations are 2.422, 0.17, 1.799 and 0.97, the maximum values are 3.739, 0.29, 2 and 0.94 and the minimum values are 1.518, 0.08, 1.106 and 0.99, respectively. The RMSE values of 6 stations are less than 2.00, those of 18 stations are between 2.00 and 3.00 and those of 4 stations are greater than 3.00. The maximum value is 3.739 at Shanxi Jinghe station. The MAE values of 19 stations are within 2.00, those of 9 stations are between 2.00 and 3.00 and the maximum value is 2.988 at Jinghe River in Shanxi Province. The RE values of 2 stations are less than 0.1, those of 17 stations are between 0.1 and 0.2 and those of 9 stations are between 0.2 and 0.3. The maximum value is 0.29 at Jinghe River station, Shanxi Province. In terms of the d values, only 3 stations are between 0.91 and 0.95 and the remaining 25 stations’ d values are between 0.95 and 0.99, with the maximum values of 0.99 at Golmud in Qinghai Province. In general, the Golmud station in Qinghai Province has the best correction effect, and the Jinghe station in Shanxi Province has the worst correction effect.



From the results of the upstream, midstream and downstream of the Yellow River Basin, the correction effect of the Å-P parameter is the best in the upstream of the Yellow River Basin, and its average R2, RMSE, RE, MAE and d are 0.90, 2.271, 0.14, 1.670 and 0.97, respectively. Among them, the Golmud site has the best performance, with R2, RMSE, RE, MAE and d of 0.96, 1.518, 0.08, 1.106 and 0.99, respectively. The Yushu site has the worst performance, with R2, RMSE, RE, MAE and d of 0.74, 3.309, 0.20, 2.265 and 0.93, respectively. The average R2, RMSE, RE, MAE and d are 0.90, 2.292, 0.18, 1.732 and 0.97, respectively. Fushan station has the best performance, with R2, RMSE, RE, MAE and d being 0.95, 1.736, 0.12, 1.323 and 0.98, respectively. Jinan station has the worst performance, with R2, RMSE, RE, MAE and d being 0.88, 2.759, 0.23, 2.039 and 0.96, respectively. The average R2, RMSE, RE, MAE and d are 0.87, 2.859, 0.22, 2.142 and 0.96, respectively. Datong station has the best performance, with R2, RMSE, RE, MAE and d being 0.92, 2.119, 0.14, 1.610 and 0.98, respectively. The R2, RMSE, RE, MAE and d of Jinghe station are 0.87, 3.739, 0.29, 2.988 and 0.94, respectively.



From the results of the provinces, the overall correction effect of the Å-P parameters in the Qinghai, Sichuan, Gansu, Ningxia Autonomous Region, Inner Mongolia Autonomous Region, Shanxi and Shandong provinces is better, and the correction effect of Ningxia Autonomous Region is the best. Its R2, RMSE, RE, MAE and d are 0.93, 2.025, 0.13, 1.482 and 0.98, respectively. Shanxi Province has the worst correction effect, with its R2, RMSE, RE, MAE and d being 0.88, 2.535, 0.19, 1.904 and 0.97, respectively. The R2, RMSE, RE, MAE and d in Qinghai, Sichuan, Gansu, Inner Mongolia and Shandong are 0.88, 0.88, 0.93, 0.93 and 0.92; 2.176, 2.127, 2.194, 2.233 and 2.070; 0.13, 0.11, 0.13, 0.14 and 0.16; 1.575, 1.630, 1.717, 1.587 and 1.550; and 0.97, 0.96, 0.98, 0.98 and 0.98, respectively. In the Shanxi and Henan provinces, the overall correction effect is poor. Shanxi Province has the worst correction effect, with R2, RMSE, RE, MAE and d being 0.86, 3.219, 0.25, 2.403 and 0.95, respectively. Henan province has a better correction effect. Its R2, RMSE, RE, MAE and d are 0.87, 2.666, 0.22, 2.026 and 0.96, respectively.




3.2. Comparison between the Recommended Values of Å-P Parameters and the Prediction Results of the DL Model


Solar radiation is comprehensively affected by temperature, wind speed, relative humidity, sunshine duration and other meteorological factors. On the basis of previous studies, this study selected maximum temperature Tmax, minimum temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine duration H and maximum sunshine duration Hmax as input values to establish the DL model. The prediction results of each station in the Yellow River Basin by the Å-P parameter values recommended by FAO were compared with those of the DL model, and R2, MSE, RMSE and MAE were used for evaluation. The comparison results are shown in Table 3.



It can be seen from Table 3 that the overall prediction accuracy of the DL model in the Yellow River Basin is significantly better than the recommended values of the Å-P parameters. From the results of R2, except Ganzi, Dongsheng, Ankang and Nanyang stations, the R2 of other stations increases to varying degrees. The average values of R2 increase from 0.88 to 0.91. The R2 predicted by the Yushu station increases the most, from 0.77 to 0.90, and the R2 predicted by the Ganzi station is the worst, decreasing from 0.89 to 0.85. The MSE decreases by 25.93% on average. The MSE values of the DL models of the Dongsheng, Taiyuan, Houma and Jinghe stations are greater than the recommended values of the Å-P parameters, and the MSE values of other stations decrease. The best performing station is Jinan Station. The MSE decreases from 9.697 to 3.064, which is 68.40% lower than the recommended values of the Å-P parameters. The worst performing station is Dongsheng station. Its MSE increases from 4.324 to 6.990, which is −61.55% worse than the recommended values of the Å-P parameters. RMSE has the same pattern as MSE. The RMSE of Jinan station, with the best performance, decreases from 3.114 to 1.750, which is 43.79% lower than the recommended values of the Å-P parameters. The RMSE of Dongsheng station, with the worst performance, increases from 2.079 to 2.644, which is −27.14% worse than the recommended values of the Å-P parameters. The MAE is reduced by 16.04% on average compared with the Å-P equation. Except that the DL model prediction results of the Guoluo, Dongsheng, Taiyuan, Houma, Jinghe and Anyang stations are greater than the recommended values of the Å-P parameters, the MAE values of other stations are reduced. Golmud is the best performing station, and its MAE is reduced from 0.984 to 1.029, which is 48.13% better than the recommended values of the Å-P parameters. The worst performing station is Taiyuan station, whose MAE value increases from 1.878 to 2.216, which is −18.03% worse than the recommended values of the Å-P parameters.



In general, the DL model has the best prediction results in Golmud. Compared with the recommended values of the Å-P parameters, R2 is improved from 0.93 to 0.96. MSE, RMSE and MAE are reduced by 66.11%, 41.79% and 48.13%, respectively. The prediction results of Dongsheng station are the worst. Compared with the recommended values of the Å-P parameters, R2 decreases from 0.92 to 0.91, and the recommended values of MSE, RMSE and MAE decrease by −61.65%, −27.14% and −15.77%, respectively, compared with the Å-P equation.



Figure 2 shows the performance comparison between the predicted results of the recommended values of the Å-P parameters and the predicted results of the DL model in the upstream, midstream and downstream of the Yellow River Basin. From Figure 2a, it can be seen that, in the upstream, midstream and downstream of the Yellow River Basin, the R2 predicted by the DL model is better than the recommended values of the Å-P parameters. Among the prediction results of the upstream, midstream and downstream of the Yellow River Basin, the prediction results of the downstream are the best. Its R2 increases from 0.894 to 0.934, followed by the prediction results of the upstream, whose R2 increases from 0.888 to 0.921. The prediction results of the midstream are the worst. Its R2 increases from 0.869 to 0.874. From Figure 2b, it can be seen that the MSE of the DL model in the upstream and downstream of the Yellow River Basin is significantly better than the recommended values of the Å-P parameters, and there is little difference between the MSE in the midstream of the Yellow River Basin and the recommended values of the Å-P parameters. Among them, the MSE in the downstream of the Yellow River Basin decreases the most, from 6.520 to 3.709, and in the upstream of the Yellow River Basin, the MSE decreases from 6.13 to 4.092. From Figure 2c, it can be seen that RMSE and MSE have the same trend in the upstream, midstream and downstream of the Yellow River Basin. RMSE decreases the most in the downstream of the Yellow River Basin, from 2.496 to 1.804, followed by the upstream of the Yellow River Basin, from 2.477 to 1.981. The worst is in the midstream of the Yellow River Basin, from 2.661 to 2.659. From Figure 2d, it can be seen that MAE decreases in different degrees in the upstream, midstream and downstream of the Yellow River Basin. Similar to the changes of other indicators, MAE decreases the most in the downstream of the Yellow River Basin, from 1.914 to 1.420. It decreases from 1.842 to 1.491 in the upstream of the Yellow River Basin and from 2.022 to 1.945 in the midstream of the Yellow River Basin.



In general, the evaluation metrics of the DL model are significantly better than the recommended values of the Å-P parameters in the upstream, midstream and downstream of the Yellow River Basin. Among them, the overall prediction results of the downstream are the best. R2 increases from 0.894 to 0.934. MSE, RMSE and MAE are reduced by 43.12%, 27.73% and 25.80% respectively, followed by the overall prediction effect of the upstream: R2 increases from 0.888 to 0.921; MSE, RMSE and MAE are reduced by 33.27%, 20.02% and 19.04%, respectively. The overall prediction results of the midstream are the worst. The prediction accuracy of the DL model is not different from the recommended values of the Å-P parameters. R2 increases from 0.869 to 0.874, and MSE, RMSE and MAE are reduced by −0.50%, 0.07% and 3.82%, respectively.




3.3. Comparison between the Prediction Results of Corrected Values of Å-P Parameters and Those of the DL Model


The Å-P parameter values recommended are proposed by FAO based on the average regional climate of foreign countries for many years; the prediction accuracy in China is poor. We will compare the prediction results of the Å-P parameter values corrected based on the measured data of stations in the Yellow River Basin with those of the DL model. R2, MSE, RMSE and MAE were also used to evaluate the prediction results of the two indexes, and the evaluation results are shown in Table 4.



It can be seen from Table 4 that the prediction accuracy of the DL model is significantly better than the corrected values of the Å-P parameters at most stations in the Yellow River Basin. From the results of R2, the prediction accuracy of the DL model is greatly improved compared with the corrected values of the Å-P parameters, and the average value of R2 increases from 0.89 to 0.91. Among them, the R2 values of the Ganzi, Dongsheng, Taiyuan, Yan’an, Ankang and Nanyang stations decrease, and the prediction results of the DL model of Ankang station are the worst. Compared with the corrected values of the Å-P parameters, R2 decreases from 0.83 to 0.81. Compared with the corrected values of the Å-P parameters, the R2 values of other stations increase to varying degrees. The prediction results of the Golmud, Minqin and Fushan stations are the best, with R2 reaching 0.96. Compared with the Å-P parameters, the corrected values of the Yushu station increase the most, and R2 increases from 0.78 to 0.90. The MSE decreases by 5.93% on average. Except for Datong, the MSE values of the DL model in the midstream of the Yellow River Basin are higher than the corrected values of the Å-P parameters. In addition, the MSE values of the Guoluo, Ganzi and Anyang stations are also greater than the corrected values of the Å-P parameters. The MSE value of the DL model in Anyang station is the largest, 9.722, which is −108.75% lower than the corrected values of the Å-P parameters. The MSE values of other stations are lower than the corrected values of the Å-P parameters. The MSE value of Zhengzhou station is reduced from 4.685 to 2.148, a decrease of 54.15%. The values of RMSE have the same trend as MSE, with an average decrease of 5.56%. Anyang station is the worst station, and the value of RMSE increases from 2.158 to 3.118, a decrease of −44.48% compared with the Å-P equation. The best station is Zhengzhou station. The value of RMSE is reduced to 1.466 from 2.165, which is 32.29% lower than that of the Å-P equation. The average decrease of MAE is 2.28%, and the pattern of MAE is similar to that of MSE and RMSE. Anyang station has the worst performance, and its MAE value has increased from 1.597 to 2.644, an increase of 65.59%. Wuwei station has the best performance, and its MAE value has decreased from 2.760 to 1.757, a decrease of 36.34% compared with the corrected values of the Å-P parameters.



In general, the DL model has the best prediction results in Zhengzhou station. Compared with the corrected values of the Å-P parameters, R2 is improved from 0.89 to 0.95, and MSE, RMSE and MAE are reduced by 54.15%, 32.29% and 29.64%, respectively. The prediction results of Anyang station are the worst. R2 is improved from 0.88 to 0.99 compared with the corrected values of the Å-P parameters, but the prediction error is large and the corrected values of MSE, RMSE and MAE are decreased by −108.75%, −44.48% and −65.59% compared with the Å-P parameters, respectively.



Figure 3 shows the performance comparison between the predicted results of the corrected values of the Å-P parameters in the upstream, midstream and downstream of the Yellow River Basin and the predicted results of the DL model. From Figure 3a, it can be seen that, in the upstream, midstream and downstream of the Yellow River Basin, the R2 predicted by the DL model is better than the corrected values of the Å-P parameters. Among the prediction results of the upstream, midstream and downstream of the Yellow River Basin, the prediction results of the downstream are the best. Its R2 increases from 0.900 to 0.934, followed by the prediction results of the upstream, whose R2 increases from 0.889 to 0.921. The prediction results of the midstream are the worst. Its R2 increases from 0.870 to 0.874. From Figure 3b, it can be seen that the MSE values of the DL model in the upstream and downstream of the Yellow River Basin are significantly better than the corrected values of the Å-P parameters, and the MSE values in the midstream of the Yellow River Basin are significantly worse than the corrected values of the Å-P parameters. The MSE value decreases the most in the upstream of the Yellow River Basin, from 5.253 to 4.092. In the downstream of the Yellow River Basin, the MSE decreases from 4.273 to 3.709, and in the midstream of the Yellow River Basin, the MSE value increases from 5.807 to 7.255. It can be seen from Figure 3c that RMSE and MSE have the same trend in the upstream, midstream and downstream of the Yellow River Basin. The value of RMSE decreases the most in the upstream of the Yellow River Basin, from 2.247 to 1.981, followed by the downstream of the Yellow River Basin, from 2.036 to 1.804. In the midstream of the Yellow River Basin, the value of RMSE increases from 2.399 to 2.659. From Figure 3d, it can be seen that MAE has the same trend as MSE and RMSE in the upstream, midstream and downstream of the Yellow River Basin. It decreases the most in the upstream of the Yellow River Basin, from 1.637 to 1.491. It decreases from 1.503 to 1.420 in the downstream of the Yellow River Basin and from 1.744 to 1.945 in the midstream of the Yellow River Basin.



In general, the evaluation metrics of the DL model are significantly better than the corrected values of the Å-P parameters in the upstream and downstream of the Yellow River Basin. Among them, the overall prediction results of the upstream are the best. R2 increases from 0.889 to 0.921. MSE, RMSE and MAE are reduced by 22.11%, 11.84% and 8.94%, respectively, followed by the overall prediction effect of the downstream, whose R2 increases from 0.900 to 0.934 and whose MSE, RMSE and MAE are reduced by 13.21%, 11.40% and 5.55%, respectively. Compared with the corrected values of the Å-P parameters, the overall prediction results in the midstream of the Yellow River Basin are poor. R2 increases from 0.870 to 0.874, but MSE, RMSE and MAE are reduced by −24.93%, −10.83% and −11.56%, respectively.





4. Discussion


4.1. Calibration of Å-P Parameters


Using an empirical model to estimate solar radiation is relatively simple, and it is easy to obtain input data with. At present, the most commonly used empirical model is the Å-P equation based on sunshine [24]. However, the application of this model is often limited by parameter correction. How to select the appropriate Å-P parameters is the focus of using this model [25].



Due to little research on the correction of the a and b parameters of the Å-P equation in various regions of China and the lack of necessary research on and understanding of how the selection of these parameters affects the estimation of solar radiation and other related variables in the past, it is still quite common to directly use the recommended values of FAO-56 in China, especially in the calculation of reference crop evapotranspiration ET0. The a and b parameter values recommended by FAO-56 are proposed by FAO based on the multi-year average regional climate abroad. Due to the influence of clouds, geographical location, altitude and climate in different regions of China, the prediction accuracy of the FAO-56 recommended values are affected to varying degrees. In addition, Liu et al. [26] point out that correction is the best method to obtain accurate Å-P parameters. Therefore, how to reasonably correct the values of the a and b parameters according to different regions of China is the key to accurately estimating solar radiation using the Å-P equation. Based on the measured solar radiation data of 28 stations in the Yellow River Basin for many years, the parameters of the Å-P equation of each station are fitted by the least square method, and the corrected values of the Å-P parameters of each station are obtained. The calibration values of the Å-P parameters are evaluated by five evaluation metrics, namely, the determination coefficient R2, rooted mean square error RMSE, relative error RE, mean absolute error MAE and consistency index d.



The Å-P parameter correction and evaluation metrics of each station in the Yellow River Basin are shown in Table 2. The value of a varies from 0.11 to 0.29, with an average of 0.18, and the value of b varies from 0.50 to 0.69, with an average of 0.58. After comparing with the corrected values of the parameters a and b obtained by Chen et al. [27] and Liu et al. [25,26] in the Yellow River basin, it can be found that the corrected values of each station are the same, with only minor differences, which may be caused by the different lengths of data records used by each station. The data record we use is much longer than that used by Chen et al. and Liu et al. The values of R2 range from 0.74 to 0.96. Except for Yushu station in Qinghai Province, the R2 of all other stations is above 0.80, and the average R2 is 0.89. Compared with previous research results [9,25,26,27,28], our results show that our data have better quality control.



In addition, it can be seen from the evaluation metrics in Table 2 that the correction effect of the Å-P equation at the upstream and downstream stations of the Yellow River Basin is good, with R2 reaching 0.90, and the correction effect at the stations in the midstream is poor, with R2 at only 0.87. In general, the correction effect of the Å-P equation at the stations in the upstream of the Yellow River Basin is the best. RMSE, RE, MAE and d are 2.271, 0.14, 1.670 and 0.97, respectively, The correction effect of stations in the downstream is second, with RMSE, RE, MAE and d of 2.292, 0.18, 1.732 and 0.97, respectively. The correction effect of stations in the midstream of the Yellow River Basin is the worst, with RMSE, RE, MAE and d of 2.859, 0.22, 2.142 and 0.96, respectively. However, there is no particularly satisfactory explanation for why the correction effect of the Å-P equation is better in the upstream and downstream of the Yellow River Basin and worse in the midstream of the Yellow River Basin. A possible reason is that the parameters of the Å-P equation have a great impact on solar radiation in high altitude and high radiation areas and in low altitude and low radiation areas [19].




4.2. Comparison between DL Model and Å-P Model


The lack of measured solar radiation data has also led to the development of other indirect methods, including the method based on random weather model [29], the satellite remote sensing method [30], the linear interpolation method [31], the empirical relationship method using other meteorological variables [32] and the physical transmission method [33,34]. In recent years, with the rapid development of artificial intelligence and neural networks, the prediction of solar radiation by artificial neural networks has become more and more mature. Many researchers [11,12,13,14] estimate solar radiation by establishing an artificial neural network model and prove the feasibility of predicting solar radiation by artificial neural networks but do not compare the artificial neural network with other methods regarding prediction performance, so the superiority of artificial neural networks is not shown in predicting solar radiation. Some studies [2,35] compare the artificial neural network model with the most widely used Å-P equation and the empirical regression model proposed by other researchers [36], but the results are different. The research results of Tymvios et al. show that the prediction accuracy of artificial neural networks is similar to that of the Å-P equation, while Jiang et al. compare the artificial divine power network model with the empirical regression model proposed by other researchers [36]. It is confirmed that the artificial neural network is more suitable for the prediction of solar radiation.



In this study, the neural networks with three hidden layers (40 60 40) take the highest temperature Tmax, the lowest temperature Tmin, the average temperature Tavg, the wind speed U, the relative humidity RH, the sunshine hours H and the maximum sunshine hours Hmax as input variables. We compare the solar radiation predicted by the DL model with the solar radiation predicted by the FAO-56 recommended values and the solar radiation predicted by the corrected values fitted by the measured data of stations in the Yellow River Basin and evaluate by four evaluation metrics: the determination coefficient R2, mean square error MSE, rooted mean square error RMSE and mean absolute error MAE. The Å-P equation has higher prediction accuracy and a wider application range.



The performance comparison of the recommended values of the Å-P parameters at each station, the recommended values of the Å-P parameters at the upstream, midstream and downstream of the Yellow River Basin and the prediction results of the DL model are shown in Table 3 and Figure 2, respectively. From Table 3 and Figure 2, it can be seen that the overall prediction accuracy of the DL model in the Yellow River Basin is significantly better than the recommended values of the Å-P parameters. R2 increases from 0.88 to 0.91, and MSE, RMSE and MAE are reduced by 25.93% 16.25% and 16.04% on average, respectively, which is consistent with the conclusion of Jiang et al. However, the difference is that, according to the analysis of the results of each station, the predicted solar radiation of the DL model is not better than the recommended values of the Å-P parameters at all stations. For example, the solar radiation predicted by the DL model at the Dongsheng, Taiyuan, Houma and Jinghe stations is poor, among which Dongsheng station has the worst prediction result, and its R2 (0.92) is worse than the recommended values of the Å-P parameters (0.91). MSE, RMSE and MAE decrease by −61.65%, −27.14% and −15.77%, respectively. From the above results, it can be seen that the stations with poor prediction results of the DL model are distributed in the midstream of the Yellow River Basin.



Table 4 and Figure 3 show the performance comparison between the predicted results of the Å-P parameter corrected values of each station, the corrected values of the Å-P parameters in the upstream, midstream and downstream of the Yellow River Basin and the predicted results of the DL model, respectively. From Table 4 and Figure 3, it can be seen that the overall prediction accuracy of the DL model in the Yellow River Basin is slightly better than the corrected values of the Å-P parameters. R2 increases from 0.89 to 0.91, and MSE, RMSE and MAE are reduced by 5.93%, 5.56% and 2.28%, respectively. The results show that using the DL model to predict solar radiation in the Yellow River Basin is an effective alternative method. From the results of the upstream, midstream and downstream of the Yellow River basin, compared with the recommended and corrected values of the Å-P parameters, the DL model has the same pattern, that is, the prediction results are better in the upstream and downstream of the Yellow River Basin but worse in the midstream of the Yellow River Basin. This result is also consistent with the trend of the correction results of the Å-P equation. Therefore, we speculate that the prediction results of the DL model in the midstream of the Yellow River basin may be related to the low accuracy of the input variables.




4.3. Comparison between DL Model and Other Machine Learning Models


With the rise of machine learning algorithms, building a solar radiation prediction model by machine learning algorithms has become a hot research direction at present. A large number of researchers have applied different machine learning algorithms into solar radiation prediction models and have achieved good prediction results. Chen et al. [15] used the meteorological data of three stations in Liaoning Province to establish seven support vector machine models with different inputs. The average RMSE values of the three stations are 2.325 MJ/m2, 1.915 MJ/m2 and 2.040 MJ/m2. Zeng et al. [37] used random forest (RF) to build a model for predicting China’s daily solar radiation. The overall correlation coefficient R of the model is 0.95, and the root mean square error RMSE value is 2.34 MJ/m2. Huang et al. [38] predicted and compared the daily and monthly solar radiation values of Ganzhou City by building 12 machine learning models. The R2 values of the 12 machine learning models predicting the daily solar radiation values were between 0.838–0.925, and the RMSE values of the 12 machine learning models were between 1.987–2.999 MJ/m2. The best machine learning model was the GBRT (gradient enhanced regression tree) model, with R2 values of 0.925 and RMSE values of 1.987 MJ/m2. The R2 value of the DL model constructed in this paper is 0.910, and the RMSE value is 2.148 MJ/m2 in the Yellow River Basin. Among them, the prediction accuracy in the lower reaches of the Yellow River Basin is the highest, with an R2 value of 0.934 and an RMSE value of 1.804 MJ/m2. Compared with the DL model constructed in this paper, it can be found that the prediction accuracy of the DL model constructed in this paper is better than that of most machine learning models.



From a solar radiation prediction point of view, the machine learning models can learn the complex nonlinear characteristics from different inputs so as to improve their prediction accuracy, but only for smaller datasets. In practice, the machine learning models cannot accurately predict relatively large datasets [39]. In addition, compared with traditional machine learning models, deep learning models such as recurrent neural networks (RNN), long-term and short-term memory neural networks (LSTM) and convolutional neural networks (CNN) have shown the potential to further improve the accuracy of solar radiation prediction. Zhu et al. [40] proposed a Siamese convolutional neural network-long short-term memory (SCNN-LSTM) model to predict the inter-hour DNI by combining the time-dependent spatial features of total sky images and historical meteorological observations, which can predict the solar radiation ten minutes in advance, and the performance is better than the published methods. Mishra et al. [41] proposed a new short-term solar radiation prediction model based on the concepts of long-term and short-term memory network (LSTM) and wavelet transform (WT), and it showed superior performance compared with other machine learning models. The above research results show that deep learning models not only have a wider application range and higher prediction accuracy but also can realize the ultra short-term solar radiation prediction with the rapid development of the deep learning architecture. Therefore, deep learning models are more suitable for predicting long-term and short-term changes of solar radiation.





5. Conclusions


Taking the measured meteorological data of the highest temperature Tmax, lowest temperature Tmin, average temperature Tavg, wind speed U, relative humidity RH, sunshine hours H and maximum sunshine hours Hmax as input variables, this study establishes a DL model for predicting solar radiation in the Yellow River Basin of China and compares it with the recommended and corrected values of the Å-P equation parameters widely used at present. The determination coefficient R2, mean square error MSE, root mean square error RMSE and mean absolute error MAE are evaluated.



Compared with the Å-P equation using the recommended values of FAO-56, the prediction accuracy of the DL model in the Yellow River Basin is significantly improved. R2 is increased from 0.883 to 0.910, and MSE, RMSE and MAE are reduced by 25.30%, 15.94% and 16.22%, respectively. Among them, the prediction accuracy in the downstream of the Yellow River Basin is the best, followed by the upstream. Compared with the Å-P equation using corrected values, the R2 of the DL model is increased from 0.887 to 0.910, and the MSE, RMSE and MAE are reduced by 1.82%, 3.57% and 0.57%, respectively. Among them, the prediction accuracy of the DL model in the upstream and downstream of the Yellow River Basin is much better than that of the Å-P equation using corrected values. The prediction accuracy of the DL model in the midstream of the Yellow River Basin is worse than that of the Å-P equation using corrected values.



In general, the ability of the DL model to accurately predict solar radiation in the upstream and downstream of the Yellow River Basin in China is significantly better than that of the Å-P empirical model. However, the application of the DL model in the midstream of the Yellow River Basin does not perform well in predicting solar radiation, which may be related to the low accuracy of input variables.
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Figure 1. Framework diagram of deep learning model. 
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Figure 2. (a) The determination coefficient R2 values of the prediction results of the recommended Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (b) The mean square error MSE values of the prediction results of the recommended Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (c) The rooted mean square error RMSE values of the prediction results of the recommended Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (d) The mean absolute error MAE values of the prediction results of the recommended Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin. 
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Figure 3. (a) The determination coefficient R2 values of the prediction results of the corrected Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (b) The mean square error MSE values of the prediction results of the corrected Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (c) The rooted mean square error RMSE values of the prediction results of the corrected Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin; (d) The mean absolute error MAE values of the prediction results of the corrected Å-P parameters and the DL model in the upstream, midstream and downstream of the Yellow River Basin. 
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Table 1. Basic information of stations in the Yellow River Basin.
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	Site Name
	Longitude
	Latitude
	Altitude
	Average Temperature
	Province
	Data Period





	Yushu
	97.02
	33.02
	3681.2
	3.59
	Qinghai
	1960–2016



	Guoluo
	100.25
	34.47
	3719
	0.04
	Qinghai
	1993–2016



	Gangcha
	100.13
	37.33
	3301.5
	0.05
	Qinghai
	1993–2016



	Geermu
	94.9
	36.42
	2807.7
	5.75
	Qinghai
	1957–2016



	Xining
	101.77
	36.62
	2261.2
	6.09
	Qinghai
	1959–2016



	Ganzi
	100
	31.62
	3393.5
	5.98
	Sichuan
	1994–2016



	Hongyuan
	102.55
	32.8
	3491.6
	1.75
	Sichuan
	1994–2016



	Wuwei
	102.67
	37.92
	1530.9
	8.54
	Gansu
	1961–2016



	Minqin
	103.08
	38.63
	1367
	8.78
	Gansu
	1957–2016



	Yuzhong
	104.15
	35.87
	1874.1
	6.99
	Gansu
	2005–2016



	Guyuan
	106.27
	36
	1752.2
	6.95
	Ningxia
	1985–2016



	Yinchuan
	106.22
	38.48
	1111.4
	9.51
	Ningxia
	1959–2016



	Huhehaote
	111.68
	40.82
	1063
	7.13
	Neimenggu
	1959–2016



	Erlianhaote
	111.97
	43.65
	964.7
	4.56
	Neimenggu
	1957–2016



	Wulatezhongqi
	108.52
	41.57
	1288.2
	5.73
	Neimenggu
	1992–2016



	Dongsheng
	109.98
	39.83
	1460.4
	6.67
	Neimenggu
	1992–2016



	Taiyuan
	112.55
	37.78
	777.9
	10.38
	Shanxi
	1959–2016



	Datong
	113.33
	40.1
	1067.2
	7.21
	Shanxi
	1960–2016



	Houma
	111.37
	35.65
	433.7
	13.04
	Shanxi
	1959–2016



	Yanan
	109.5
	36.6
	957.8
	10.21
	Shanxi
	1990–2016



	Jinghe
	108.97
	34.43
	410
	14.90
	Shanxi
	2006–2016



	Ankang
	109.03
	32.72
	290.8
	15.86
	Shanxi
	1990–2016



	Nanyang
	112.58
	33.03
	129.2
	15.22
	Henan
	1990–2016



	Zhengzhou
	113.65
	34.72
	110.4
	14.84
	Shanxi
	1957–2016



	Anyang
	114.37
	36.12
	75.5
	14.15
	Shanxi
	1960–2016



	Fushan
	121.25
	37.5
	32.6
	12.77
	Shandong
	1992–2016



	Jinan
	116.98
	36.68
	51.6
	14.77
	Shandong
	1959–2016



	Juxian
	118.83
	35.58
	107.4
	12.66
	Shandong
	1990–2016
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Table 2. Å-P parameter calibration and performance evaluation of each station.
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	Watershed Distribution
	Site Name
	Province
	a
	b
	R2
	RMSE
	RE
	MAE
	d





	Upstream
	Yushu
	Qinghai
	0.20
	0.61
	0.74
	3.309
	0.20
	2.265
	0.93



	Upstream
	Guoluo
	Qinghai
	0.25
	0.58
	0.87
	2.451
	0.14
	1.835
	0.96



	Upstream
	Gangcha
	Qinghai
	0.20
	0.62
	0.93
	1.705
	0.10
	1.269
	0.98



	Upstream
	Geermu
	Qinghai
	0.26
	0.57
	0.96
	1.518
	0.08
	1.106
	0.99



	Upstream
	Xining
	Qinghai
	0.18
	0.61
	0.92
	1.896
	0.12
	1.399
	0.98



	Upstream
	Ganzi
	Sichuan
	0.29
	0.54
	0.88
	2.127
	0.11
	1.630
	0.96



	Upstream
	Hongyuan
	Sichuan
	0.18
	0.68
	0.81
	3.766
	0.24
	2.763
	0.93



	Upstream
	Wuwei
	Gansu
	0.13
	0.69
	0.89
	2.960
	0.16
	2.290
	0.97



	Upstream
	Minqin
	Gansu
	0.20
	0.53
	0.95
	1.595
	0.09
	1.168
	0.99



	Upstream
	Yuzhong
	Gansu
	0.17
	0.58
	0.95
	2.027
	0.13
	1.692
	0.98



	Upstream
	Guyuan
	Ningxia
	0.16
	0.61
	0.93
	2.028
	0.14
	1.528
	0.98



	Upstream
	Yinchuan
	Ningxia
	0.20
	0.57
	0.93
	2.023
	0.13
	1.435
	0.98



	Upstream
	Huhehaote
	Neimenggu
	0.18
	0.61
	0.91
	2.142
	0.13
	1.522
	0.98



	Upstream
	Erlianhaote
	Neimenggu
	0.20
	0.60
	0.93
	2.236
	0.13
	1.658
	0.98



	Upstream
	Wulatezhongqi
	Neimenggu
	0.23
	0.55
	0.94
	2.011
	0.12
	1.459
	0.98



	Upstream
	Dongsheng
	Neimenggu
	0.16
	0.58
	0.93
	2.542
	0.17
	1.707
	0.97



	Midstream
	Taiyuan
	Shanxi
	0.16
	0.59
	0.86
	2.823
	0.20
	2.122
	0.96



	Midstream
	Datong
	Shanxi
	0.17
	0.60
	0.92
	2.119
	0.14
	1.610
	0.98



	Midstream
	Houma
	Shanxi
	0.16
	0.58
	0.86
	2.664
	0.22
	1.981
	0.96



	Midstream
	Yanan
	Shanxi
	0.14
	0.58
	0.82
	3.296
	0.24
	2.340
	0.95



	Midstream
	Jinghe
	Shanxi
	0.19
	0.50
	0.87
	3.739
	0.29
	2.988
	0.94



	Midstream
	Ankang
	Shanxi
	0.16
	0.54
	0.88
	2.621
	0.23
	1.883
	0.97



	Midstream
	Nanyang
	Henan
	0.19
	0.53
	0.86
	2.748
	0.23
	2.070
	0.96



	Downstream
	Zhengzhou
	Shanxi
	0.17
	0.55
	0.89
	2.594
	0.22
	1.983
	0.96



	Downstream
	Anyang
	Shanxi
	0.16
	0.52
	0.85
	2.657
	0.21
	2.025
	0.96



	Downstream
	Fushan
	Shandong
	0.16
	0.56
	0.95
	1.736
	0.12
	1.323
	0.98



	Downstream
	Jinan
	Shandong
	0.11
	0.60
	0.88
	2.759
	0.23
	2.039
	0.96



	Downstream
	Juxian
	Shandong
	0.21
	0.53
	0.94
	1.715
	0.12
	1.289
	0.98
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Table 3. Performance comparison between the prediction results of the recommended values of station Å-P parameters and the prediction results of the DL model.
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Site

	
Model

	
R2

	
MSE

	
RMSE

	
MAE

	
Site

	
Model

	
R2

	
MSE

	
RMSE

	
MAE






	
Yushu

	
Recommended

	
0.77

	
9.347

	
3.057

	
2.335

	
Wulatezhongqi

	
Recommended

	
0.92

	
5.090

	
2.256

	
1.590




	
DL prediction

	
0.90

	
5.018

	
2.240

	
1.728

	
DL prediction

	
0.95

	
3.273

	
1.809

	
1.435




	
Guoluo

	
Recommended

	
0.87

	
7.383

	
2.717

	
2.111

	
Dongsheng

	
Recommended

	
0.92

	
4.324

	
2.079

	
1.456




	
DL prediction

	
0.88

	
7.343

	
2.710

	
2.207

	
DL prediction

	
0.91

	
6.990

	
2.644

	
1.685




	
Gangcha

	
Recommended

	
0.91

	
4.698

	
2.167

	
1.735

	
Taiyuan

	
Recommended

	
0.87

	
6.333

	
2.516

	
1.878




	
DL prediction

	
0.94

	
2.647

	
1.627

	
1.243

	
DL prediction

	
0.89

	
9.559

	
3.092

	
2.216




	
Geermu

	
Recommended

	
0.93

	
5.999

	
2.449

	
1.984

	
Datong

	
Recommended

	
0.90

	
5.086

	
2.255

	
1.708




	
DL prediction

	
0.96

	
2.033

	
1.426

	
1.029

	
DL prediction

	
0.93

	
3.686

	
1.920

	
1.485




	
Xining

	
Recommended

	
0.88

	
5.605

	
2.368

	
1.728

	
Houma

	
Recommended

	
0.89

	
5.979

	
2.445

	
1.835




	
DL prediction

	
0.93

	
4.017

	
2.004

	
1.519

	
DL prediction

	
0.89

	
6.495

	
2.549

	
2.070




	
Ganzi

	
Recommended

	
0.89

	
6.954

	
2.637

	
2.172

	
Yanan

	
Recommended

	
0.87

	
8.986

	
2.998

	
2.235




	
DL prediction

	
0.85

	
4.559

	
2.135

	
1.704

	
DL prediction

	
0.87

	
7.068

	
2.659

	
1.855




	
Hongyuan

	
Recommended

	
0.83

	
10.373

	
3.221

	
2.559

	
Jinghe

	
Recommended

	
0.84

	
8.333

	
2.887

	
2.283




	
DL prediction

	
0.88

	
6.340

	
2.518

	
1.836

	
DL prediction

	
0.89

	
9.502

	
3.083

	
2.518




	
Wuwei

	
Recommended

	
0.84

	
9.619

	
3.101

	
2.311

	
Ankang

	
Recommended

	
0.84

	
10.803

	
3.287

	
2.489




	
DL prediction

	
0.91

	
5.849

	
2.418

	
1.757

	
DL prediction

	
0.81

	
9.493

	
3.081

	
1.880




	
Minqin

	
Recommended

	
0.90

	
4.983

	
2.232

	
1.597

	
Nanyang

	
Recommended

	
0.87

	
5.009

	
2.238

	
1.729




	
DL prediction

	
0.96

	
2.165

	
1.471

	
1.036

	
DL prediction

	
0.85

	
4.979

	
2.231

	
1.592




	
Yuzhong

	
Recommended

	
0.91

	
3.708

	
2.418

	
1.403

	
Zhengzhou

	
Recommended

	
0.88

	
5.487

	
2.342

	
1.736




	
DL prediction

	
0.95

	
2.224

	
1.491

	
1.131

	
DL prediction

	
0.95

	
2.148

	
1.466

	
1.136




	
Guyuan

	
Recommended

	
0.91

	
4.270

	
2.066

	
1.486

	
Anyang

	
Recommended

	
0.87

	
9.739

	
3.121

	
2.481




	
DL prediction

	
0.93

	
3.430

	
1.852

	
1.368

	
DL prediction

	
0.89

	
9.722

	
3.118

	
2.644




	
Yinchuan

	
Recommended

	
0.91

	
4.232

	
2.057

	
1.407

	
Fushan

	
Recommended

	
0.94

	
4.574

	
2.139

	
1.640




	
DL prediction

	
0.94

	
2.629

	
1.621

	
1.163

	
DL prediction

	
0.96

	
1.973

	
1.405

	
1.043




	
Huhehaote

	
Recommended

	
0.90

	
5.497

	
2.345

	
1.733

	
Jinan

	
Recommended

	
0.86

	
9.697

	
3.114

	
2.368




	
DL prediction

	
0.90

	
3.645

	
1.909

	
1.346

	
DL prediction

	
0.92

	
3.064

	
1.750

	
1.320




	
Erlianhaote

	
Recommended

	
0.91

	
6.024

	
2.454

	
1.866

	
Juxian

	
Recommended

	
0.92

	
3.105

	
1.762

	
1.344




	
DL prediction

	
0.94

	
3.308

	
1.819

	
1.671

	
DL prediction

	
0.95

	
1.636

	
1.279

	
0.957
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Table 4. Performance comparison between the prediction results of the corrected values of the Å-P parameters and the prediction results of the DL model.
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Site

	
Model

	
R2

	
MSE

	
RMSE

	
MAE

	
Site

	
Model

	
R2

	
MSE

	
RMSE

	
MAE






	
Yushu

	
Corrected

	
0.78

	
8.926

	
2.988

	
2.209

	
Wulatezhongqi

	
Corrected

	
0.92

	
4.556

	
2.135

	
1.448




	
DLprediction

	
0.90

	
5.018

	
2.240

	
1.728

	
DLprediction

	
0.95

	
3.273

	
1.809

	
1.435




	
Guoluo

	
Corrected

	
0.87

	
5.085

	
2.255

	
1.608

	
Dongsheng

	
Corrected

	
0.92

	
3.831

	
1.957

	
1.391




	
DLprediction

	
0.88

	
7.343

	
2.710

	
2.207

	
DLprediction

	
0.91

	
6.990

	
2.644

	
1.685




	
Gangcha

	
Corrected

	
0.92

	
3.285

	
1.812

	
1.314

	
Taiyuan

	
Corrected

	
0.88

	
5.476

	
2.340

	
1.750




	
DLprediction

	
0.94

	
2.647

	
1.627

	
1.243

	
DLprediction

	
0.89

	
9.559

	
3.092

	
2.216




	
Geermu

	
Corrected

	
0.94

	
3.226

	
1.796

	
1.290

	
Datong

	
Corrected

	
0.90

	
4.989

	
2.234

	
1.698




	
DLprediction

	
0.96

	
2.033

	
1.426

	
1.029

	
DLprediction

	
0.93

	
3.686

	
1.920

	
1.485




	
Xining

	
Corrected

	
0.88

	
5.449

	
2.334

	
1.687

	
Houma

	
Corrected

	
0.89

	
5.040

	
2.245

	
1.654




	
DLprediction

	
0.93

	
4.017

	
2.004

	
1.519

	
DLprediction

	
0.89

	
6.495

	
2.549

	
2.070




	
Ganzi

	
Corrected

	
0.89

	
3.467

	
1.862

	
1.408

	
Yanan

	
Corrected

	
0.88

	
5.871

	
2.423

	
1.718




	
DLprediction

	
0.85

	
4.559

	
2.135

	
1.704

	
DLprediction

	
0.86

	
7.068

	
2.659

	
1.855




	
Hongyuan

	
Corrected

	
0.84

	
7.648

	
2.765

	
1.994

	
Jinghe

	
Corrected

	
0.83

	
7.641

	
2.764

	
2.007




	
DLprediction

	
0.88

	
6.340

	
2.518

	
1.836

	
DLprediction

	
0.89

	
9.502

	
3.083

	
2.518




	
Wuwei

	
Corrected

	
0.81

	
12.101

	
2.960

	
2.760

	
Ankang

	
Corrected

	
0.83

	
7.185

	
2.680

	
1.871




	
DLprediction

	
0.91

	
5.849

	
2.418

	
1.757

	
DLprediction

	
0.81

	
9.493

	
3.081

	
1.880




	
Minqin

	
Corrected

	
0.90

	
4.684

	
2.164

	
1.614

	
Nanyang

	
Corrected

	
0.88

	
4.448

	
2.109

	
1.506




	
DLprediction

	
0.96

	
2.165

	
1.471

	
1.036

	
DLprediction

	
0.85

	
4.979

	
2.231

	
1.592




	
Yuzhong

	
Corrected

	
0.91

	
3.661

	
2.418

	
1.485

	
Zhengzhou

	
Corrected

	
0.89

	
4.685

	
2.165

	
1.615




	
DLprediction

	
0.95

	
2.224

	
1.491

	
1.131

	
DLprediction

	
0.95

	
2.148

	
1.466

	
1.136




	
Guyuan

	
Corrected

	
0.92

	
3.859

	
1.964

	
1.427

	
Anyang

	
Corrected

	
0.88

	
4.657

	
2.158

	
1.597




	
DLprediction

	
0.93

	
3.430

	
1.852

	
1.368

	
DLprediction

	
0.89

	
9.722

	
3.118

	
2.644




	
Yinchuan

	
Corrected

	
0.92

	
4.201

	
2.050

	
1.381

	
Fushan

	
Corrected

	
0.94

	
2.528

	
1.590

	
1.205




	
DLprediction

	
0.94

	
2.629

	
1.621

	
1.163

	
DLprediction

	
0.96

	
1.973

	
1.405

	
1.043




	
Huhehaote

	
Corrected

	
0.90

	
4.967

	
2.229

	
1.595

	
Jinan

	
Corrected

	
0.86

	
6.647

	
2.578

	
1.835




	
DLprediction

	
0.90

	
3.645

	
1.909

	
1.346

	
DLprediction

	
0.92

	
3.064

	
1.750

	
1.320




	
Erlianhaote

	
Corrected

	
0.91

	
5.108

	
2.260

	
1.584

	
Juxian

	
Corrected

	
0.93

	
2.848

	
1.688

	
1.266




	
DLprediction

	
0.94

	
3.308

	
1.819

	
1.671

	
DLprediction

	
0.95

	
1.636

	
1.279

	
0.957
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