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Abstract: Tobacco (Nicotiana tabacum L.) plant height (PH) is a biologically important plant architec-
ture trait linked to yield and controlled by polygenes. However, limited information is available on
quantitative trait nucleotides (QTNs), alleles, and candidate genes. The plant height of 94 tobacco ac-
cessions and their 126,602 SNPs were measured to conduct a genome-wide association study (GWAS)
using four multi-locus (ML) and two single-locus (SL) models to better understand its genetic basis.
The ML and SL models detected 181 and 29 QTNs, respectively, across four environments/BLUP;
LOD scores ranged from 3.01–13.45, and the phenotypic variance explained (PVE) ranged from
0.69–25.37%. Fifty-two novel, stable QTNs were detected across at least two methods and/or two
environments/BLUP, with 0.64–24.76% PVE. Among these, 49 QTNs exhibited significant phenotypic
differences between two alleles; the distribution of elite and alternative alleles for each accession
ranged from 3–42 and 6–46, respectively, in the mapping population. Seven cross combinations in
two directions were predicted using alleles of validated QTNs, including Qinggeng × KY14 for taller
plants and RG112 × VA115 for shorter plants. We identified 27 candidate genes in the vicinity of
49 stable QTNs based on comparative genomics, gene ontology (GO), and KEGG enrichment analy-
sis, including AP2, Nitab4.5_0000343g0250.1 (ROC1), Nitab4.5_0000197g0010.1 (VFB1), CDF3, AXR6,
KUP8, and NPY2. This is the first study to use genotyping-by-sequencing (GBS) of SNPs to determine
QTNs, potential candidate genes, and alleles associated with plant height. These findings could
provide a new avenue for investigating the QTNs in tobacco by combining SL and ML association
mapping and solid foundations for functional genomics, the genetic basis, and molecular breeding
for PH in tobacco.

Keywords: plant height; single-locus GWAS; multi-locus GWAS; quantitative trait nucleotides; elite
alleles; candidate genes; crosses

1. Introduction

Tobacco (Nicotiana tabacum L.) is an industrial crop grown on approximately 4.2 million
hectares, distributed across more than 120 countries [1]; its dry leaves are used to produce
cigarettes, chewing tobacco, cigars, and pipe tobacco [2,3]. The leaves and stems could
make tobacco a reliable source of biofuel and bioethanol [4]. China is the leading tobacco
producer, followed by India, Brazil, Zimbabwe, and the United States of America (USA) [5].
The height of tobacco plants is a biologically important plant architecture trait linked to
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yield and environmental stress tolerance [6,7]. Plant height has been positively associated
with leaves and yield [8,9]; thus, increasing PH could increase tobacco yield. However,
tobacco yield is far from the predicted yield [4] because its narrow genetic variation in N.
tabacum [10] hinders the potential for breeding high-yielding tobacco varieties. Therefore,
dissecting the genetic architecture and identifying elite alleles are essential for breeding
superior cultivars with a suitable PH.

The height of tobacco plants is a quantitatively inherited trait controlled by many
genes/quantitative trait loci (QTL) with major and minor effects. Traditional methods of
selecting suitable cultivars with a suitable PH require assessing various environments over
several years, which is labor-intensive, expensive, and time-consuming [11,12]. Due to
recent developments in next-generation sequencing (NGS) technology, molecular markers
are widely used in genetic research and breeding [13–15]. Thus, marker-assisted selection
(MAS) is an alternative approach for increasing the efficacy of traditional selection by im-
proving the allele frequency of critical PH QTL [13,16]. Studies have used simple sequence
repeat (SSR) markers for genetic diversity analysis in tobacco [8,17,18]. Tong et al. [17]
identified 13 QTLs for PH, explaining less than 20% of the phenotypic variance, with one
QTL mapped on linkage group (LG) 17 explaining 20.30% of the phenotypic variance.
Similarly, Cheng et al. [8] mapped two major QTLs (qPH-6 and qPH-12) on LG6 and LG12,
respectively, explaining 7.10% and 22.4% of the phenotypic variance. Recently, seven QTLs
for PH, qnPH6a, qnPH6b, qnPH6c, qnPH6d, qnPH8a, qnPH8b, and qnPH8c on LG6 and LG8
were identified using 45,081 SNPs of 274 tobacco individuals [19]. Up until now, only
22 QTLs have been published for PH in tobacco using a biparental population. Limited
information is available on plant height QTL mapping in tobacco [8,17] compared to other
crops [20], such as 238 QTLs in soybean (https://www.soybase.org/ (accessed on 5 August
2021)), 312 in wheat (http://wheatqtldb.net/#home (accessed on 6 August 2021)), and 209
in maize (https://maizegdb.org/data_center/locus (accessed on 6 August 2021)). Thus,
the molecular mechanism regulating PH in tobacco is scarcely known.

In recent years, genome-wide association studies (GWAS) have exploited more re-
combinant events and allelic diversity than QTL mapping and traditional methods [21].
Previous studies have used a small number of markers for association mapping in to-
bacco [8,22]. For example, Zhang et al. [22] used 258 flue-cured tobacco varieties and
597 sequence-related amplified polymorphism (SRAP) markers to identify three SRAP
associated with PH. Likewise, Cheng et al. [8] identified four SSR markers that explained
11.7–14.8% of the phenotypic variation associated with PH using 96 tobacco accessions
and 46 SSR markers. Recently, NGS, GBS, and chip arrays have identified millions of
SNPs [5,11,23], increasing our understanding of genetic variation in tobacco. Li et al. [11]
mapped 38 QTNs for disease resistance using GBS-SNPs in tobacco. SNPs have been widely
used in GWAS studies to identify QTNs for agronomic traits in maize [24], wheat [25,26],
mungbean [27], barley [28–31], rice [32,33], soybean [34,35], brassica [36], and tomato [37]
but not tobacco.

Moreover, many genes for PH have been dissected in crops, including Rht1 and Rht2 in
wheat [38]; GmDW1 [39], GmTFL1b [40], and GA20ox [41] in soybean; OsABF1 [42], OsFIE2,
OsEMF2b, OsCLF [43], OsMPH1 [44], and OsRPH1 [45] in rice; ZmGA3ox2 [46] and ZmACS7 [47]
in maize; At1g74450 in Arabidopsis [48]; and BnaMAX1 [49] and BnaC04.BIL1 [50] in brassica.
In addition, GWAS has been conducted to mine the candidate genes in multiple crops due
to low genomic linkage disequilibrium (LD) associated with investigated traits [51]. Ikram
et al. [52] and Hun et al. [53] mined 36 and 8 candidate genes for seed weight and plant height in
soybean using multi-locus (ML) GWAS models, respectively. Likewise, Hou et al. [54] predicted
46 candidate genes in cotton using ML-GWAS, while Ma et al. [55] reported 40 candidate genes
based on QTNs. However, the genetic foundations of PH have not been extensively studied in
tobacco, with most studies focusing on a classical genetics analysis [56]. Therefore, identifying
candidate genes, QTLs/QTNs, and elite alleles associated with PH will benefit the genetic
improvement of tobacco through molecular breeding.

https://www.soybase.org/
http://wheatqtldb.net/#home
https://maizegdb.org/data_center/locus
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Our earlier studies identified 38 QTNs and 53 candidate genes for tobacco bacterial
wilt [11] and five SNPs associated with drought tolerance in barley [28]. In the current
study, we phenotyped the PH of 94 tobacco accessions in multiple environments at two
locations. Our objectives were to identify (a) QTNs using single-locus (SL) and ML-GWAS
models to compare with known QTLs/QTNs, (b) stable QTNs and their elite alleles,
(c) allelic distribution in mapping population and predict cross combination using alleles,
and (d) candidate genes based on stable QTNs according to LD decay distance. These
results will provide an alternative strategy for improving the genetic architecture of PH in
tobacco using MAS.

2. Materials and Methods
2.1. Plant Material and Phenotyping

Ninety-four tobacco accessions (90 flue-cured, two burley, and two sun-cured) were
collected from different countries, including China, Japan, the United States, Australia,
Canada, Somalia, and Zimbabwe. The seeds were collected from the Nanxiong Scientific
Research Institute of Guangdong Tobacco Company, China; we used the same panel in
an earlier study [11]. These accessions were evaluated for plant height at the Hukou
experimental station of Nanxiong city in 2013 (E1-13H) and 2014 (E2-14H) and Xikou
experimental station of Nanxiong city in 2014 (E3-14X) and 2015 (E4-15X). Twenty plants of
each accession were grown in 0.5 × 1.2 m2 plots in a randomized complete block design
with two replicates. The PH of five representative plants from each plot was measured
when the first flower emerged on the main stem and averaged for each accession based on
two replications.

2.2. Statistical Analysis and Heritability Estimation for Plant Height

The mean, range, minimum, maximum, coefficient of variation (CV), standard de-
viation (SD), skewness, and kurtosis were calculated for PH of 94 accessions in various
environments using R4.0.3 (http://www.R-project.org/ (accessed on 10 September 2021)).
The Agricolae package of R software was used to perform a two-way ANOVA (genotype
and environment). Violin plots showed the distribution of phenotypic data for each envi-
ronment and BLUP values. The BLUP value of PH for each accession was determined using
the lme4 R package [57], with the following equation: Phenotype~(1|Genotype) + (1|Year).
A mixed linear model (MLM) was used to measure residual and polygenic variances for
the heritability estimation as described in [52]. The broad-sense heritability (h2

B) for plant
height was calculated as

h2
B =

σ2
g

σ2
g + σ2

e

where σ2
g is genetic variance, and σ2

e is residual variance.

2.3. Genotyping and Genome-Wide Association Studies

Genotyping-by-sequencing (GBS) technology was adopted to obtain high-density
SNPs, library preparation, variant calling, quality control filtration, and genotype 94 to-
bacco accessions (SRA accession number: PRJNA759331), as described in [11]. The Q matrix
of population structure, number of sub-populations, and linkage disequilibrium were the
same as in [11]. The association analysis involved 126,602 high-density SNPs with a minor
allele frequency (MAF) >0.05, based on the reference genome of N. tabacum Nitab4.5 [58].
The ML-GWAS was performed to detect significant QTNs using the mrMLM v4.0.2 package
(https://cran.r-project.org/web/packages/mrMLM/index.html (accessed on 15 Septem-
ber 2021)) [59], including mrMLM [60], pLARmEB [61], ISIS EM-BLASSO [62], and FASTm-
rMLM [59], and the kinship matrix K was automatically calculated. An LOD ≥ 3.00
(p = 0.0002) was set as the threshold for significant QTNs [63]. Two SL-GWAS methods,
FarmCPU (Q + K) and MLM (Q + K) models, were used to detect significant QTNs using
GAPIT [64] and TASSEL 5.2 [65], respectively. A threshold value of 0.05/N (N is number

http://www.R-project.org/
https://cran.r-project.org/web/packages/mrMLM/index.html
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of markers) was adopted for significant QTNs associated with PH. QTNs detected across
at least two ML/SL models and/or environments/BLUP were considered stable. QTN
naming followed the nomenclature: starting with ‘q’, followed by the trait name (PH, plant
height), chromosome number, and number of QTNs identified chromosome-wise.

2.4. Elite Allele Analysis for Plant Height

Stable QTNs detected across environments and multiple methods were considered
for the analysis of elite alleles. The elite alleles of each locus were determined based on
the rules in [11,52,53], such as the QTN effect value and 1 or –1 code for genotype. A QTN
positive effect value selected a genotype with code ‘1’ as an elite allele; a negative effect
value selected a genotype with code ‘–1’ as an elite allele; other alleles were selected as
alternative alleles [60,63]. The significance of plant height differences between elite and
alternative alleles was tested by a t-test to validate the stable QTNs. A boxplot depicted
the mean plant height of accessions with elite and alternative alleles. For each accession,
the elite allele percentage was determined as the number of elite alleles divided by stable
QTNs. For each QTN, the elite allele percentage was determined as the number of tobacco
accessions with elite alleles divided by 94 accessions. A correlation analysis was carried
out between the number of elite/alternative alleles and plant height phenotype using R
package ggplot2 (https://cran.r-project.org/web/packages/ggplot2/index.html (accessed
on 25 September 2021)). After validating and distributing elite alleles in the mapping
population, the five best cross combinations in two directions were predicted to develop
recombinant inbred lines (RILs) for tobacco breeding programs through marker-assisted
breeding methods.

2.5. Potential Candidate Gene Analysis

Candidate gene prediction was conducted based on the stable QTNs using the N.
tabacum Nitab4.5 (https://solgenomics.net/organism/Nicotiana_tabacum/genome; (ac-
cessed on 9 October 2021)) reference genome [58], within 95 kb upstream and downstream
of each QTN [11]. All identified genes were used to perform gene functional annotation
and comparative genome analysis. The functional annotation was retrieved using the Solge-
nomics (https://solgenomics.net/organism/Nicotiana_tabacum (accessed on 9 October
2021)) database. The comparative genome analysis identified homologous genes related
to PH between A. thaliana and N. tabacum using BLAST (http://blast.ncbi.nlm.nih.gov
(accessed on 9 October 2021)) with default settings except for critical E value 1E-30. The
homologous genes were categorized according to plant height based on the function of
their homologous genes in Arabidopsis, such as hormones related, transcription factors,
brassinosteroids, and structural components [66].

2.6. Gene Ontology and KEGG Analysis

A gene ontology (GO) analysis was performed using a web-based tool (http://www.
geneontology.org/ (accessed on 24 October 2021)) to classify the functions of potential
candidate genes into three classes: cellular component (CC), biological process (BP), and
molecular function (MF). A KEGG pathway enrichment analysis was conducted using the
online-based software KOBAS v3.0 (Beijing, China, http://kobas.cbi.pku.edu.cn/ (accessed
on 24 October 2021)) to map the potential pathways associated with plant height [67].
Finally, an adjusted p-value of ≤0.05 was used as a cutoff threshold for GO terms and
KEGG pathways.

3. Results
3.1. Phenotypic Evaluation for Plant Height

E1-13H, E2-14H, E3-14X, and E4-15X had mean ± SD values for PH of 62.20 ± 12.95 cm,
57.55 ± 10.73 cm, 68.25 ± 11.23 cm, and 108.80 ± 17.37 cm, respectively, ranging from
37.33–115.67 cm, 34.70–87.70 cm, 47.30–104.30 cm, and 69.00–165.00 cm (Table 1; Figure 1).
The corresponding CV values were 23.39, 18.64, 16.46, and 15.96% (Table 1). The high

https://cran.r-project.org/web/packages/ggplot2/index.html
https://solgenomics.net/organism/Nicotiana_tabacum/genome
https://solgenomics.net/organism/Nicotiana_tabacum
http://blast.ncbi.nlm.nih.gov
http://www.geneontology.org/
http://www.geneontology.org/
http://kobas.cbi.pku.edu.cn/
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CV values across different environments showed wide phenotypic variation among all
accessions suitable for association analysis. The frequency distributions for PH across four
environments are displayed in violin plots (Figure 1). The average kurtosis and skewness
across environments were 1.18 and 0.77, respectively (Table 1). The distributions indicated
a high level of variability and followed a normal distribution (Figure 1). Plant height was
significantly affected by genotype, environment, and the genotype × environment interac-
tion at p ≤ 0.01, indicating that environmental factors significantly influence PH variation
(Table 1). The broad-sense heritability (h2B) ranged from 78.93 to 87.09%, suggesting that
PH is influenced more by genetic factors than environmental factors (Table 1).

Table 1. Descriptive statistics for plant height in 94 tobacco accessions in four environments.

Environment Mean Min Max SD CV (%) Kurtosis Skewness FG FE FG×E h2
B (%)

E1-13H 62.20 37.33 115.67 12.95 23.39 3.70 1.25

506.64 ** 158.39 ** 24.81 **

80.31
E2-14H 57.55 34.70 87.70 10.73 18.64 0.44 0.73 87.09
E3-14X 68.25 47.30 104.30 11.23 16.46 0.01 0.53 83.37
E4-15X 108.80 69.00 165.00 17.37 15.96 0.58 0.58 78.93

E1-13H: Hukou (2013); E2-14-H: Hukou (2014); E3-14X: Xikou (2014); E4-15X: Xikou (2015); Min: minimum value;
Max: maximum value; SD: standard deviation; CV: coefficient of variation; FG, FE, and FG×E: F values in ANOVA
for genotype, environment, and genotype × environment, respectively; **: significance at the 0.01 probability
level; h2

B: broad-sense heritability.
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Figure 1. Phenotypic variation in the plant height of tobacco in different environments. The gray
color in the box indicates the median; the white boxplot in violin shows the range from the lower
quartile to upper quartile; the black line indicates the frequency distribution and dispersion of the
phenotypic data. Different letters indicate significant differences between environments and BLUP
values using the LSD test at p < 0.05.

3.2. Genome-Wide Association Mapping for Plant Height

The four ML-GWAS models (K + Q) identified 181 significant QTNs across four environ-
ments/BLUP at LOD ≥ 3 (Table S1; Figures 2a and 3). Among these, 39, 48, 43, 40, and 28
were detected in E1-13H, E2-14H, E3-14X, E4-15X, and BLUP, respectively; LOD scores ranged
from 3.08–9.14, 3.03–13.45, 3.04–9.14, 3.03–11.08, and 3.01–11.64 (Table S1; Figure 2a). The
phenotypic variance explained (PVE) for these QTNs ranged from 1.05–19.66%, 0.69–23.19%,
0.001–17.45%, 1.40–17.57%, and 1.06–25.37%, respectively (Table S1). Of these QTNs, mrMLM,
FASTmrMLM, ISIS EM-BLASSO, and pLARmEB detected 9–20, 11–14, 10–16, and 5–22 QTNs
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across the four environments and BLUP, respectively (Table S1; Figure 2d). The PVE values
ranged from 1.05–25.37%, 2.09–24.75%, 0.69–23.19%, and 0.64–17.57%, while LOD scores
ranged from 3.03–12.77, 3.13–11.93, 3.01–12.17, and 3.03–17.57, respectively (Table S1).
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Figure 2. Total number of significant QTNs and common QTNs for plant height identified in four
environments and GWAS models. Unique and common QTNs were identified in four environments
and BLUP by (a) ML-GWAS models, (b) SL-GWAS models, and (c) combined ML/SL models.
(d) All six methods detected unique and common QTNs. The connected circles below the histogram
represent common QTNs; brown, dark blue, dark green, and dark orange represent two, three, four,
and five common QTNs, respectively, while purple denotes unique QTNs. Horizontal bars show
the total number of QTN set sizes for different environments and methods. E1-13H: Hukou (2013),
E2-14-H: Hukou (2014), E3-14X: Xikou (2014), and E4-15X: Xikou (2015).

Moreover, two SL-GWAS models (Q + K) identified 29 significant QTNs for PH at
p = 0.05/m (3.95 × 10–7) (Table S2; Figures 2b and 3). Of these, 4, 3, 2, 6, and 16 were identified
in E1-13H, E2-14H, E3-14X, E4-15X, and BLUP, respectively, with PVE values ranging from
16.45–13.86%, 3.46–10.62%, 9.27–9.98%, 9.56–15.31%, and 3.43–10.94% (Table S2). The MLM
(Q + K) and FarmCPU (Q + K) detected 1–12 and 2–6 of these QTNs, respectively (Table S2;
Figure 2b,d). Finally, the ML- and SL-GWAS models identified 203 significant QTNs for PH
across the four environments/BLUP (Tables S1 and S2; Figures 2 and 3), which were unevenly
distributed on 23 chromosomes, with >15 QTNs located on Nt01, Nt04, Nt06, Nt10, Nt13, Nt17,
Nt18, and Nt22 (Tables S1 and S2; Figure 3). The identified QTNs were not constant or located
in the genomic regions of previously known QTNs/QTLs underlying PH in tobacco.
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3.3. Identification of Stable Quantitative Trait Nucleotides

Fifty-two stable QTNs were identified in at least two environments/BLUP and/or
SL/ML-GWAS models (Table S3; Figures 4 and S1): 18 were repeatedly identified in
environments (Table 2; Figures 2 and 3), all 52 were repeatedly identified by methods
(Table S3; Figure 4), and 19 were simultaneously detected in environments and methods
(Table S3). The corresponding averaged LOD score and PVE values were 3.01–13.45 and
0.64–24.76%, respectively. Among the 18 environment-stable QTNs, qPH-18-3 and qPH-
24-2 were detected in three environments, and the remaining 16 were identified in two
environments by at least two methods (Tables 2 and S3). Four QTNs, qPH-10-1, qPH-10-2,
qPH-17-2, and qPH-22-2, were simultaneously detected in E1-13H and E2-14H (Table 2).
Among the 52 method-stable QTNs, ML models detected 41, SL models detected five, and
ML and SL models identified six (Table S3; Figure 2). For example, all six SL and ML models
in E4-15X detected qPH-14-1, with PVE and LOD values ranging from 4.25–11.48 and 4.26–
12.61%. Two stable QTNs, qPH-9-2 and qPH-20-3 were detected via all four ML-GWAS
models in two and one environments, respectively, with a PVE ranging from 9.85–11.48%
(Table S3). All SL-GWAS models identified qPH-15-3, qPH-24-2, qPH-2-2, qPH-15-2, and
qPH-17-4, while two ML models and one SL model identified qPH-4-3, qPH-14-1, qPH-13-2,
qPH-17-3, qPH-18-4, and qPH-18-3 in different environments (Table S3).
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significant and stable QTNs identified in four environments and their BLUP values. The pink dots
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Table 2. Number of stable QTNs detected in multiple environments for plant height in tobacco.

QTN Name Position (bp) LOD Score ‘−log10(p)’ r2 (%) a Environments b Method c

qPH-1-1 Nt01_39983559 3.01–5.00 3.71–5.79 4.69–6.84 E3-14X, BLUP M2, M3, M4
qPH-1-2 Nt01_102574685 3.31–6.45 4.03–7.29 4.9–12.84 E4-15X, BLUP M2, M3
qPH-6-1 Nt06_34417817 4.43–5.59 5.2–6.41 4.43–9.85 E4-15X, BLUP M1, M2, M4

qPH-10-1 Nt10_26491005 4.13–13.45 4.89–14.45 7.12–25.67 E1-13H, E2-14H M1, M2, M3
qPH-10-2 Nt10_62768687 4.12–9.48 4.88–10.41 9.5–21.48 E1-13H, E2-14H M2, M3, M4
qPH-11-1 Nt11_5419687 3.52–4.06 4.24–4.81 3.03–7.58 E3-14X, BLUP M1, M2
qPH-13-2 Nt13_62198057 3.27–8.33 3.98–9.23 6.43–11.84 E2-14H, BLUP M2, M3, SL2

qPH-14-1 Nt14_88069397 3.53–11.64 4.26–12.61 4.25–11.48 E4-15X, BLUP M1, M2, M3, M4,
SL1, SL2

qPH-17-2 Nt17_140487212 3.38–5.45 4.1–6.27 0.64–2.09 E1-13H, E2-14H M2, M4
qPH-17-3 Nt17_200407178 4.62–5.02 5.4–5.82 6.31–7.08 E2-14H, BLUP M2, M4, SL1
qPH-18-1 Nt18_10034331 3.38–8.4 4.1–9.31 6.63–15.68 E4-15X, BLUP M1, M3, M4
qPH-18-3 Nt18_37042785 4.3–10.55 5.06–11.5 3.95–13.32 E1-13H, E2-14H, BLUP M2, M4, SL2
qPH-18-4 Nt18_61973096 4.06–6.09 4.81–6.93 3.65–6.43 E3-14X, BLUP M2, M4, SL1, SL2
qPH-20-1 Nt20_3868276 3.13–5.87 3.83–6.7 1.57–6.54 E4-15X, BLUP M2, M3
qPH-22-1 Nt22_19764404 3.67–9.86 4.4–10.8 7.29–24.78 E3-14X, BLUP M2, M3, M4
qPH-22-2 Nt22_102807360 3.15–8.63 3.86–9.54 1.39–7.8 E1-13H, E2-14H M3, M4
qPH-23-3 Nt23_56966891 3.09–4.55 3.79–5.33 4.16–6.4 E4-15X, BLUP M2, M3, M4
qPH-23-4 Nt23_116192791 3.18–3.95 3.89–4.69 2.63–7.86 E2-14H, BLUP M2, M3, M4
qPH-24-2 Nt24_34952292 2.48E-08 8.513637 E1-13H, E2-14H, BLUP SL1, SL2

a r2%: phenotypic variance explained by each QTN; b Environments: E1-13H: Hukou (2013), E2-14-H: Hukou
(2014), E3-14X: Xikou (2014), and E4-15X: Xikou (2015); c Methods: M1: mrMLM, M2: FASTmrMLM, M3: ISIS
EM-BLASSO, M4: pLARmEB, SL1: MLM, and SL2: FarmCPU.

3.4. Allelic Effects of Stable QTNs for Plant Height in Multiple Environments

The application of identified QTNs associated with target traits is the prime objective
in breeding programs; therefore, it is important to find elite alleles for MAS. The 52 stable
QTNs were used to determine the elite alleles and their alternative alleles for PH based
on their QTN effect values (Table S3). qPH-1-1, qPH-1-3, qPH-7-1, qPH-10-2, and qPH-
16-1 exhibited the highest positive effects, with 2.62–3.71 cm, 5.12–5.71 cm, 6.06–7.27 cm,
5.48–6.20 cm, and 3.85–4.40 cm on PH in different environments, respectively; alleles with
genotype code ‘1’ were considered elite alleles (Table S3). Seven QTNs, qPH-5-1, qPH-
6-1, qPH-10-1, qPH-13-3, qPH-17-1, qPH-18-3, and qPH-23-1, had negative effects, with
−10.41 to −5.7 cm, −9.12 to −2.92 cm, −10.41 to −4.6 cm, −4.42 to −3.98 cm, −5.97 to
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−4.74 cm, −6.35 to −4.72 cm, and −8.39 to −5.86 cm on PH, respectively; alleles with
genotype code ‘−1’ were considered elite alleles (Table S3).

Furthermore, the phenotypic values of 94 accessions in four environments were used
to confirm phenotypic differences between elite and alternative alleles at p ≤ 0.05 (Table
S4; Figures 5, S2 and S4). As a result, 49 of 52 QTNs had significant phenotypic differences
across two alleles, e.g., allele TT on locus qPH-1-2 had a significantly higher mean (77.64–
116.28 cm) than the alternative allele AA (72.05–103.72 cm) (Figure 5). For qPH-11-2, 70
accessions had the CC elite allele contributing to taller plants (77.01 cm), whereas 20
accessions had the TT alternative allele contributing to shorter plants (65.22) (Table S4;
Figure S2). Similarly, six QTNs, qPH-4-2, qPH-5-1, qPH-11-2, qPH-15-2, qPH-18-5, and
qPH-23-1, had AA (76.2 cm), CC (118.73 cm), TT (77.01 cm), CC (115.53 cm), AA (65.25 cm),
and CC (114.97 cm) elite alleles that significantly increased plant height compared to their
alternative alleles GG (58.63 cm), AA (104.59 cm), CC (65.22 cm), TT (106.36 cm), GG
(55.8 cm), and TT (102.36 cm), respectively.
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3.5. Distribution of Elite Alleles in Mapping Population and cross Combination in Two Directions

Using 49 validated QTNs, 5 (5.31%) to 73 (77.65%) accessions contained elite alleles of
each QTN, while 11 (11.70%) to 89 (94.68%) accessions contained alternative alleles (con-
sidered elite alleles for shorter plants) of each QTN in the mapping population (Table S5).
The 94 accessions had 3 (6.12%) to 42 (85.17) elite alleles for taller plants and 6 (11.51%) to
46 (88.46%) alternative alleles for shorter plants (Table S6). Moreover, Qinggeng, 81–26,
KY14, H66B, and S1640 had 42, 38, 31, 30, and 27 elite alleles, respectively, while C319, K399,
NC82, K394, and C206 had 46, 45, 40, 39, and 38 alternative alleles, respectively (Table S6).
The correlation analysis revealed significant positive correlations between the number
of elite alleles and plant height in E1-13H (r = 0.63), E2-14H (r = 0.76), E3-14X (r = 0.71),
E4-15X (r = 0.78), and BLUP (r = 0.90) (Figure 6a,e) and significant negative correlations
between the number of alternative alleles and plant height in E1-13H (r = −0.58), E2-14H
(r = −0.79), E3-14X (r = −0.75), E4-15X (r = −0.76), and BLUP (r = −0.92) (Figure 6f,j).
The strong correlations indicate that the pyramiding of elite alleles for target traits has
potential for molecular tobacco breeding. Based on these findings, the seven best cross
combinations were predicted for taller and shorter plants (Table 3). The Qinggeng (42 al-
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leles and 111.91 cm height) × KY14 (31 alleles and 88.92 cm height) cross could produce
47 elite alleles for taller plants. Similarly, the K399 (45 alleles and 49.25 cm height) × C319
(46 alleles and 54.37 cm height) cross could produce 49 alleles for shorter plants (Table 3).
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Figure 6. Scatter plot with fitted regression lines representing the correlation between elite/alternative
alleles and plant height in tobacco. A positive correlation was calculated between the number of elite
alleles and plant height in (a) E1-13H, (b) E2-14H, (c) E3-14X, (d) E4-15X, and (e) BLUP values. A
negative correlation was calculated between the number of alternative alleles and plant height in
(f) E1-13H, (g) E2-14H, (h) E3-14X, (i) E4-15X, and (j) BLUP values. E1-13H: Hukou (2013), E2-14-H:
Hukou (2014), E3-14X: Xikou (2014), and E4-15X: Xikou (2015).

Table 3. Best parental cross combinations in two directions for plant height in tobacco from elite alleles.

Direction P1 P2
P1-

Phenotype
(cm)

P2-
Phenotype

(cm)

P1-Elite
Alleles

P2-Elite
Alleles

Offspring
Alleles

Taller plants

Qinggeng KY14 111.91 88.92 42 31 47
Japan 4 Qinggeng 78.86 111.91 25 42 46
ROX28 81-26 89.55 107.16 25 38 46
H66B KY14 100.79 88.92 30 31 45
81-26 KY14 107.16 88.92 38 31 45

Hicks 187 Qinggeng 79.7 111.91 26 42 44
Japan 4 81-26 78.86 107.16 25 38 44

Shorter
plants

K399 C319 49.25 54.37 45 46 49
NC82 C319 60.28 54.37 40 46 48
G33 RG112 72.29 63.67 37 37 44
K394 VA116 69.03 65.92 39 37 46
K399 RG112 49.25 63.67 45 37 49

Nanxuan No. 1 K394 69.03 63.33 37 39 45
RG112 VA115 63.67 63.67 37 37 42

3.6. Identification of Candidate Genes Based on Stable QTNs

Based on the ±95 kb LD decay of each QTN, 291 genes were mined in the vicinity
of 49 stable QTNs, of which 158 were homologous in A. thaliana. These genes were used
to conduct a GO enrichment analysis, which identified 45, 41, and 54 genes (adjusted
p-value ≤ 0.05) belonging to BP, MF, and CC terms (Figure S5a,c). The KEGG enrichment
analysis identified 24 genes (adjusted p-value ≤ 0.05) involved in 39 KEGG pathways
(Figure S5d). Finally, the literature search and comparative genomic, GO, and KEGG
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enrichment analyses revealed 27 candidate genes directly or indirectly associated with
tobacco plant height (Table S7), of which 9 and 18 were located upstream and downstream of
the QTNs. For instance, qPH-1-3 at Nt01_131577600 had Nitab4.5_0002209g0240 at 32.03 kb
upstream; this gene codes gibberellin 2-oxidase 1 (GA2OX1) protein and participates in the
biosynthesis of secondary metabolites (nta01110). Similarly, qPH-5-2 at Nt05_56540078 had
Nitab4.5_0001598g0010 and Nitab4.5_0001598g0020 at 81.37 and 94.00 kb downstream and
upstream, respectively, which encodes transcription factor IIB 2 (TFIIB2) and participates
in basal transcription factors (nta03022) (Table S7). Moreover, ATL1, RLK, and SIF3 were
related to the cellular protein modification process (GO:0006464), HKT1, LIG1, PIP1;4, and
UPL5 were involved in the stress response (GO:0006950); CLASP and CDF3 were involved
in the cell cycle (GO:0007049)/cell division (GO:0051301); and SCN1, PRK5, and AP2 were
related to cell differentiation (GO:0030154)/cell morphogenesis (GO:0000902) (Table S7).

4. Discussion

Tobacco is an economically vital crop and is a model plant for genomic and genetic
research [68]. This study focused on tobacco plant height for several reasons. Firstly,
tobacco crop is grown for its leaves rather than its reproductive parts, and PH is strongly
correlated with leaf number and geographical adaptation [69]. Therefore, manipulating
PH would be valuable for developing tobacco cultivars with improved yield and wide
geographical adaptation. Secondly, PH is an essential factor for vegetative development
and is typically quantitatively inherited [8,17]. In this study, the phenotypic analysis
indicated that environmental factors significantly influence variation in PH and confirmed
its heritability [2,3,70].

Given its importance and ease of measuring, PH is an excellent trait for investigating
QTNs in tobacco by combining ML and SL GWAS models. This study identified 181 QTNs
using four ML models (Table S1; Figures 2 and 3) and 29 using two SL models in four
environments (Table S2; Figures 2 and 3), indicating that ML models are robust and of a
high resolution. Similar results have been reported in other crops for quantitative traits,
including cotton, soybean, maize, rice, and tobacco. For example, Xu et al. [71] identified
more than 30 QTNs using ML models and less than 19 using SL models in the genetic
dissection of maize starch pasting properties. Similarly, Cui et al. [72] reported the highest
number of QTNs using ML models in the genetic dissection of rice salt tolerance traits.
Some studies have recommended combining ML and SL methods to improve the detection
power and robustness of GWAS [11,52,71]. The present study identified 52 stable QTNs
in more than two environments/BLUP and/or methods, with 19 co-detected in multiple
environments and 52 co-detected by multiple methods (Table 2 and Table S3; Figures 3
and 4). Zhang et al. [63] suggested that method-stable QTNs are essential and reliable,
similar to environment-stable QTNs. Similar studies have been published in soybean [52,53],
tobacco [11], wheat [26], cotton [73], and rice [72]. Notably, 22 QTLs/QTNs have been
reported for tobacco plant height [8,17,19]; the 52 QTNs identified in this study did not
overlap these 22 QTLs/QTNs, and they are thus considered novel QTNs, eliminating some
constraints of genetic mapping and providing opportunities to identify useful markers for
breeding [74].

We identified significant phenotypic differences between the elite and alternative
alleles of 49 QTNs (Figures 5, S3 and S4), with 3–42 elite and 6–46 alternative alleles
revealed in the mapping population (Tables S5 and S6), which can be used to breed taller or
shorter plant varieties according to the desired traits. We predicted the best crosses using
these alleles to develop RILs in two directions (Table 3). A single parent was involved in
multiple crosses, similar to previous studies [52,53,75,76]. The pyramiding concept has been
used in rice breeding to develop cultivars for larger grain [76]. Tian et al. [75] developed
the high-yielding rice variety LYP9 by pyramiding elite alleles through molecular breeding.
These new elites and alternative alleles will improve tobacco plant height/architecture
through marker-assisted breeding.
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This study identified 27 candidate genes associated with plant growth, cell division, cell
cycle, hormone-related, and stress response (Table S7). For example, Nitab4.5_0000472g0020
was homologous to the AP2 genes in A. thaliana, which act as crucial regulators of many
plant developmental processes [77]. The AP2 protein may function in flower development
and organogenesis in the water lily [77] and is a promising gene for PH improvement. Like-
wise, Nitab4.5_0000343g0250 encodes RING-box 1 (ROC1); mutant roc1 in Arabidopsis reduces
stem elongation and increases shoot branching [78]. Nitab4.5_0000322g0110 encodes the NAC
domain transcriptional regulator (ATAF1); overexpression of ATAF1 in Arabidopsis increased
plant sensitivity to ABA (Table S7) [79]. Moreover, Nitab4.5_0004414g0010 is homologous to
AT1G08130.1 and encodes DNA ligase 1 (LIG1); a LIG1 mutant had a severely stunted and
stressed growth phenotype [80]. Nitab4.5_0000052g0420 was homologous to AT1G70300 (KUP6)
in A. thaliana; KUP6 maintained cytoplasmic K+ levels during Na+-inhibited K+ uptake [81,82].
Nitab4.5_0000069g0010 encodes protein phosphatase 2A-2 (PP2A-2), involved in chloroplast
avoidance movements, resulting in shorter plants [83,84]. In transgenic Arabidopsis, ALT1
(Nitab4.5_0002832g0010) induced severe growth inhibition and some cell death [85,86]. Sim-
ilarly, Nitab4.5_0000197g0010 (VFB1) regulates plant growth and lateral root formation [87],
while Nitab4.5_0001288g0090 is involved in pollen receptor and pollen tube growth [88].

Cytoplasmic linker-associated proteins (CLASPs) are important in the regulation of
microtubule (MT) dynamics that play an essential role in plant growth and development
in cotton [89] and Arabidopsis [90]. We identified that Nitab4.5_0000813g0100 encoded a
CLIP-associated protein (Table S7). One important gene, Nitab4.5_0001711g0050, is homolo-
gous to AT2G38530 (CDF3) cell growth defect factor-3, involved in lipid transfer between
membranes and the integrity of the cuticle–cell wall interface [91]. Nitab4.5_0001598g0010
and Nitab4.5_0001598g0020 contain TFIIB domains [92], with essential roles in pollen tube
development and endosperm development. A TFIIB1 mutant had retarded pollen tube
growth, impaired pollen tube guidance and reception, and abnormal endosperm devel-
opment [93]. Three auxin-related genes, Nitab4.5_0001615g0140, Nitab4.5_0000627g0040
(AXR6), and Nitab4.5_0000052g0430 (KUP8), are involved in plant growth and development,
lateral root growth [94], and regulating photosynthesis [95]. Nitab4.5_0003019g0010 (NPY2)
controls the polar localization of auxin efflux carriers within cells and the direction of
auxin transport [96,97]. We anticipate that this study’s findings can be used to determine
the precise functions of genes that regulate the growth of tobacco plants and enhance the
planning of mapping studies for implementing MAS.

5. Conclusions

This study co-identified 52 stable QTNs in multiple environments and multiple meth-
ods; 49 showed phenotypic differences for plant height. The elite and alternative alleles
of these QTNs were used to predict the seven best cross combinations in two directions.
A comparative genomic analysis, GO enrichment analysis, and KEGG enrichment analysis
identified 27 potential candidate genes. These results will be helpful for future studies and
breeding programs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12051047/s1, Figure S1: Number of stable QTNs
detected for plant height in four environments/BLUP; Figure S2: Plant height phenotypic differences
between elite and alternative alleles of each QTNs in multiple environments; Figure S3: Phenotypic
differences between elite and alternative alleles of each QTNs; Figure S4: Phenotypic differences
between elite and alternative alleles of each QTN for plant height in different environments; Figure
S5: Gene ontology and KEGG pathway enrichment analyses for candidate genes identified based
on stable QTNs using the KOBAS database; Table S1: Number of QTNs identified in different
environments using four multi-locus GWAS models; Table S2: Number of QTNs identified in
different environments using two single-locus GWAS models; Table S3: Number of stable QTNs
detected by multiple methods and/or in multiple environments/BLUP; Table S4: Alleles of stable
QTNs indicating phenotypic differences in different environments; Table S5: Distribution of elite and
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alternative alleles in 94 tobacco accessions; Table S6: Distribution of alleles in stable QTNs among 94
accessions; Table S7: Candidate genes around stable QTNs for plant height in tobacco.
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