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Abstract: Table beet (Beta vulgaris L.) is a source of the natural red-colored food dye (E162), highly
demanded for the broad spectrum of its biological activity. The relevance of this study is dictated
by the lack of knowledge about the dynamics of changes in the crop’s betalain content during the
growing season, which impedes identifying the optimal timing of harvesting in order to obtain
the dye. This paper presents the results of research into betacyanins (BC) and betaxanthins (BX),
separately in the peel and flesh of roots, in 15 differently colored table beet accessions from the
collection of the N.I. Vavilov Institute (VIR). There was no statistically significant accumulation
of betalains in beets during the growing season. The pigment’s significant fluctuations associated
with abiotic environmental factors were shown. The ratio of BC/BX in red-colored accessions was
measured: 2.65 in the peel and 2.9 in the flesh. Strong positive relationships were found between
BC and BX in the peel (r = 0.97) and flesh (r = 0.79) of red-colored biotypes, which stably persisted
throughout the growing season. The beetroot peel was more sensitive to temperature changes, in
contrast to the flesh. The negative effect of a temperature increase on betalains in red-colored beetroots
intensified on the second or third day. The pigment composition of the flesh was less susceptible to
the negative impact of increased temperatures, but reacted negatively to rainfall, becoming more
expressed on the second or third day. A conclusion was made about the morphotype with high
betalain content. Recommended cultivars are mid-ripening, with rounded and medium-sized roots,
a large number of narrow leaf blades, and short and thin petioles.

Keywords: Beta vulgaris L.; betalains; betacyanins; betaxanthins; natural food coloring; correlations;
morphological features; abiotic factors

1. Introduction

Table beet (Beta vulgaris L. ssp. vulgaris var. conditiva Alef.) is an important source of
the natural red-colored food dye betanin (E162). This crop is characterized by high root
yield (50–60 t/ha), environmental plasticity, and pigment yield [1–3], preventing other
sources of betanin, such as prickly pear fruits (Opuntia vulgaris Mill.) or red-colored forms
of amaranth (Amaranthus L.), to compete with beet [4–6]. The dye betanin (betanidin
5-O-β-glucoside) isolated from beet occupies a dominant place (70–95%) in the group of
betalains [7].

Betalains are nitrogen-containing plant pigments, characteristic of the Caryophyllales
order representatives. They are water-soluble, tyrosine-derived pigments, forming two
groups: red-violet betacyanins (BC) and yellow-orange betaxanthins (BX). BCs are mainly
represented by betanin and isobetanin, while BXs are dominated by vulgaxanthins
(I and II) [2].

The function of betalains in beetroots is not yet clear. The BC biosynthesis is known
to be induced under the influence of UV radiation, high salinity, low temperature [8–10],
mechanical damage or inoculation with pathogenic fungi [11,12]. The same stressors lead
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to the formation of reactive oxygen species (ROS), indicating that BCs are antioxidants
that alleviate oxidative stress when plant cells have been damaged. It means that the
accumulation of betalains (mainly BCs) is an adaptive survival strategy. We assume that
it is the protective function of table beet betalains that allows the root to safely endure
unfavorable environmental conditions in the soil before the onset of the next stage of
ontogenesis—the growth of the seed bush—and at the same time, not to die from pathogenic
soil microflora.

Betalains, in recent decades, has attracted the close attention of scientists not only
because of the market orientation towards using natural food colors but also due to a
wide range of their biological activities, including anti-inflammatory, hepatoprotective,
antimicrobial and anticarcinogenic properties [13–18]. The pigment composition ranks the
beet among the ten vegetables with the highest antioxidant activity [19–22]. The use of the
beetroot dye combines its coloring effect with therapeutic properties, which is extremely
important for human health improvement.

Choosing the time of table beet harvesting for food purposes mainly depends on the
root size. Such practice is not suitable when this crop is grown to produce the dye. The
external color of the beetroot does not change during its ontogenesis, and it is difficult to
visually identify its readiness for harvesting. A group of Polish researchers studied the
dynamics of changes in betalains during the growing season [23,24]. When the beet material
was taken for analysis after 2 weeks, it was shown that the best harvesting time for high
betalain content levels falls on the eighth and eleventh week of cultivation. A publication
by a team of Spanish authors also showed that among the three stages of the growing
season, the maximum amount of betalains was observed in the second stage [25]. These
data indicate the absence of linear accumulation dynamics in the accumulation of pigments.
Our previous studies did not observe the cumulative effect of betanin. At the same time,
significant fluctuations in the pigment content associated with weather characteristics
were described [26]. It is known, however, that higher temperatures during the storage
of beetroots and a study of beet solutions under heating led to BC and BX decomposi-
tion [27,28]. Herbach and her team reported that, as temperature increased, BCs were
cleaved to the form of betalamic acid and neobetacyanins [29]. The main dehydrogenation
pathways associated with the decarboxylation of betanin/isobetanin and neobetanin were
also described previously [30,31]. The present study was aimed at determining the limiting
effect of environmental temperature on betalains during the growing season.

The biosynthesis of betalain pigments in table beet plants is a dynamic process that
changes during ontogenesis and depends on the specific genotype, abiotic and edaphic
factors, and agricultural practices [32]. In the works that studied the effect of beet raw
material processing on the pigment content, the technique included mandatory peeling of
the root [33,34]; this was certainly necessary when focusing on making juices for children
and dietary food. However, the dye production technique does not imply the removal of
the peel: the blanching of the whole root is used [35]. Therefore, close attention in this work
was paid to identifying the trends in the BC and BX dynamics, separately in the peel and
flesh of the beetroot, which, as far as we know, has not been done before.

The objective of this study was to trace the dynamic changes in the content of beta-
cyanins and betaxanthins during the growing season, separately in the peel and flesh of table
beetroots with different colors, and to identify the limiting effect of environmental factors.

2. Materials and Methods
2.1. Materials and Agricultural Details

The target material for this study was a set of 15 table beet accessions with different
root colors (Beta vulgaris L. var. conditiva Alef.) from the collection held by the N.I. Vavilov
All-Russian Institute of Plant Genetic Resources (VIR). Field experiments were performed
following the unified guidelines [36] in 2021 at Pushkin and Pavlovsk Laboratories of
VIR (latitude: 59◦42′41.7′′ N; longitude: 30◦25′47.1′′ E). Sowing was done on 31 May in a
randomized row scheme, with three replications. Planting was carried out in six-meter rows
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following the 70 cm × 8 cm pattern. Seeds were sown manually to a depth of 2.5–3 cm.
All cultivars were studied against a natural background, without fertilization or plant
protection from pests and diseases. Morphometric parameters were measured once a week,
from 13 July to 14 September.

2.2. Quantification of Betalains

Beetroots were sampled for the analysis twice a week, from 13 July through 14 Septem-
ber. All measurements were made within 3 h after the removal of roots from the soil.
The pigment content was analyzed separately in the peel (cut with a knife, 1–2 mm) and
flesh of ten roots per each accession, preliminarily washed and dried. The root filtrate
was studied using spectrometry on a Shimadzu UV-1800 double-beam spectrophotometer
(Shimadzu Corporation, Kyoto, Japan). The phosphate buffer solution with pH 6.5 was
used. The concentration of betalains was measured by applying the previously described
technique [37] according to the following formula:

betacyanins/betaxanthins =
A × DF × NW × 1000

ε × i
,

where:
A is the optical density, nm (for betacyanins: A = A536nm − A650nm, and for betax-

anthins: A = A485nm − A650nm); DF is the dilution factor; MW is the molecular weight
(550 g/mol for betacyanins, and 339 g/mol for betaxanthins); ε is the molar extinction
coefficient in L ×mol−1 × cm−1 (60,000 for betacyanins, and 48,000 for betaxanthins); i is
the path length, cm. All measurements were performed in triplicate. The measurement at
the wavelength of 650 nm was used to correct for impurities.

2.3. Statistical Analyses

All statistical analyses (p < 0.05) were performed using the Statistica v.8.0 for Windows
software package, Excel software and R system. Descriptive statistics (mean, standard
deviation, standard error of the mean, and coefficient of variation) were calculated for all
parameters. Data means were compared using the one-way analysis of variance (ANOVA).
The PCA and the correlogram were implemented in R. The values of the Pearson correlation
coefficient at r < 0.3 were considered as weak, 0.3 > r > 0.5 as moderate, 0.5 > r > 0.7 as
noticeable, 0.7 > r > 0.9 as strong, and r > 0.9 as very strong.

3. Results and Discussion

The weather characteristics of the growing season in 2021 differed significantly from
the mean long-term data (Figure 1). In May, with its low temperatures, the long-term rainfall
data were exceeded by 14%, which resulted in the late sowing of beets (2 weeks later). June
and July were extremely dry (−82% and −91% of the long-term mean, respectively). At the
same time, the air temperature was 36–25% higher than the long-term mean level. Despite
the extremely unfavorable conditions during these periods, the growth of leaf biomass
proceeded quite well, pointing to the high drought resistance of the crop in these phases of
ontogenesis. Due to the lack of soil moisture, the active phase of root growth started after
27 July, which was 2 weeks later than the long-term records.

A representative set of table beet samples was selected for testing through the screening
of the VIR collection [38] from 15 accessions, classified according to the color of the root
and its intensity into 4 groups: maroon (1), red (2), yellow (3), and white (4).

Despite the recorded unfavorable weather conditions in the first half of the summer,
the mean yield on 14 September was 23.9 kg/10m2, i.e., at the level of the long-term means
for this region [39]. The weight of one beetroot varied significantly (p < 0.05) and averaged
137.3 g (Table 1). The highest yield was observed in the accessions with an elongated
(cylindrical) root shape as well as in cvs. ‘Bordo odnosemyannaya’ (k-3151, Russia) and
‘Boldor’ (k-3880, The Netherlands).
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Figure 1. Mean monthly temperatures and rainfall in the experimental field during the 2021 growing
season and long-term means for 1744–2020 (Pushkin and Pavlovsk Laboratories of VIR, Town of
Pushkin, St. Petersburg, Russia). Source: Department of Automated Information Systems of Plant
Genetic Resources, Hydrometeorological Station of VIR.

Table 1. Productivity characteristics of table beet accessions. Duration of the growing season:
105 days. Results are presented as mean values with a standard deviation (Mean± SD), the coefficient
of variation (%CV), mean values with standard error (Mean ± SE), and the least significant difference
(LSD05).

VIR
Catalogue No. Accession Name Origin

Photosynthetic
Surface Area,

cm2
Root Color Group Yield,

kg/10 m2
Root Weight, g **

Mean ± SE % CV

2011 Betterowe Potagere *** Algeria 2070.0 1 33.6 263.2 ± 100.9 96.3
3677 Detroit rubinovy Russia 700.10 1 24.5 136.0 ± 36.2 65.2
3151 Bordo odnosemyannaya Russia 868.47 1 31.2 121.5 ± 15.1 30.4
3698 Russkaya odnosemyannaya Russia 873.14 1 28.9 158.5 ± 36.4 56.2
3206 Joijaj Lithuania 561.46 1 16.5 91.8 ± 11.2 27.2
3207 Red Cloud Netherlands 693.58 1 24.3 135.0 ± 19.6 35.5
3204 Rubidius *** Hungary 884.00 1 23.5 130.7 ± 34.7 65.1
3209 Mona Russia 1685.81 1 22.3 123.8 ± 25.3 45.6
1967 Kubanskaya borshchevaya Russia 1041.25 2 15.0 83.2 ± 11.7 14.0
3201 Long Canner *** Botswana 1292.00 2 30.9 171.6 ± 69.6 90.7
3105 Dvusemyannaya 4-53 Ukraine 1143.89 2 10.5 47.3 ± 6.8 25.2
3880 Boldor Netherlands 840.13 3 31.4 174.3 ± 25.8 36.3

- L1 yellow * Russia 707.69 3 25.5 141.5 ± 31.7 54.9
3881 Avalanch Netherlands 785.94 4 24.6 141.0 ± 27.3 22.2

- L1 white * Russia 555.21 4 25.2 140.0 ± 46.5 61.4

Mean ± SD 980.2 ± 422.2 23.9 ± 7.0 137.3 ± 12.4
LSD05 238.7 4.6 29.9

* VIR breeding material; ** values were obtained on 10 beetroots of each accession; *** cylindrical root shape.

The content of betalains in the accessions was measured separately in the peel and
flesh of their roots (Table 2). It was shown that in group 1, the amount of betalains in the
peel averaged 1246.2 mg/L, and in the flesh, 819.1 mg/L, i.e., pigments in the peel were
1.5 times higher than those in the flesh. The accessions from group 2 demonstrated a similar
ratio (1.5), with the total betalain content averaging 984.6 mg/L in the peel and 638.5 mg/L
in the flesh. These data appeared consistent with previous results [26,40]. The highest
content of betalains was observed in the accessions ‘Bordo odnosemyannaya’ (k-3151,
Russia), ‘Red Cloud’ (k-3207, The Netherlands) and ‘Detroit rubinovy’ (k-3677, Russia).
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Table 2. Betalain content in the tested table beet accessions (mg/L FM). Duration of the growing
season: 105 days. Results are presented as mean values with a standard error (Mean ± SE). Values
were obtained from 10 roots of each accession.

Root Color Groups
Peel Pigments Flesh Pigments

BC * BX ** Σ BC BX Σ

1
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* BC—betacyanins; ** BX—betaxanthins; values between accessions with the superscript letter “a” were signifi-
cantly different (p < 0.05).

Betalains (mainly BXs) in the yellow-colored accessions were also synthesized mainly
in the peel, and to a much lesser extent in the flesh: the BX/BC ratio was 6.4. In those with
white roots, the pigment composition was not identified on the spectrophotometer.

The ratio of betacyanins to betaxanthins (BC/BX) in all red-colored accessions av-
eraged 2.65 in the peel and 2.9 in the flesh (Figure 2A,B). This indicator varied slightly
during the growing season: the coefficient of variation (%CV), depending on the cultivar,
was 14.2–19.1%. Any conjugation between the ratio and the intensity of the red color was
not recorded. For example, the accessions with the lightest (k-1967) and maroon colors
(k-3105) had similar BC/BX parameters in the peel. Similar results were shown in earlier
studies [24,41]. The ratio ranged from 1.9 to 2.8, depending on the year of cultivation, and
averaged at 2.3. Similar results were obtained when studying three table beet cultivars
grown in Slovenia: the BC/BX ratio was about 2.1 [42]. However, in a study performed
by other authors, the BC/BX ratio was close to 1.8 [43,44]. Supposedly, this indicator is a
fairly stable value that characterizes a specific genotype and, possibly, is associated with
the site of growing. There is a possibility that it is a threshold BC level, after which further
biosynthesis is restrained. The limit to the accumulation of betalains in ontogenesis was
also shown by Montes-Lora et al. [25]. A noteworthy fact is that no versions of ratios close
to 1:1 were found.

The yellow-colored accessions demonstrated the predomination of BXs, while BCs
were present in smaller amounts. The BX/BC ratio was 2.86 in the peel and 2.13 in the root
flesh (Figure 2C).

There are very few works concerning betalains differentiated according to the root
areas. An interesting study was implemented by a group of Polish authors [7], who
identified the betalain profile in the peel and six rings of the beetroot flesh. The BC/BX
ratio in this study changed from the peel to the center of the root in descending order:
2.8–2.5–2.49–2.1–2.0–1.9–1.6. At the same time, BXs decreased from the peel to the center by
39% and BCs by 66%. There is a conclusion that the decrease in the amount of betalains in
the roots of red-colored biotypes occurred from the peel to the root’s center due to a more
active decrease in BCs.

The best adaptation of a crop to a new environment depends on a large stock of
genetic polymorphisms [45]. Table beet is polymorphic in the main morphological features,
such as the shape of the leaf rosette, leaf color, root shape, length and color of the petiole,
the diameter of the root neck, and color of the root flesh, which allows it to adapt to
changing environments.
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Figure 2. The BC/BX ratio in the peel (A) and flesh (B) of red-colored table beet accessions during
the growing season. The BX/BC ratio in yellow-colored accessions (C).

The principal component analysis (PCA) was used to trace the patterns of variability
between morphological features and the content of betalains in the peel and flesh of
beetroots and to identify the main components (Figure 3). The first component, PC1 (33.9%
of the total variance), encompassed the weight of the whole plant with tops, the weight
of the root, its parameters, leaf length and width, leaf area, and the entire photosynthetic
surface. The aggregate set of these indicators can be interpreted as the yield factors for
table beet, including its basic components. The highest factor load (>0.90) was observed
for the following morphological characters: the plant weight with tops, photosynthetic
surface area and the number of adult leaves. The second component, PC2 (19.4% of the
total variance), was associated with the pigment composition of table beet: the BC and BX
content in the peel and flesh. The highest factor load was recorded for betalains in the root
flesh. A clear splitting among the tested accessions with different root colors was observed
in relation to the PC2 component of the analysis.
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Metabolic processes in a plant are largely associated with anatomical and morphologi-
cal features, such as the structure of the leaf apparatus and the storage organ. The plant
habitus depends on the combination of such leaf biomass characteristics, such as the shape
and size of the leaf, number of leaves, and the thickness and length of the petiole. They
build up the morphotype of the aboveground part of table beet plants and attest to their
photosynthetic activity. The number of young and dead leaves on a plant is one of the
markers used to form an idea of the table beet earliness level [39,46]. A correlation analysis
among the groups of red-, yellow-, and white-colored table beet biotypes was performed to
disclose the nuances of phenotypic differences in betalain-synthesizing accessions. Morpho-
logical parameters were measured once a week, from 12 July to 14 September, on 10 roots
of each cultivar (n = 100). The measurements showed that during the growing season,
the vector of correlations did not change: negative relationships varied only within the
negative range, and positive within the positive one, confirming the general tendency.

There were strong positive relationships between BC and BX in both the peel (r = 0.97,
p < 0.001) and the flesh (r = 0.79, p < 0.05) among all red-colored accessions (Figure 4). The
yellow-colored biotypes also showed strong positive correlations between betalains in the
peel (r = 0.97, p < 0.001) and notable ones in the flesh (r = 0.53, p < 0.05) (Figure 5). In the
year of testing, a noticeable positive correlation of betalains appeared with the weight of
the root, its parameters and the number of leaves on the plant, which had not previously
been observed by us or other authors [24,26,38,47]. It had earlier been shown that beetroots
with a diameter of 4.6–6.4 cm contained more betalains than larger ones, with a diameter
of 9 cm. Our results were an exception to the rule that did not change the known pattern
and were associated with an abnormally hot and dry summer in 2022. Despite the absence
of a direct negative correlation between betalains and yield parameters, its indirect signs
were found. The difference in the red-colored biotypes was a strong negative dependence
of BC and BX on the width of the leaf blade (r = −0.85–0.88, p < 0.01) and a significant
dependence on the length and width of the petiole. The leaf width, in its turn, negatively
correlated with the root weight (r = −0.61), root length (r = −0.77, p < 0.05) and diameter
(r = −0.57), with the total number of leaves per plant (r = −0.73, p < 0.05), and the number
of dead leaves (r = −0.86, p < 0.01). It is important to note, however, that these relationships
were typical only for the red-colored biotypes and were not observed in the accessions
from groups 3 and 4 (Figures 5 and 6). Similar indirect evidence was observed regarding
the length and width of the leaf petiole. Thus, biotypes with narrow leaves and thin and
short petioles may point to an increased content of pigments in red-colored beetroots. At
the same time, the number of leaves should be 12–14, providing a photosynthetic surface
area of 960–990 cm2 (Table 1) and a root neck of at least 2.5 cm (Figure 7).

Judging from the results of the correlation analysis, when choosing a cultivar for dye
extraction, preference should be given to mid-ripening cultivars, because biotypes with flat
and cylindrical roots are not prone to significant pigment accumulation, which is explained
by their earliness level [48]. Flat beet forms belonging to the Egyptian flat cultivar type are,
as a rule, early, while cylindrical ones are late-ripening. It should be mentioned that this
general tendency has exceptions [49].

Numerous external and internal factors affect the accumulation and stability of beta-
lains: natural determinants, such as the temperature, rainfall, soil composition, number
of sunny days, spectral light composition and the presence/absence of oxygen, enzymes,
metal cations and nitrogen, and the degree of glycosylation and acylation [4,15,50–53]. In
most cases, betalains are extracted at the end of the growing season from mature beetroots
and other sources of betalains: pitahaya (Hylocereus polyrhizus Weber) and prickly pear
(Opuntia vulgaris Mill.) fruits, were studied. It was interesting to find out, however, the
effect of mean daily air temperatures and rainfall on table beet betalains during the growing
season in order to determine the optimal harvesting time to obtain dyes.
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The dynamics curve showed significant (p < 0.05) variations in BC and BX content 
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Figure 7. The size of the table beetroot neck and the intensity of the color ((left): 3 cm; (right): 1.5 cm).

The dynamics curve showed significant (p < 0.05) variations in BC and BX content
during the growing season in all color groups (Figure 8A–C). There were weak BC accumu-
lation dynamics in the root peel within group 1 (Figure 8A), which we had not observed
in our previous studies [26,38]. Probably, this was caused by the weather conditions in
the summer of 2021, when the abnormally long hot and dry period in the first half of the
summer held back the biosynthesis of pigments and the growth of beetroots. No significant
cumulative effect of BC accumulation in the root flesh was found in all accessions from
groups 1 and 2 (p < 0.05). The curve of BC accumulation in the peel and flesh had a similar
pattern and a negative correlation with air temperature (r = −0.62–0.72). Moreover, BCs
in the peel showed greater sensitivity to temperature changes: it can be explained by its
direct contact with the environment, which was noted by Sawicki et al. [7]. The negative
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effect of elevated temperatures on betalains was previously highlighted by a number of
researchers [23,24,52,54,55].
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Figure 8. Dynamic changes in weather characteristics and betalain content in table beet accessions.
(A) Group 1, (B) group 2, (C) group 3 (R2 means the coefficient of determination).

In contrast to the groups with dominating red coloration, the accessions from group
3 showed a significant positive change in BXs in the peel (R2 = 0.86, p < 0.05), confirming
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the observations by Stintzing and Carle [56] regarding the presence of accumulation in
yellow-colored biotypes (Figure 8C).

The response of metabolic processes to the impact of environmental factors does not
occur instantly in plants; it can manifest itself after several hours or days. In order to clarify
the response of accessions with different dominant colors to air temperature and rainfall, a
correlation analysis was applied in dynamics with a shift in environmental parameters for
up to 4 days. Figures 9 and 10 demonstrate that the interrelation between betalains both in
the peel and flesh and an increase in temperature is in the negative area. The peel is more
sensitive to abiotic factors: in all accessions, the negative response of BCs and BXs in the
peel was stronger, increasing on the next day. The BC response in the peel of red-colored
accessions persisted until the third day, gradually weakening (Figure 9). As for BCs in the
flesh, the effect increased gradually for two days but showed a much weaker correlation
with the temperature (r = −0.39–0.5). It can be concluded that the pigment composition
in the beetroot flesh is less susceptible to the negative effects of higher temperatures. In
general, there were no significant differences in the BC and BX responses among all tested
accessions from groups 1, 2 or 3: their reactions to temperature were identical.
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Figure 9. Dynamics of the interplay between betalains in red-colored table beet accessions (groups 1 and 2)
and abiotic factors (A—the correlation with air temperature; B—the correlation with precipitation).
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Figure 10. Dynamics of the interplay between betalains in yellow-colored table beet accessions
(group 3) and abiotic factors (A—the correlation with air temperature; B—the correlation with rainfall).

The period after a rainfall is favorable for the active growth of table beet. Overall, a
rather weak or moderate effect of precipitation on the pigment composition was shown for all
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accessions: the correlation ranged from −0.23 to +0.38 for four days. Groups 1 and 2 demon-
strated an abrupt weakening of positive correlations on the second day. Previously, it was
shown that indirect relationships of betalains with the weight, diameter and length of the
root in red-colored biotypes were negative. Therefore, the root weight growth after a rain-
fall led to a negative betalain response. The response was somewhat different in group 3:
the pigments in the root flesh, especially BCs, reacted negatively to rainfall on the next
day (Figure 10). With this, the BC and BX response in the peel, where the yellow-colored
accessions contained the main amount of pigments with a predominance of BXs, did not
significantly manifest itself. Moderate positive correlations with rainfall were recorded for
all groups after 4 days, as the growth of the root subsided (r = 0.34–0.46).

4. Conclusions

This study is the first analysis of the detailed dynamic changes in betacyanins and
betaxanthins contained in the table beet peel and flesh during the growing season. In
the active growth period of beetroots, no significant betalain accumulation was observed
in red-colored table beet accessions, with the exception of a slight tendency towards BC
accumulation in the peel. It was shown that the pigments in the peel of red-colored biotypes
were 1.5 times higher than the pigments in the flesh. As far as the yellow-colored accessions
were concerned, BXs were synthesized mainly in the peel and had a cumulative effect
throughout the growing season.

The BC/BX ratio in all red-colored accessions averaged 2.65 in the peel and 2.9 in the
flesh. Betaxanthins prevailed in the BX/BC ratio in the peel (2.86) and in the flesh (2.13) of
yellow-colored accessions. The results of the correlation analysis showed that red-colored
accessions exhibited strong positive relationships between BCs and BXs in the peel (r = 0.97,
p < 0.001) and in the flesh (r = 0.79, p < 0.05), which remained stable throughout the growing
season. A conclusion was made about a morphotype with a high content of betalains.

Furthermore, significant variations in the content of BCs and BXs associated with
abiotic environmental factors were shown. The peel of the beetroot was more sensitive to
temperature changes than the flesh. The negative effect of higher environmental temper-
atures on betalains increased on the second or third day in all accessions. The pigment
composition in the flesh was less susceptible to the negative impact of higher temperatures,
but responded negatively to rainfall, manifesting this tendency on the second or third day.
There were no significant differences between the BC and BX responses among all tested
accessions from groups 1, 2 and 3: their reactions to the temperature factor were identical.

The identified relationships are important for selecting a table beet cultivar to extract
the E162 dye: preference should be given to mid-ripening cultivars, with round and
medium-sized roots, a large number of narrow leaf blades, and short and thin petioles. The
observed correlations with weather conditions should be taken into account when choosing
a specific harvesting date.
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