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Abstract: Soil microbial communities are closely associated with ecosystem functions. However, un-
ravelling the complex nature of the microbial world and successfully utilizing all positive interactions
for multipurpose environmental benefits is still a major challenge. Here, we describe the soil bacterial
communities in different niches of healthy and diseased tomatoes under natural conditions. A higher
abundance of the pathogen Ralstonia solanacearum and lower bacterial diversity were observed in the
disease samples. The healthy tomato rhizosphere harbored more plant-beneficial microbes, including
Bacillus and Streptomyces. Also, the co-occurrence network in the healthy rhizosphere samples was
more complicated, so as to better adapt to the soil-borne pathogen invasion. Both the beta nearest-
taxon-index (βNTI) and normalized stochasticity ratio (NST) analyses demonstrated that healthy
rhizosphere communities were less phylogenetically clustered and mainly dominated by dispersal
limitation, while homogeneous selection was the major assembly process driving the rhizosphere
community of diseased samples. The results obtained with community assembly methods and
co-occurrence network analysis revealed that healthy rhizosphere bacterial communities possessed
potentially broader environmental stress (soil-borne pathogen stress) adaptability compared with
diseased rhizosphere bacterial communities. In conclusion, this study contributed to widening our
understanding of the potential mechanisms of soil bacterial community composition and assembly
responding to soil-borne pathogen invasion.

Keywords: bacterial community; beneficial microbes; community assembly; co-occurrence network;
Ralstonia solanacearum Y

1. Introduction

Intensive cropping systems, characterized by continuous monoculture and intensive
cultivation practices, are widespread in China, and their increased adoption has led to the
outbreak of soil-borne diseases and other environmental problems, including poor soil qual-
ity and nutrient imbalances [1]. Continuous monoculture enriches soil-borne pathogenic mi-
croorganisms, which, in turn, disrupt microbial ecological balance [2]. Soil-borne pathogens
infect crops and cause massive economic losses [3,4], and pose major threats to sustainable
agricultural development and production. Consequently, understanding the underlying
factors driving plant pathogen infection under intensive cropping systems is essential for
ensuring high crop yield and quality, in addition to future food security.

It was estimated that each gram of soil, especially in the case of rhizosphere soils
surrounding plant roots, harbor billions of microorganisms, and soil microbes partici-
pate in keeping the soil healthy and inhibit soil-borne diseases within agroecosystems [5].
A previous study demonstrated that soil health was maintained by interactions among
microbial communities, host plants, and environmental factors [6]. In addition, rhizo-
sphere microbial communities participated in soil nutrient cycling, abiotic factor stress
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tolerance, and pathogen invasion resistance [7–9], and they could serve as an important
line to defend against soil-borne diseases [10,11]. Rhizospheres are usually considered to
be biological hotspots and their microbial community structures differ from that of the
bulk soil [12]. In addition, bacterial community composition could vary significantly under
different niches (rhizosphere soil and bulk soil), with bacterial diversity increasing with an
increase in distance from the soil to the roots [13]. Microbial diversity may act as a shield
against pathogen invasion, and this effect was often attributed to competition for limited
resources [14,15], as a more diverse microbial community may be beneficial to make the
most of available resources, while limiting the living space and nutrient resources of the
pathogen [16]. Soil microorganisms engage in a higher diversity of microbial community so
as to shape complicated community networks which may influence plant health [17]. Also,
the microbial community composition, diversity, and interaction network is closely related
to invasion of the soil-borne pathogen Ralstonia solanacearum [15]. Once infected by the
soil borne pathogen, host plants act quickly and change their community composition via
recruiting some beneficial microbes, such as Bacillus and Streptomyces, or directly repelling
the pathogen by activating their immune system [18]. At the same time, alongside biotic
factors, abiotic factors also have some effect, and it has been demonstrated that available
nutrients may strengthen the resistance to pathogen invasion via resource competition [19],
and thus regulate competition between the soil-borne pathogen and beneficial microbes.
In addition, recent studies have demonstrated that microbial community structure devel-
opment processes involve stochastic processes [20,21]. However, at present, most studies
about plant disease have focused more on taxonomic diversity, patterns of community
structure, and function, and few studies have focused their attention on discussion of the
relationship between the microbial community assembly process and plant disease, so that
the underlying mechanisms driving such community assembly patterns remain unclear.

Community assembly has increasingly been considered one of the approaches to
studying microbial community structure [22]. The microbial community is driven by both
deterministic processes and stochastic processes, which are dominant in microbial commu-
nities under different environments [23,24]. When deterministic processes are dominant,
selection via biotic or abiotic factors deeply influences the shaping of the microbial com-
munity [25]; conversely, when stochastic processes are dominant, microbial community
structure is greatly influenced by community dispersal, that is, the microbial community
is more adaptable to the influence of the external environment [26]. Thus, it was vital to
assess the relative contributions of deterministic processes (homogeneous selection and
variable selection) and stochastic processes (dispersal limitation, homogeneous dispersal,
and undominated process) shaping microbial communities [27,28]. It had been found that
upland ecosystems were dominated by deterministic processes (homogeneous selection),
while flooded ecosystems were more affected by stochastic processes (homogeneous disper-
sal) [29]. Environmental factors (biotic and abiotic factors) usually regulate the balance of
stochastic and deterministic assembly processes [20,27,30,31], and a balanced stochastic and
deterministic assembly process is beneficial to maintain a diverse ecosystem [29]. Changes
in soil moisture content, and organic matter content, alter the relative effects of different
assembly processes in dominating soil bacterial communities [20,27]. Moreover, extreme
environmental factors, such as extreme soil salinity and pH, could drive the determinis-
tic assembly of soil bacterial communities, and suitable soil pH values and less salinity
content could contribute to the stochastic in the process of soil generation [30,31]. Thus, it
is easily speculated that there may be a transformation between environment factors and
community assembly. At present, there is much research on the effect of non-biological
factors on the assembly of microbial communities, but it is not clear whether, and how,
biological factors, such as soil-borne pathogens, mediate deterministic or stochastic as-
sembly processes in bacterial community assembly. Understanding the types of assembly
processes driving microbial community structure under soil borne pathogen infection
remains a crucial challenge for understanding the occurrence of soil-borne diseases. The
βNTI (beta nearest-taxon-index) and NST (normalized stochasticity ratio) are currently
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two main community assembly methods [32,33]. The application of various microbial
community assembly methods to soil-borne disease might be beneficial to help understand
the occurrence of plant soil-borne diseases.

Plant bacterial wilt disease (BWD), caused by R. solanacearum, is a devastating plant
disease, and affects a variety of plants, such as tomato, tobacco, and eggplant, with massive
associated crop losses globally [34]. Bacterial wilt disease dynamics are variable and often
accompanied by a change in microbial community. To further understand the relationship
between the BWD infection and microbial communities in detail, we collected soil samples
in different soil niches (rhizosphere soils and bulk soils) of diseased and healthy tomato
plants. We planned to explore: (i) how the diversity and composition of the microbial com-
munity changed under R. solanacearum invasion, and (ii) how the soil microbial community
assembly processes responded to the soil-borne pathogen invasion. Our research intended
to confirm above conjectures through neutral model, network construction, and the com-
munity assembly methods (βNTI and NST), thereby helping to widen our understanding
of the potential mechanisms of soil microbial community composition and assembly in
response to soil-borne pathogen invasion.

2. Materials and Methods
2.1. Collection of Plant and Soil Samples

This experiment was carried out on a research base of vegetables and flowers in
Hengxi Town, Nanjing city, Jiangsu province, China (118◦46′ E, 31◦43′ N). The typical
soil here is yellow-brown earth (Udic Argosol). After four successive years of tomato
mono-cultured with 2 seasons per year, bacterial wilt disease (BWD) occurred naturally
and randomly in the field. Bacterial wilt symptoms were assessed and scored 0, 1, 2, 3,
and 4, based on the degree of withering of the tomato leaves, according to our previous
research [35,36]. The sample collection was carried out on 11 November 2019. A total
of 12 tomato plants (including six healthy plants and six diseased plants, considering
there were few completely healthy plants; here we defined healthy plants with disease
grades of 0 and 1, and diseased plants were 2, 3, and 4) and their corresponding bulk soil
samples, 15 cm away from roots, were collected (five subsamples were thoroughly mixed as
a biological sample). The plants and soil samples were placed on pre-prepared ice and then
transported to the laboratory. Generally, the root-adhering rhizosphere soil samples were
collected using a brush. Consequently, a total of 24 samples, including six bulk soil samples
from high BWD infected plants (BSD), six bulk soil samples from healthy plants (BSH), six
rhizosphere soil samples with high BWD infected plants (RSD), six rhizosphere soil samples
with healthy plants (RSH), were obtained. Finally, all treated soil samples were preserved
at −80 ◦C for further soil DNA extraction. Each treatment contained six replicates.

2.2. Soil Physicochemical Analysis

The soil’s physicochemical properties were analyzed by the method described by
Lu [37]. Soil pH and electric conductivity (Ec) were detected with a pH meter and S230 m
respectively (Thermo Orion-868, Waltham, MA, USA), using soil water suspension (soil:
water 1:2.5 for pH and 1:5 for Ec). The potassium dichromate oxidation method was applied
to measure soil organic carbon (SOC). After digesting with hydrofluoric acid (HF) and then
with perchloric acid (HClO4), the total nitrogen (TN) was measured with an elemental
analyzer (Vario MAX, Elementar, Germany). Soil NO3

−-N and NH4
+-H were extracted

with 2 M KCl solution (1:5 w/v), and then detected with continuous flow analyzer (San++,
Skalar Analytical B.V., Breda, The Netherlands). The flame photometry (FP640, INASA,
Shanghai, China) and the molybdenum blue method were applied to detect total potassium
(TK) and total phosphorus (TP) respectively, extracting by means of ammonium acetate
firstly, and available potassium (AK) was then detected by flame photometry. The available
phosphorus (AP) was extracted using 0.5 M sodium bicarbonate (NaHCO3) and quantified
following the molybdenum blue method.
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2.3. DNA Extraction, Gene Amplification and Sequencing

To extract DNA, 0.5 g soil was weighed and the Fast DNA Spin kit (MO Bio, Carls-
bad, CA, USA) was employed, according to its manufacturer’s instructions. The con-
centrations and quality of DNA were confirmed using a NanoDrop 2000 spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA). The bacterial 16S rDNA V4–V5 re-
gions were amplified using primers 515F (5′-GTGCCAGCMGCCGCGG-3′) and 907R
(5′-CCGTCAATTCMTTTRAGTTT-3′), where the barcode was an eight-base sequence
unique to each sample, using the paired barcoded primer [38]. The 20-µL PCR reaction
mixtures consisted of the following components: 4-µL of 5× FastPfu buffer, 2-µL 2.5 mM
dNTPs, 0.8-µL 5 µM forward primer, 0.8-µL 5 µM reverse primer, 0.4-µL FastPfu Poly-
merase, 0.2-µL bovine serum albumin, 1.0-µL 10 ng of template DNA, and double distilled
water (ddH2O). The PCR reaction was carried out at 95 ◦C for 3 min, followed by 35 cycles
at 95 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 45 s, and a final extension at 72 ◦C for 10 min.
Amplicons were extracted from 2% agarose gels and purified using the AxyPrep DNA
Gel Extraction Kit (Axygen Biosciences, Union City, CA, U.S.) according to the manufac-
turer’s instructions and quantified using QuantiFluor™ -ST (Promega, Madison, Wisconsin,
USA). The purified PCR products were quantified by Qubit®3.0 (Life Invitrogen, Carlsbad,
CA, USA) and every amplicon, whose barcodes were different, were mixed equally. The
pooled DNA product was used to construct Illumina Pair-End library, following Illumina’s
genomic DNA library preparation procedure. Then the amplicon library was pair-end
sequenced (2 × 250) on an Illumina MiSeq platform (Illumina, San Diego, CA, USA)),
according to standard protocols. The raw data were deposited into the NCBI Sequence
Read Archive database with accession number PRJNA754706.

2.4. Fluorescence Quantitative PCR (qPCR) Quantification of R. Solanacearum Density

QPCR was used to detect the abundance of fliC gene copies per gram of soil using a R.
solanacearum-specific primer pair (forward primer: 5′-GAACGCCAACGGTGCGAACT-3′

and reverse primer: 5′-GGCGGCCTTCAGGGAGGTC-3′) [39]. The qPCR analyses were
carried out using an Applied Biosystems 7500 Real-Time PCR System (Applied Biosystems,
CA, USA) using the SYBR Green I fluorescent dye. Each reaction contained the following
components: 10-µL SYBR Premix Ex Taq (TaKaRa Biotech. Co, Tokyo, Japan), 2-µL template,
and 0.4-µL of both forward and reverse primers (10 mM each). The qPCR was performed
by first denaturing for 30 s at 95 ◦C followed by cycling 40 times with a 5-s denaturizing
step at 95 ◦C. Afterwards, a 34-s extension step was performed at 60 ◦C, followed by a melt
curve analysis for 15 s at 95 ◦C, 1 min at 60 ◦C, and finally 15 s at 95 ◦C. Each sample had
three technical replicates.

2.5. Bioinformatic Analysis

The raw data were treated with the Quantitative Insights into Microbial Ecology (QI-
IME) v1.9.1 (http://qiime.org/scripts/split_libraries_fastq.html, accessed on 20 October
2020), according to Caporaso et al. [40]. The USEARCH v6.1 (http://drive5.com/usearch/,
accessed on 15 July 2020) was applied to identify and remove the chimeric reads [41].
Database sequences were aligned using MUSCLE (Version 3.8.31) (http://www.drive5
.com/muscle/, accessed on 24 October 2020) [42]. Based on the 2,049,043 successfully
aligned sequences, high-quality sequences were clustered into 4503 operational taxo-
nomic units (OTUs) in de novo mode, based on 97% sequence similarity, using UCLUST
(http://www.drive5.com/usearch, accessed on 1 October 2020) [41,43]. The taxonomic
identity of each OTU was predicted based on similarity with the SILVA (Silva 132 release)
(https://www.arb-silva.de/, accessed on 15 May 2020) database [43].

2.6. Predicted Bacterial Gene Function Changes Analysis

The Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (http://picrust.github.com/picrust/, (accessed on 24 June 2019)) was
further applied to predict metagenome functional content of 16S rRNA sequencing data [44].

http://qiime.org/scripts/split_libraries_fastq.html
http://drive5.com/usearch/
http://www.drive5.com/muscle/
http://www.drive5.com/muscle/
http://www.drive5.com/usearch
https://www.arb-silva.de/
http://picrust.github.com/picrust/
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Briefly, the OTU table was then delivered to PICRUSt v0.9.1 and the obtained functional
predictions were made according to the metagenome inference workflow described by the
developers [44].

2.7. The Analysis of Co-Occurrence Network

The random matrix theory (RMT)-based network approach was carried out to [45,46]
explore co-occurrence network. The number of OTUs was filtered 1000 before upload-
ing to the pipeline of local phylogenetic molecular ecological network analysis (MENA)
(http://ieg4.rccc.ou.edu/mena, accessed on 21 July 2020). The OTUs from at least half of
all the samples were retained, and some OTUs with missing values were kept blank. The
similarity between the OTUs was calculated by the Pearson correlation coefficient method.
The correlations of the correlation matrix were filtered more than 0.96 and p value was
below 0.01. The network properties were calculated in local MENA. Then the constructed
network was saved from pre-computed permutation and bootstrap files and then visualized
in Cytoscape v3.5.1 (La, Jolla, San Diego, CA, USA) [47]. Different network nodes possessed
distinct topological roles, which could be classified into two parameters, within-module
connectivity (Zi) and among-module connectivity (Pi). In detail, the following groups were
categorized: Peripherals (Zi ≤ 2.5, Pi ≤ 0.62), Connecters (Zi ≤ 2.5, Pi > 0.62), Module hubs
(Zi > 2.5, Pi ≤ 0.62) and Network connectors (Zi > 2.5, Pi > 0.62).

2.8. The Calculation of Community Assembly Process

To quantify the assembly processes shaping the bacterial community within samples,
the beta Nearest Taxon Index (βNTI) was calculated. The βNTI values measured the
deviation of the β-mean nearest taxon distance (βMNTD) from the βMNTD of the null
model, and were calculated using the ‘comdist’ function in Phylocom v4.2 in the ‘picante’
package in R v3.6.3. According to Stegen et al. [32], if |βNTI| values were >2, deterministic
processes played a key role in driving the microbial community. Conversely, if βNTI values
were between −2 and +2, the microbial community structure was then dominated by
stochastic processes. To further quantify the assembly processes, the RaupCrick metric
(RCbray) was used to estimate pairwise microbial community turnover [32]. The pairwise
comparisons, without deviating from the null model distribution, were considered the
effects of dispersal limitation (|βNTI| < 2 and RCbray > +0.95) and homogenizing dispersal
(|βNTI| < 2 and RCbray < −0.95) to community assembly, while RCbray values were
below 0.95 indicating that community turnover between a given pair of communities was
‘undominated’ [32].

Normalized stochasticity ratio (NST) was further applied to identify the bacterial
community assembly processes, where an index developed with 50% as the distinct point
between more stochastic (>50%) assembly and more deterministic (<50%) [33]. This analysis
was performed in the R v3.6.3 with the “NST” package [33].

2.9. Statistical Analysis

Alpha-diversity indices, including Richness, Shannon, and Chao 1 indices, and Faith’s
phylogenetic diversity (PD) were calculated using QIIME v1.9.1 to analyze bacterial di-
versity in all samples. Correlation analysis between each diversity index and Rsol-fliC
gene copies, significance testing, and box plot illustration were all performed in IBM SPSS
Statistics v21.0 (IBM Corp., Armonk, NY, USA). Based on the OTU table, the Principal
Co-ordinates Analysis (PCoA) was carried out to compare the results of the Bray-Curtis
distance-based using the ‘ape’ and ‘vegan’ package in R v3.6.3 (https://www.r-project.org/,
accessed on 29 February 2020). The dominant classified family and COG categories using
z-score transformed abundance data, and the results were plotted using the ‘pheatmap’
package in R v3.6.3.

http://ieg4.rccc.ou.edu/mena
https://www.r-project.org/
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3. Results
3.1. Plant Growth, Pathogen Density and Soil Properties

The average height of healthy tomato plants was 78.00 cm, while the average for the
diseased ones was 68.63 cm, and there was no significance between them (p > 0.05, Table 1).
Disease index of tomato bacterial wilt disease (BWD) in the diseased tomato plants was
83.33, which was significantly more severe than those of the healthy plants with disease
index as low as 12.00 (p < 0.01; Table 1), demonstrating that there indeed existed severe
bacterial wilt disease in the diseased tomato plants. The real-time PCR using fliC gene
of Ralstonia solanacearum further highlighted the differences in the quantity of pathogens
between diseased and healthy treatments (p < 0.01; Figure 1). According to the qPCR
results, R. solanacearum could be detected in all samples (Figure 1). For different niches, the
fliC gene copies per gram of soil ranging from 103.09 (BSH) and 104.56 (BSD) in bulk soil
samples to 105.57 (RSH) and 107.42 (RSD) in rhizosphere samples, suggesting the population
of R. solanacearum increased significantly from the bulk soil samples toward rhizosphere
samples. Moreover, the pathogen density reached approximately 70.8-fold higher than that
in RSD comparing to RSH (Figure 1).
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Figure 1. Ralstonia solanacearum density in the different samples. Different letters indicated a signif-
icant difference (p < 0.05). BSH: healthy bulk soil samples; BSD: diseased bulk soil samples; RSH:
healthy rhizosphere soil samples; RSD: diseased rhizosphere soil samples.

Of all the measured soil physicochemical properties, soil moisture content, Ec, and
NO3

−-N, as well as exchangeable NH4
+-H, in the RSH samples were significantly lower

than those in the diseased samples (p < 0.05; Table 1). In contrast, the soil organic carbon
(SOC), pH, and available potassium (AK) were significantly higher in the healthy samples
in relation to the diseased samples (p < 0.05). For example, the SOC content in healthy
samples was 8.97 g kg−1 which was obviously higher than that in diseased samples (Table 1).
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Furthermore, soil moisture, pH, NO3
−-N, NH4

+-N, SOC, AK, and Ec obviously correlated
with pathogen densities (p < 0.05; Figure S1). Other soil physicochemical factors, such as
the content of total nitrogen (TN), total phosphorus (TP), and total potassium (TK), as well
as available phosphorus (AP) content, did not significantly vary across healthy samples
and diseased samples (p > 0.05).

Table 1. Tomato plant and soil chemical properties.

Properties Diseased Samples Healthy Samples

Plant
Plant height (cm) 68.63 ± 4.93 a 78.00 ± 6.57 a
Disease index (%) 83.33 ± 0.06 a 12.50 ± 0.05 b

Soil
moisture 0.14 ± 0.01 a 0.08 ± 0.01 b

pH 6.20 ± 0.09 b 6.61 ± 0.03 a
Ec (mS cm−1) 0.30 ± 0.03 a 0.19 ± 0.01 b

NO3
−-N (mg kg−1) 45.68 ± 4.11 a 19.13 ± 3.41 b

NH4
+-N (mg kg−1) 14.23 ± 0.28 a 10.92 ± 0.77 b

SOC (g kg−1) 7.67 ± 0.18 b 8.97 ± 0.14 a
TN (g kg−1) 1.38 ± 0.04 a 1.33 ± 0.06 a
TP (g kg−1) 1.34 ± 0.03 a 1.30 ± 0.07 a
TK (g kg−1) 15.54 ± 0.34 a 15.08 ± 0.25 a

AP (mg kg−1) 116.47 ± 5.91 a 97.78 ± 7.83 a
AK (mg kg−1) 270.33 ± 5.11 b 316.20 ± 18.51 a

Values are means ± standard error. Different lowercase letters indicated a significant difference (p < 0.05) between
diseased samples and healthy samples. EC for electrical conductivity, SOC for soil organic carbon; TN for total
nitrogen, TP for total phosphorus, TK for total potassium, NO3

−-N for nitrate, NH4
+-N for ammonium, AP for

available phosphorus and AK for available potassium.

3.2. Microbial Composition, Diversity and Community Structure in Response to BWD

There were 655,488 sequences obtained from 24 samples, out of which 4503 OTUs
were classified into 833 genera belonging to 30 phyla. The top 10 dominant phyla, class,
family, and genera in all samples were displayed (Figure S2). The relative abundance of the
dominant phyla, class, family, and genera differed in the rhizosphere soil samples (RSD
and RSH), while no discrepancy was observed in the bulk soil samples (BSD and BSH)
(Figure S2), which indicated that the difference in microorganisms was mainly reflected in
the rhizosphere, rather than the bulk soil, during the occurrence of bacterial wilt. Signifi-
cantly more abundance of the family Chitinophagaceae, Streptomycetaceae, and genera
Burkholderia, Streptomyces, and Bacillus were observed in the RSH, while there was more
abundance of Ralstonia in the RSD (Figures 2 and S2).

The bacterial alpha diversities, including Richness, Shannon, Chao 1 indices,
and Faith’s PD, were significantly different between the rhizosphere and bulk soil
samples (p < 0.05), and the rhizosphere samples had lower alpha diversity than that
in the bulk soil samples. These results indicated that the farther the distance from
the plant root, the higher bacterial diversity was. Like bacterial community com-
position, the diversity in bulk soil samples also exhibited no significant differences
between the BSD and BSH (Table 2). However, apparent difference was observed in
the rhizosphere samples with higher alpha diversity observed in the RSH (Table 2).
Except for the alpha diversity, an obvious difference in bacterial community struc-
ture existed in all samples evaluated through principal coordinates analysis (PCoA)
and community similarity analysis (PERMANOVA) (p < 0.001) (Figure 3A,D). Accord-
ing to the PCoA analysis, bacterial communities distinctly clustered by soil niches
(rhizosphere and bulk soil) (p < 0.05; Figure 3A). The horizontal and vertical axis
of the PCoA explained 63.9% and 12.3% of the total variability in the bacterial com-
munities, respectively. Furthermore, within similar niches, bacterial communities in
rhizosphere samples could be distinguished, based on pathological status (RSD and
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RSH) (p < 0.05; Figure 3C), while this was not the case with regards to bulk soil samples
(R = −0.046, p > 0.05; Figure 3B).
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Table 2. The diversity of microbial community in different samples.

Sample Richness Shannon Chao 1 Faith’s PD

BSD 2151 ± 75 a 9.15 ± 0.07 a 2796 ± 88 a 114 ± 4.37 a
BSH 2119 ± 108 a 9.10 ± 0.16 a 2702 ± 135 a 150 ± 6.14 a
RSD 912 ± 71 c 2.79 ± 0.29 c 1481 ± 101 c 78 ± 4.45 c
RSH 1515 ± 70 b 7.02 ± 0.26 b 2117 ± 144 b 116 ± 4.67 b

Values are means ± standard error. Different letters within the same column indicated a significant difference
(p < 0.05; lowercase). BSH: healthy bulk soil; BSD: diseased bulk soils samples; RSH: healthy rhizosphere soil
samples; RSD: diseased rhizosphere soils samples.
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soil samples; RSH: healthy rhizosphere soil samples; RSD: diseased rhizosphere soil samples.

3.3. Influences of BWD on the Microbial Function

The PCoA analysis, based on the COG function profiles, indicated that the func-
tion varied in different rhizosphere bacterial communities (PERMANOVA, p < 0.001)
(Figure S3). There were some significantly enriched and depleted COG profiles between
the RSD and RSH samples (Figure 4). The RSD mainly contained functional gene profiles,
such as those connected with translation, energy production and conversion, amino acid
transport, secondary metabolites biosynthesis, lipid transport, and bacterial metabolism.
However, some functional gene classes, including carbohydrate transport, cytoskeleton,
defense mechanisms, and extracellular structures, were enriched in the RSH samples
(Figure 4).
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3.4. Influences of BWD on the Microbial Co-Occurrence Network

The co-occurrence networks were constructed based on OTU level to explore the
difference in bacterial co-occurrence patterns among four treatments. Topological in-
dexes showed that all networks fitted well as R2 of power-law ranged from 0.811 to
0.901. Among them, the network indicators, including the total links, average degree
(avgK), total nodes, density, and connectedness (Con) index, successfully characterized
the complexity of each network (Figure 5; Table S1). The networks differed between dis-
eased and healthy samples. The BSH and RSH networks possessed higher complexities,
while the RSD had the least complexity. Low values of transitivity (Trans) were observed
in the BSD and RSD networks, while other network indicators, such as high values
of Con, more nodes, links, average clustering coefficient (avgCC), and density, were
observed in the healthy samples (BSH and RSH). Furthermore, according to the Zi (a
value measuring within-module connectivity) and Pi (a value measuring among-module
connectivity) calculated by the network analysis, there were 4.44%, 2.49% nodes fell
into network connectors (Zi > 2.5, Pi > 0.62) in the BSH and RSH networks, respectively,
which were higher than that in the BSD and RSD samples (1.19% in BSD and 0.75% in
RSD) (Figure S4). The above results suggested that the healthy samples tended to form a
stable and complicated bacterial community network.

3.5. Bacterial Community Assembly Processes in Response to the BWD

Based on the neutral-based models’ analysis, the R2 for BSD, BSH, RSD, and RSH were
0.66, 0.607, 0.63, and 0.601, respectively, which reflected good model prediction (Figure S5).
The m value (migration rate) tended to decrease from diseased samples to healthy samples,
suggesting that diseased samples were more highly diffused than healthy samples.
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Figure 5. The Co-occurrence network of bacterial community at OTU level in all treatments. BSH:
healthy bulk soil samples; BSD: diseased bulk soil samples; RSH: healthy rhizosphere soil samples;
RSD: diseased rhizosphere soil samples.

To quantify the relative contributions of stochastic and deterministic assembly pro-
cesses shaping bacterial community among different treatments, the beta Nearest Taxon In-
dex (βNTI) and normalized stochasticity ratio (NST) were calculated within each treatment
(Figure 6A). The community assembly processes in the diseased samples were dominated
by the deterministic process (the value of |βNTI| > 2), in which the determinism in RSD
and BSD samples reached 66.67% and 40%, respectively. On the other hand, community
assembly processes in the healthy samples were dominated by the stochastic process (the
value of |βNTI| > 2), and the stochasticity (the value of |βNTI| < 2) (66.67% and 90%
respectively) in the BSH and RSH samples became the dominant factor to drive the com-
munity. In detail, it is found that homogeneous selection dominated the deterministic
process in RSD (Figure 6B), while RSH and BSH had higher strengths of dispersal lim-
itation. Furthermore, it was observed that βNTI was also significantly decreased with
increase of R. solanacearum’s density (Figure S6A). Mantel tests also demonstrated that
the change of genus Ralstonia abundance significantly affected the assembly processes of
the bacterial community (Mantel R = −0.659, Figure S6B). The relative contributions of
homogeneous selection in the deterministic process also increased with change in pathogen
density in the rhizosphere samples, while the opposite occurred with the contribution of
dispersal limitation.
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Figure 6. The bacterial community assembly processes across all the treatments. (A) The normalized
stochasticity ratio (NST) was developed based on bray-curtis distance (NSTbray) with 50% as the
boundary point between more deterministic (50%) and more stochastic (50%) assembly. (B) The
community assembly processes in all treatments. “ns” indicated there was no difference between the
BSD and BSH. “*” indicated a significant difference (p < 0.05) between the RSD and RSH samples.
BSH: healthy bulk soil samples; BSD: diseased bulk soil samples; RSH: healthy rhizosphere soil
samples; RSD: diseased rhizosphere soil samples.

4. Discussion

In this study, soil physicochemical properties were identified in relation to the invasion
of soil-borne pathogens into host plants. The physicochemical properties of soil altered
between healthy and diseased samples and were closely correlated with pathogen densities
(Table 1). The pH, moisture content, ammonium, and nitrate content decreased compared
to the healthy samples, while SOC and AK contents increased. High temperature and hu-
midity conditions provide convenience for BWD occurrence and rapid spread [13,18]. More
available carbon resources in the soil were significantly negatively correlated with growth
of the pathogen, while more ammonium could help in pathogen growth [48–50]. During
the invasion of the pathogen on the host plant roots and xylem, nitrate availability was
thought to be important for the expression of the R. solanacearum virulence gene, and thus
it could influence pathogen pathogenicity without impacting on pathogen density [48,51].
Similarly, higher humidity, ammonium, and nitrate content, lower pH and concentration of
carbon were found in the RSD samples in this study (Table S1). In addition to abiotic factors,
biotic factors prompt bacterial wilt outbreaks [13]. According to the Mantel test between
bacterial community structures and soil/microbial properties, pathogen abundance had
more effect on bacterial community structure, indicating that bacterial communities may
be more strongly affected by biotic factors than abiotic factors (Table S2). Therefore, these
results indicate that such shifts in bacterial community structure were caused by invasion
of the R. solanacearum, which either drove the recruitment of beneficial bacteria or promoted
resistance to bacterial wilt.

4.1. The Effect of Increased Pathogen Density on the Bacterial Community Composition

Revealing the potential sources of microbiomes could provide some crucial informa-
tion on interactions among plants, soil, and microbes [7,52]. The bacterial community com-
position in the bulk soil (BSD and BSH) was similar on different taxa. However, there were
significant differences in the composition of the rhizosphere microbial community (Figure
S2). No difference being observed in community composition may be due to less sensitivity
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to pathogen invasion in the bulk soil microbiome compared to the rhizosphere. Various
studies found that host plant roots could be stimulated to recruit some beneficial microbes
to the rhizosphere through releasing root exudates when infected by soil-borne pathogens,
and these compositional changes thus inhibiting the growth of pathogens [17,53,54]. It was
similar for the family taxa, including Chitinophagaceae, Bacillaceae, Streptomycetaceae,
and Xanthomonadaceae, and the genus, including Streptomyces, Bacillus, Burkholderia, and
Subgroup_6, found to be enriched in RSH, while the pathogen genus Ralstonia was signifi-
cantly increased in RSD instead (Figure S2). The Streptomycetaceae family and Streptomyces
genus, belonging to the Actinobacteria phylum, known to produce clinical antibiotics [55],
may directly suppress the growth of the pathogen R. solanacearum [56]. The abundance of
the family Bacillaceae and the genus Bacillus, belonging to the phylum Firmicutes, were
also known for their antagonism by producing the lipopeptide antibiotics to defend against
pathogen R. solanacearum growth [57]. As for the genus Burkholderia, it could act as an
antagonist of soil-borne pathogens [10]. Moreover, the Xanthomonadales could produce
volatile organic compounds which could help to inhibit the invasion of plant soil-borne
pathogens, and were found to have an abundant enrichment in healthy rhizosphere sam-
ples [58]. However, some beneficial microbes, genus Bacillus and Burkholderia, were also
found in the diseased rhizosphere. Thus, the enrichment of these beneficial microbes, such
as Bacillus and Streptomyces, in the rhizosphere may be why tomato plants in RSH remained
healthy [17].

Bacterial community diversity could influence antagonistic or facilitative interactions
between host plants and pathogens [59,60]. The lower population of R. solanacearum
in the RSH could attribute to the prevalence of beneficial microbes. Numerous studies
suggest that higher microbial diversity could help host plants defend against soil-borne
pathogen invasion and thus increase their resistance to pathogens [14,61]. In this study,
the bacterial diversity of RSH was higher than that of RSD. However, bacterial diversity
decreased gradually from bulk soils toward rhizosphere soils, indicating the existence
of strong root filtration [13]. Over and above bacterial community diversity, pathogen
invasion also significantly influences bacterial community structures. According to the
PCoA results, rhizosphere soil samples and bulk soil samples could be distinguished
according to different niches, and there were significant differences between the RSH
and RSD in rhizosphere soils, while no significant differences were detected in bulk soils
(Figure 2, Table S2). Moreover, an obvious distance-decay relationship existed between the
variation of pathogen abundance and the community dissimilarity (Figure S7). With the
increase of pathogen abundance, the variation of bacterial community structure (paired
Bray-Curtis distance) also increased significantly.

Apart from compositional changes, we also observed that the complexity of the bacte-
rial community co-occurrence network reduced and there was loss of various sub-network
connectors according to the properties of the networks in the diseased samples. A complex
community network was usually more resistant to external stress [15,62], thus complex
networks in RSH could better defend against soil-borne pathogen invasion. Moreover,
bacterial functions based on the COG profiles also changed, demonstrating that some
functional gene classes associated with plant soil-borne pathogen defense, including carbo-
hydrate transport (G gene) and defense mechanisms, were enriched in the RSH (Figure 4),
which was consistent with Xiong’s results [63]. It was found that higher carbohydrate
transport activity in healthy rhizosphere soil might contribute to abundant resources being
available for microbes in these soils. Secondary metabolites biosynthesis (Q gene) was
related with the pathogen R. solanacearum. Less defense mechanism related genes in the
diseased rhizosphere soils indicated its weak resistance to pathogen infection [63–65]. To-
gether, the above results indicated that the bacterial community diversity was related to the
loss of bacterial composition, which potentially led to expressions of microbial functions
related to soil-borne pathogen suppression.
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4.2. Increased Pathogen Density Altered the Relative Contribution of Stochastic and
Deterministic Processes

It is quite important to reveal the mechanisms of microbial community assembly in
microbial ecology [66]. The microbial community was affected by different microbial ecolog-
ical mechanisms; therefore, it was important to identify the relative impact of deterministic
and stochastic processes on community assembly [67]. Microbial communities associated
with stochastic processes often exhibited greater diversity than communities associated
with deterministic processes, thus had better resistance to environmental stress [25] The
above perspective was consistent with the findings of our study, reporting that the RSH
samples had more community diversity and the bacterial community assembly was dom-
inated by the stochastic processes, according to the two community assembly methods
(βNTI and NST). In addition, more deterministic processes were observed in the RSD sam-
ples, while relatively less deterministic processes were observed in the RSH samples, which
indicated that pathogen invasion, as a major biotic factor, could be a driver of bacterial
community assembly processes.

4.3. The Effect of Homogeneous Selection on Bacterial Community

To better understand microbial ecology in more detail, it was vital to reveal the poten-
tial factors influencing the relative contributions of stochastic and deterministic assembly
processes driving microbial communities [20,30]. Recent studies demonstrated that soil pH,
available sulfur, and salinity are the vital factors affecting microbial community assembly
processes [30,31,68]. However, there were few studies on biotic factors, such as soil-borne
pathogen infection, affecting the relative contributions of stochastic and deterministic
processes controlling the assembly of bacterial communities under soil borne pathogen
invasion. We found that the community assembly processes transformed towards determin-
ism (homogeneous selection) along with increasing pathogen abundance, which further
increased structural difference among the bacterial community (Figures 6, S6 and S7). More-
over, the increased homogeneous selection in community assembly processes enhanced the
distance-decay relation and led to more discrepancy in the bacterial community structures
because of the selective environments (biotic factors). The increase in R. solanacearum
density decreased the extent of phylogenetic clustering in the microbial community and
R. solanacearum density might play vital roles in affecting the balance between stochastic
and deterministic assembly for bacterial communities. Homogenizing selection dominated
the community assembly in RSD, indicating that there existed strong environmental se-
lection and this environmental selection might be the role of soil borne pathogens. Thus,
we guessed that there were two mechanisms explaining how pathogens affected bacterial
community assembly: (a) directly affecting the growth of other non-pathogenic bacteria,
and (b) interacting with host plants to indirectly affect the bacterial community assembly.
Though the soil-borne pathogen invasion was known to affect bacterial community com-
position, diversity, and function [36,65], it had not been clear how pathogens mediated
bacterial community assembly processes. Here, our results demonstrated that there were
more deterministic assembly processes shaping the diseased bacterial community, while
stochastic assembly processes dominated the healthy bacterial community. Potential mech-
anisms were likely related to the changes in community assembly processes responding to
the variation of soil-borne pathogen density. Firstly, more abundance of pathogens colo-
nized in diseased soils and then imposed more resource limitation on beneficial microbes,
which might exclude and reduce the colonization of these beneficial bacteria to a greater
extent and therefore led to an increased effect of deterministic processes [20]. Secondly,
healthy rhizospheres harbored more microbes and had a more stable and complicated
co-occurrence network, which could strengthen the dispersion of microorganisms, thereby,
in turn, increasing the advantages of stochastic processes [27]. Additionally, the increased
stochasticity suggested that healthy rhizospheres could then better adapt to environmental
stress, such as soil borne pathogen invasion. Our findings revealed important links between
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soil borne pathogen infection and bacterial community assembly, which might help deepen
understanding of how these link to microbial diversity and soil ecosystem processes.

5. Conclusions

Tomato plants shape healthy rhizosphere bacterial communities by attracting some
potential bacterial antagonists when infected by soil-borne pathogens. Higher bacterial
community diversity and a more complicated bacterial community co-occurrence network
were displayed in the healthy samples to further defend against soil-borne pathogen
invasion. Moreover, variation in bacterial community compositions led to upregulation
of functional gene profiles associated with plant pathogen defense in healthy rhizosphere
soil. In addition, deterministic processes drove the bacterial community under pathogen
invasion. The bacterial community assembly was driven by the soil-borne pathogen
invasion promoting the bacterial community assembly’s transformation from stochastic
process to deterministic process. Through various analytical methods, our results provided
some important insights into the response of bacterial community composition, diversity,
structure, function, co-network and assembly processes to soil-borne pathogen invasion,
which would deepen our comprehension on how agricultural ecosystems may respond to
soil borne pathogen invasion under long term continuous cropping.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12051024/s1, Figure S1 Correlations between soil
chemical properties and microbial properties. Ec for electrical conductivity, SOC for soil organic
carbon; TN for total nitrogen, TP for total phosphorus, TK for total potassium, NO3

−-N for nitrate,
NH4

+-N for ammonium, AP for available phosphorus, AK for available potassium, DSI for disease
index. Different lowercase letters indicated significant distinctions among different treatments
(p < 0.05), Figure S2 The relative abundance of dominant bacterial groups at the phylum (A), class
(B), family (C), and genus (D) level in different treatments. Note: “*” indicated significant differences
and “ns” indicated there was no significance at the 0.05 level. BSH: healthy bulk soil samples; BSD:
diseased bulk soil samples; RSH: healthy rhizosphere soil samples; RSD: diseased rhizosphere soil
samples, Figure S3 Principal Coordinates Analysis (PCoA) based on COG function genes between
RSD and RSH. RSD stood diseased rhizosphere soil samples, and RSH for healthy rhizosphere soil
samples, Figure S4 The co-occurrence network roles of analyzing module feature at OTU level in
all treatments. BSD for A, BSH for B, RSD for C, and RSH for D. BSH: healthy bulk soil samples;
BSD: diseased bulk soil samples; RSH: healthy rhizosphere soil samples; RSD: diseased rhizosphere
soil samples, Figure S5 Fit of the neutral community model (NCM) of community assembly in the
BSD (A), BSH (B), BS (C), RSD (D), RSH (E), and RS (F). The predicted occurrence frequencies for all
treatments. The solid blue lines indicated the best fit to the NCM, and the dashed blue lines represent
95% confidence intervals around the model prediction. OTUs that occurred more or less frequently
than predicted by the NCM are shown in different colors. m indicates the immigration rate, R2

indicated the fit to this model. BSH: healthy bulk soil samples; BSD: diseased bulk soil samples;
RSH: healthy rhizosphere soil samples; RSD: diseased rhizosphere soil samples. RS: rhizosphere
soil; BS: bulk soil, Figure S6 The distance-decay relationship between changes in pathogen density
and βNTI. Data were fitted using linear regression and examined by Mantel test, Figure S7 The
distance-decay relationship between changes in pathogen density and community distance. Data
were fitted using linear regression and examined by Mantel test. Table S1 The bacterial co-occurrence
network properties in all treatments, Table S2 The mantel test between community distance and
soil properties.
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