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Abstract: Plant height of maize is related to lodging resistance and yield and is highly heritable but
also polygenic, and thus is an important trait in maize breeding. Various manual methods exist to
determine the plant height of maize, yet they are labor-intensive and time consuming. Therefore,
we established digital surface models (DSM) based on RGB-images captured by an unmanned
aerial vehicle (UAV) at five different dates throughout the growth period to rapidly estimate plant
height of 400 maize genotypes. The UAV-based estimation of plant height (PHUAV) was compared
to the manual measurement from the ground to the highest leaf (PHL), to the tip of the manually
straightened highest leaf (PHS) and, on the final date, to the top of the tassel (PHT). The best results
were obtained for estimating both PHL (0.44 ≤ R2 ≤ 0.51) and PHS (0.50 ≤ R2 ≤ 0.61) from 39 to
68 days after sowing (DAS). After calibration the mean absolute percentage error (MAPE) between
PHUAV and PHS was in a range from 12.07% to 19.62%. It is recommended to apply UAV-based
maize height estimation from 0.2 m average plant height to maturity before the plants start to senesce
and change the leaf color.

Keywords: plant height; unmanned aerial vehicle (UAV); maize; high-throughput phenotyping;
digital surface model (DSM); photogrammetry; drone

1. Introduction

One important trait of breeding programs in maize (Zea mays L.) is plant height, as it
can be a crucial factor for yield potential [1]. Plant height is also strongly related to lodging
resistance [2,3] and is highly heritable despite its complicated polygenic nature [4]. Plant
height measured in early stages, such as the four-leaf stage (V4), is an important tool for the
assessment of early plant development in maize [5]. An early and fast establishment of the
maize canopy is crucial in temperate latitudes due to the limitation of solar radiation [6].
Besides breeding programs, early plant height measurement could also be beneficial for
farmers to predict the final grain yield in maize [7].

Various manual methods exist to determine the plant height of maize, which are
mainly dependent on the stage when the maize is measured. One common method is
to straighten the youngest leaf’s tip to determine the distance to the ground [8]. After
flowering, Peiffer et al. [4] measured the distance from ground to the flag leaf base to obtain
results independent of tassel length. Another method is to simply measure the highest
point of the plant, which can be the youngest leaf or the tassel in later developmental
stages [3,9]. All these methods produce different results, are labor-intensive as well as
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time-consuming in typically large breeding trials, and can be especially challenging for
very tall plants, which highlights the need for more efficient measurement methods.

Manual methods to estimate plant height can be replaced by more efficient approaches
based on unmanned aerial vehicles (UAV) [9–14]. Different sensors attached to the UAV
enable creating digital surface models (DSM) that depict the topography of the entire field’s
surface comprising crop canopy and visible ground. One way to compute DSM is to use
data from laser-emitting LiDAR (light detection and ranging) sensors. By measuring the
time taken for the laser to travel from the UAV to the object and back, object heights can be
estimated precisely. However, LiDAR sensors are expensive and limited to the purpose of
measuring distances [14]. Another way to create DSM is based on RGB sensors, which are
cheaper and more versatile than LiDAR sensors. By taking overlapping images of an object
from different angles, DSM are created via photogrammetry [15].

RGB-based DSM for the estimation of plant height has been successfully tested for
various crops, but in many cases, plants are only surveyed in later developmental stages.
Su et al. [9] estimated the plant height of maize once in the jointing stage and once in the
milk stage. Both Watanabe et al. 2017 [13], who surveyed sorghum, and Gilliot et al. [10],
who surveyed maize, estimated plant height after anthesis. Hassan et al. [11] presented
data in the booting and mid-grain fill stage of wheat. Thus, there is a research gap for
investigating UAV-based plant height estimation in juvenile stages and for identifying the
limitations of UAV-based plant height estimation dependent on the growth stage.

In this study, plant height of maize was estimated by DSM based on RGB data obtained
by UAV. To this end, a field trial was surveyed five times during the growing season, not
only to evaluate the estimation of plant height by DSM in general but also to compare
estimation accuracy at different dates and developmental stages. In particular, our objec-
tives were to (i) identify the optimal period for UAV-based plant height estimation and to
(ii) evaluate the accuracy of the approach in estimating maize plant height compared to
manual methods.

2. Materials and Methods
2.1. Field Trial

The field trial was conducted at an experimental farm of the University of Hohenheim,
Germany (48◦43′05.7” N, 9◦11′20.8” E) in 2020. Overall, 400 plots representing 400 different
maize genotypes of doubled-haploid lines were included in this study. The plot size was
4 × 1.5 m, with a sowing density of 8.66 plants/m2. An overview of the field trial can
be seen in Figure 1a and the field elevation of the relevant plots is shown in Figure 1b.
The field design and germplasm were described in detail in a previous study [16] and the
weather conditions during the UAV flights are shown in Table 1. The maize was sown on
APR 30 and plant height was measured by UAV (PHUAV) as well as manually five times
during the growth period at 34, 39, 47, 68, and 120 days after sowing (DAS). The following
three manual measurement methods were applied: (i) a meterstick was used to measure
the distance from the ground to the highest point of the highest leaf in its natural position
(PHL); (ii) the distance between ground and the leaf tip, that represented the highest point
of the plant by manually straightening it, was measured (PHS) [8]. According to the growth
stage, PHL and PHS were measured on the first four dates while (iii) the distance from
ground to tassel tip (PHT) was measured on DAS 120. For each date, method, and plot,
three representative plants were chosen at random, measured, and averaged. Dealing with
doubled-haploid landraces and elite lines in this trial, a very high level of homogeneity
can be assumed. Measuring three plants per genotype for the trait plant height is therefore
deemed sufficient and a previous study with the same methodology has shown a high
broad-sense heritability of 0.91 [8,16]. Since the manual measurements were conducted
separately, the plants chosen for PHL and PHS might differ.
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Figure 1. Overview of the maize field trial for UAV-based plant height estimation. (a) RGB orthomo-
saic with the 400 relevant plots highlighted in green; (b) soil elevation of the 400 plots as received
from the flight on DAS 34. The arrow indicates the north; masl: Meter above sea level.

Table 1. Weather conditions during the UAV flights; DAS: days after sowing.

DAS Date Time
Interval

Temperature
(◦C)

Rel. Humidity
(%)

Wind Speed
(m/s)

Global Radiation
(W/m2)

Sky
Condition

34 03 JUNE 11:57–13:22 23.5 38.1 2.03 487 partly cloudy

39 08 1

JUNE
15:04–15:26 18.0 51.8 1.76 575 mostly

cloudy

18:29–19:06 16.7 55.5 1.87 78 mostly
cloudy

47 16 JUNE 13:16–15:59 17.7 85.0 1.54 293 cloudy
68 07 JULY 11:38–12:42 19.1 45.2 1.37 674 mostly sunny

120 28 AUG 09:49–10:52 22.0 56.7 1.51 432 sunny
1 Due to technical issues, the image acquisition on June 8 was completed after an interruption of approximately
three hours.

2.2. UAV Image Acquisition

The initial step of UAV-based plant height estimation was the image acquisition
(Figure 2). A commercial quadcopter (DJI Mavic 2 Pro, Da-Jiang Innovations Science and
Technology Co., Ltd., Shenzhen, China) was used as UAV to capture the RGB images. The
UAV was equipped with a digital camera (Hasselblad L1D-20c, Victor Hasselblad AB,
Gothenburg, Sweden) containing a one-inch complementary metal oxide semiconductor
(CMOS) sensor with a resolution capability of 5472 × 3648 pixel (20 mega pixel). The UAV
was controlled using the Pix4Dcapture application installed on the DJI smart controller.
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Data acquisition was performed in JPEG format containing digital positioning system
(GPS) information at 20 m above ground level, which resulted in an average ground
sample distance of 0.0049 m (distance between pixel centers). The flight plan consisted of a
double grid with 80% front and side overlap with a camera angle of 70◦ to the horizontal
downwards. The average flying speed was 1.5 m/s.

Figure 2. General overview of the methods applied for UAV-based plant height estimation; DSM:
digital surface model.

2.3. UAV Image Preprocessing

Image preprocessing was performed using Pix4DMapper software (version 4.5.6,
Pix4D S.A., Prilly, Switzerland) (Figure 2). The following describes the chosen settings;
if a setting is not explicitly mentioned, it was not modified from the default settings in
the template ‘3D Maps’. In the step ‘Initial processing’, the full image scale was used for
keypoint extraction. Image pairs were matched using the advanced condition ‘Aerial grid
or corridor’ and geometrically verified. In the calibration settings, the rematch option was
enabled. In the step ‘Point cloud and mesh’, the minimum number of matches was set to 4
and in the advanced options a matching window of 9 × 9 pixel was chosen. In the last step
‘DSM, orthomosaic and index’ the resolution was set to 1 × GSD. Noise filtering and sharp
surface smoothing was applied. The raster DSM was created using the inverse distance
weighting algorithm. DSM and orthomosaics were exported in the file format GeoTIFF as
merged tiles. Seven black and white checkered targets (0.4 m × 0.4 m), three oil drums
(0.6 m, 0.6 m and 0.9 m height), and a soil sensor measuring station served as ground
control points to increase the GPS and DSM accuracy. In the last mission, one ground
control point (black and white target) was removed in order not to disturb the harvesting
process. The GPS information of the ground control points was measured using a GNSS
receiver (Stonex S9, Open Port GmbH, Nienburg, Germany). During image processing two
of these ground control points (small oil drum, black and white checkered target) were
defined as checkpoints in Pix4DMapper.

2.4. Procedure of Plant Height Estimation

The generated DSM layers were further processed plot-wise in Python (3.8) [17]
(Figure 2) by means of the GDAL (3.3) [18] and OpenCV package (4.5) [19]. First, for basic
segmentation, the Otsu threshold [20] was applied to every plot’s DSM to classify pixel
of high altitude as ‘plant’ and pixel of low altitude as ‘soil’. Subsequently the standard
deviation and mean was calculated for both the plant class (PSTD, PMEAN) and the soil class
(SSTD, SMEAN). The maximum of the plant class was defined as PMAX and the minimum
altitude of the soil class was defined as SMIN, which also represent the extreme values of
the entire plot’s DSM. To measure the distance from the highest point of the plants to the
ground without including possible noise or outliers of the DSM, a custom algorithm was
developed (Algorithm 1). Depending on which value was lower, the estimated plant height
(PHUAV) was either based on the classes means and standard deviations (PHSTD) or the
extreme values (PHMINMAX). Thus, PHUAV was set to PHSTD if exceptional outliers were
present in the DSM and set to PHMINMAX in normal cases. Data from one plot (Plot ID 2059)
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was excluded from analysis at DAS 68 and from all dates for calibration due to unusual
DSM results, which represent an artifact, possibly caused by a bird.

Algorithm 1: Pseudo-code for estimating plant height (PHUAV).

Input: SMIN, SSTD, SMEAN, PMAX, PSTD, PMEAN
set PHSTD to (PMEAN + 5 PSTD) − (SMEAN − 5 SSTD)
set PHMINMAX to PMAX − SMIN
If PHSTD < PHMINMAX then
set PHUAV to PHSTD
Else then
set PHUAV to PHMINMAX
Output: PHUAV

2.5. Statistical Analysis

To assess the accuracy of PHUAV, it was compared to the manual measurements PHL
and PHS on the first four dates and compared to PHT on the final date. In addition, the
relationship between the two manual methods PHL and PHS was studied on the first four
dates. All statistical analyses were conducted in Python [17]. The Pearson correlation
coefficient was calculated by the Scipy package (1.7) [21]. The root mean square error
(RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2) were
computed by the Scikit-learn package (1.0) [22] and are defined as:

RMSE =

√
1
n

n

∑
i=1

(PHx,i − PHy,i)
2, (1)

MAPE =
1
n

n

∑
i=1

∣∣∣∣PHx,i − PHy,i

PHx,i

∣∣∣∣ (2)

and

R2 = 1−
∑n

i=1(PHx,i − PHŷ,i)

∑n
i=1(PHx,i − PHx)

(3)

where n is the number of plots and PHx,i and PHy,i are the plant heights at the i-th plot as
measured by the methods x and y, respectively. PHŷ,i is the predicted plant height by the
regression model for method y at the i-th plot and PHx is the average plant height of all
plots as measured by method x. The Scikit-learn package was also used to calculate the
linear regression and the 70/30 train-validation split (seed = 0) of the plots for calibration.
Data visualization was done by the Matplotlib package (3.5) [23].

3. Results
3.1. Plant Development throughout the Measurement Period

Since the juvenile stage is crucial for plant development, the plants were measured
manually and by UAV more frequently in the beginning of the growth period (three dates
in June, one in July and one in August 2020). Figure 3a shows the plant development of
one exemplary plot, which was surveyed throughout the measurement period. Different
light conditions are noticeable, especially at the last three dates. As can be seen in Figure 3b,
the Otsu threshold, which was applied to classify the DSM pixel either as ‘plant’ or as
‘soil’, shows good results under different light conditions but is challenged at the first two
dates. However, according to Algorithm 1, the Otsu-segmentation is only relevant when
outliers are present and PHUAV is set to PHSTD, which occurred for 14.51% of all plots at all
dates (290 of 1999). Thus, Otsu-segmentation only affected plant height estimation in the
minority of cases.
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Figure 3. Maize plant development exemplified by one of the 400 genotypes surveyed by UAV at
five stages during the growth period. (a) RGB image. The scale indicates the plot length; (b) heatmap
of the digital surface model (DSM) for height estimation. The red contours indicate areas that were
classified as plant and the grey scale bar shows plant height in meters; DAS: days after sowing.

The DSM in Figure 3b displays the plant development with up to 1.14 m plant height
on the final date. The average plant height per measurement method and date as well as the
respective standard deviations of all plots are shown in Figure 4. The standard deviations
increase throughout the plant development and are most likely caused by the diversity of
genotypes surveyed.
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Figure 4. Average plant height of all plots during the growth period manually measured as distance
to highest leaf (PHL), highest straightened leaf (PHS) and tassel tip (PHT) as well as UAV-based
estimated plant height (PHUAV). Standard deviations are shown as error bars; DAS: days after sowing.

3.2. Evaluation of Manual Measurement Methods and UAV-Based Plant Height Estimation

First, the two manual methods of plant height measurement PHL and PHS were
compared. Because leaves were straightened during measurement, the average PHS were
higher than PHL on all dates. Plant height increased with parallel trend for both manual
methods throughout the growth period and the standard deviations per date were similar
(Figure 4). The ordinate intercepts of the regression lines as specified in Table 2 and shown
in the left column of Figure 5 also demonstrate that PHS is generally higher than PHL.
Table 2 shows that the RMSE of PHL and PHS grew consistently from the first to the last
date. As the leaf size increases throughout plant development, the growing RMSE of PHL
and PHS was to be expected. The correlations between the manual methods were highly
significant on all days (p < 0.001) and the R2 was ranging from 0.47 to 0.62. Neither the R2

nor the MAPE (30.90–48.61%) showed a clear trend related to the growth stage (Table 2).

Table 2. Predictive analytics of the height of the highest leaf (PHL), the highest straightened leaf
(PHS), the tassel tip (PHT) and the estimated plant height by UAV (PHUAV); DAS: days after sowing,
r: Pearson’s correlation coefficient, RMSE: root mean square error, MAPE: mean absolute percentage
error, R2: coefficient of determination.

Comparison DAS r RMSE (m) MAPE (%) Regression R2

PHS vs. PHL

34 0.70 * 0.07 34.83 y = 0.739x + 0.101 0.49
39 0.75 * 0.09 48.61 y = 0.837x + 0.118 0.56
47 0.68 * 0.12 44.09 y = 0.748x + 0.168 0.47
68 0.79 * 0.21 30.90 y = 0.817x + 0.300 0.62

PHUAV vs. PHL

34 0.32 * 0.06 25.48 y = 0.197x + 0.104 0.10
39 0.66 * 0.05 22.87 y = 0.774x + 0.066 0.44
47 0.71 * 0.08 28.89 y = 0.804x + 0.113 0.50
68 0.71 * 0.11 14.00 y = 0.701x + 0.197 0.51

PHUAV vs. PHS

34 0.42 * 0.10 38.47 y = 0.242x + 0.083 0.17
39 0.73 * 0.08 24.07 y = 0.767x + 0.002 0.54
47 0.78 * 0.06 14.30 y = 0.807x + 0.029 0.61
68 0.70 * 0.21 21.98 y = 0.670x + 0.095 0.50

PHUAV vs. PHT 120 0.62 * 0.33 21.74 y = 0.974x − 0.203 0.38

* p < 0.001.
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Figure 5. Manually measured plant height of the highest leaf (PHL) and the highest straightened leaf
(PHS) compared to one another (grey) and UAV-based plant height estimation (PHUAV) compared
to PHL (green) and to PHS (blue). The linear regression line is shown in orange and its equation is
specified in Table 2; DAS: days after sowing.
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Since the maize plant did not appear to the UAV with straightened leaves but in its
natural position, the mean of PHUAV was closer to the mean of PHL than to the mean of
PHS across all plots on most dates (Figure 4). This was confirmed by comparing the RMSE
between the manual methods and PHUAV. Except for the flight on DAS 47, the RMSE of
estimating PHS was always higher than that of estimating PHL (Table 2). DAS 47 was also
the only date where the mean of PHUAV was closer to the mean of PHS than to the mean of
PHL (Figure 4). Similarly, the MAPE between PHUAV and PHL was smaller than that of
PHUAV and PHS on all days except for DAS 47 (Table 2).

In general, PHUAV showed a higher coefficient of determination to PHS than to PHL,
which were all based on highly significant correlations (p < 0.001) (Table 2). Only on DAS
68 the R2 score of PHL (0.51) was slightly higher than that of PHS (0.50). According to
the smaller RMSE and MAPE, PHUAV is the better direct estimate for PHL than for PHS.
Yet, the good correlation coefficients between PHUAV and PHS indicate potential for linear
modeling between PHS and PHUAV. The second and third column in Figure 5 show PHUAV
of all plots in relation to the manual methods and their regression lines.

In contrast to the comparison of the manual methods, a clear trend can be observed for
the MAPE and correlation coefficients between the manual methods and PHUAV over the
growth period (Table 2). On DAS 34, the R2 score between the manual methods (0.49) was
clearly better than between PHUAV and PHL (0.10) or PHS (0.17). Nevertheless, from DAS
39 to DAS 68 the coefficients of determination between PHUAV and the manual methods are
close to those of the manual methods. On DAS 47, PHL (0.50) and PHS (0.61) even showed
a better R2 score to PHUAV compared to the R2 score between the manual methods (0.47)
(Table 2).

The accuracy of estimating the height of the tassel tip on DAS 120 with MAPE = 21.74%
and R2 = 0.38 was rather poor (Table 2, Figure 6). Here, the standard deviation over all
plots of PHUAV was clearly higher than that of PHT (Figure 4).

Figure 6. Comparison of UAV-based plant height estimation (PHUAV) and manually measured tassel
height (PHT). The linear regression line is shown in orange and its equation is specified in Table 2;
DAS: days after sowing.
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How well the UAV-based plant height estimation performed was highly dependent
on the plant developmental stage. On DAS 34, PHUAV was the least accurate for estimating
both PHS (MAPE = 38.47%, R2 = 0.17) and PHL (MAPE = 25.48%, R2 = 0.10) (Table 2).
Additionally, the standard deviation over all plots of PHUAV was clearly smaller than
that of PHS and PHL on DAS 34, as can be seen in Figure 4. Promising results were
obtained for PHS from DAS 39 to DAS 68 with 14.30–24.07% MAPE and 0.50–0.61 R2. For
estimating PHL, likewise DAS 39 to DAS 68 was the best period with 14.00–28.89% MAPE
and 0.44–0.51 R2. The standard deviations on these dates were similar for all measuring
methods (Figure 4).

3.3. Calibration of UAV-Based Plant Height Estimation

Although DAS 39 to DAS 68 was clearly the best period for UAV-based plant height
estimation, the MAPE (14.00–28.89%) and RMSE (0.06–0.21 m) between PHUAV and the
manual methods were still high. However, the similar R2 values and regression equations
on these dates (Table 2) highlight the potential for a standardized calibration of PHUAV for
predicting PHL an PHS with separate models.

Thus, 279 (~70%) of the plots were randomly selected and their data of DAS 39 to DAS
68 was used to create linear regression models for calibration, which represent both manual
methods (Figure 7a). By transforming the regression equations for PHL

PHUAV = 0.869PHL + 0.076 (4)

and PHS
PHUAV = 0.746PHS + 0.031 (5)

the calibration equations are

PHL,UAVcal =
PHUAV − 0.076

0.869
(6)

and
PHS,UAVcal =

PHUAV − 0.031
0.746

. (7)

Table 3. Predictive analytics of calibrated plant height estimated by UAV (PHL, UAVcal, PHS, UAVcal)
vs. measurement of highest leaf (PHL) and highest straightened leaf (PHS); DAS: Days after sowing,
r: Pearson’s correlation coefficient, RMSE: Root mean square error, MAPE: Mean absolute percentage
error, R2: Coefficient of determination.

Comparison DAS r RMSE (m) MAPE (%) Regression R2

PHL, UAVcal vs. PHL

39 0.69 * 0.07 28.39 y = 1.043x − 0.049 0.48
47 0.73 * 0.06 18.37 y = 0.930x + 0.039 0.54
68 0.66 * 0.14 17.49 y = 0.743x + 0.193 0.43

PHS, UAVcal vs. PHS

39 0.80 * 0.06 19.62 y = 1.142x − 0.077 0.64
47 0.78 * 0.07 14.15 y = 1.090x − 0.008 0.61
68 0.75 * 0.13 12.07 y = 0.981x + 0.017 0.56

* p < 0.001.
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Figure 7. Calibration of UAV-based plant height estimation (PHUAV) based on highest leaf (PHL) and
highest straightened leaf method (PHS). The linear regression lines are shown in orange. (a) Data set
for calibration of three dates combined. (b) Validation of calibrated data for predicting the plant height
of highest leaf (PHL, UAVcal) and the plant height of the highest straightened leaf (PHS, UAVcal) based
on UAV measurements. The regression equations are specified in Table 3; DAS: days after sowing.
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The calibration models were applied to the remaining 120 plots (~30% of all plots) for
each date separately (Figure 7b). The resulting RMSE and MAPE were slightly worse for
predicting PHL after calibration (0.06 m ≤ RMSE ≤ 0.14 m; 17.49% ≤ MAPE ≤ 28.39%)
(Table 3) than before (0.05 m ≤ RMSE ≤ 0.11 m; 14.00% ≤ MAPE ≤ 28.89%) (Table 2).
However, the regression lines in the left column of Figure 7b all show a slope close to 1 and
a relatively small intercept compared to Figure 5, which indicates that using a standardized
calibration model trained on data of three dates is generalizing well and is feasible to be
applied on single dates. Since the calibrated PHL, UAVcal does not show a lower RMSE
and MAPE, there does not seem to be a systematic error of PHUAV for estimating PHL. In
contrast to PHL, UAVcal, PHS, UAVcal showed a lower RMSE and MAPE (0.06 m ≤ RMSE ≤
0.13 m; 12.07%≤MAPE≤ 19.62%) (Table 3) than PHUAV (0.06 m≤ RMSE≤ 0.21 m; 14.30%
≤ MAPE ≤ 38.47%) (Table 2) for estimating PHS. Thus, a systematic error was present,
which was caused by straightening the leaf for manual measurement. The decreased
errors demonstrate that the calibration diminishes the error. The regression lines between
PHS, UAVcal and PHS again show slopes close to 1 and intercepts close to 0 at all dates
(Figure 7b, left column; Table 3), indicating that the calibration model was generalizing
well again.

4. Discussion

In this study, we demonstrated that the accuracy of estimating plant height in maize by
a UAV is highly dependent on the plant growth stage but also on the manual measurement
method to which PHUAV is compared. Accuracy was especially poor on DAS 34 (PHS: R2 =
0.17, PHL: R2 = 0.10) and on DAS 120 (R2 = 0.38) (Table 2). The low accuracy on DAS 34
was most likely due to the still small plant sizes on that date. The average value of PHL on
DAS 34 was 0.18 m (Figure 4), which could be missed in the range of soil coarseness. As
can be seen in Figure 3b, on DAS 34 the young plants could be barely recognized on the
DSM, which held true for most of the plots. Accordingly, the standard deviation of PHUAV
over all plots was comparably small (Figure 4). However, on DAS 39 the average PHL
(0.19 m) was barely higher than on DAS 34 (0.18 m) (Figure 4) yet the accuracy had clearly
increased (R2 = 0.44) (Table 2). Thus, the DSM quality might not only be influenced by
plant height but also by plant morphology. Nevertheless, an average PHL of 0.2 m should
be sufficient for the presented approach to achieve reasonable results. However, different
light conditions, as can be seen on DAS 47 and 68 (Figure 3a), do not seem to affect the
estimation accuracies seriously (Table 2).

On DAS 120 many maize genotypes already reached physiological maturity and the
leaves were senescing (Figure 3a), hampering the detection by the DSM. As some genotypes
did not reach maturity on DAS 120 but others did, the standard deviation of PHUAV on
that date is clearly higher than that of PHT (Figure 4). From DAS 39 to DAS 68 the highest
accuracies were achieved with up to R2 = 0.61 compared to PHS (Table 2). Accordingly, this
period is the optimal period to estimate maize plant height with the presented approach.

The data of this period was used to train one calibration model each for predicting
PHL and PHS. As PHL is measured without changing the plants’ appearance there is no
systematic error to be expected when compared to PHUAV. Consequently, the calibration
did not improve the estimation. However, the MAPE and RMSE of estimating PHS from
calibrated PHUAV was considerably improved. Since the leaves were straightened for the
manual measurement of PHS, it was to be expected that calibration will diminish this
systematic error. Different plots were used for training and validation of the calibration
model and these plots represented random genotypes. Moreover, no systematic error could
be shown for PHL, UAVcal. Thus, the shown systematic error of PHS, UAVcal is independent of
the maize genotype and the UAV platform but instead is related to the manual method PHS.
The MAPE between PHS, UAVcal and PHS (12.07% ≤MAPE ≤ 19.62%) are the smallest of
all methods compared. Accordingly, by applying a linear regression model for calibration,
PHUAV is the better value for predicting PHS than for PHL although only leaves in their
natural position are perceived by the UAV.
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In contrast to PHL, where only a small proportion of the highest leaf influences the
measured height, PHS captures the whole leaf length of the highest straightened leaf. Thus,
PHS might be the better indicator for biomass since the whole leaf length is represented. The
poor results on DAS 34 and the better results afterwards indicate that a higher green biomass
facilitates UAV-based height measurement. By capturing information about biomass, the
estimation of PHS might be more interesting than that of PHL from a breeder’s perspective.

Su et al. [9] (R2 = 0.78) and Gilliot et al. [10] (R2 = 0.9) achieved higher accuracies
than our approach in estimating plant height of maize based on DSM, which is most
likely due to the different methodologies. While we compared PHUAV to averaged manual
values per plot, Su et al. [9] and Gilliot et al. [10] both compared UAV based estimations
to individual plants tracked by GPS. Thereby the manual error of selecting representative
plants is excluded completely. Watanabe et al. [13] followed a similar approach to ours in
estimating sorghum height based on DSM. They manually measured two plants per plot
and compared the averaged value to the UAV-based estimation of the center of the plot
and achieved a correlation coefficient of up to r = 0.52. In this study, PHUAV of all dates,
except the first one, scored a correlation coefficient higher than r = 0.52 when compared to
the different manual measurement methods (Table 2).

Furthermore, Watanabe et al. [13] pointed out that different types of errors of manual
and UAV measurements impair each other’s estimation. The correlation coefficients in
this study indicate that the relationship of PHUAV to the manual methods is as close as the
manual methods are to each other (Table 2), which indicates a non-systemic error between
the manual methods. It is questionable whether manual measurements in maize by three
plants per plot represent the ground truth sufficiently. Especially the measurement of
tall maize genotypes and the subjective decision to select three representative plants, as
performed in this study, bear a high risk of bias. However, UAV-platforms are more affected
by environmental conditions than manual workers and cannot produce reliable results
under weather conditions such as, for instance, strong winds and rain.

5. Conclusions

In this study, the feasibility of UAV-based plant height estimation at different growth
stages of maize was evaluated. After obtaining the best results for estimating both PHL
(0.44 ≤ R2 ≤ 0.51) and PHS (0.50 ≤ R2 ≤ 0.61) from 39 to 68 days after sowing (DAS),
it can be recommended to apply the approach presented here from 0.2 m average plant
height to maturity before the plants start to senesce and change the leaf color. The preferred
method of plant breeders to measure plant height, namely from ground to the tip of the
straightened highest leaf, can be estimated based on UAV measurements after calibration
with a MAPE in a range from 12.07% to 19.62%. In future research, accuracy of DSM-based
plant height estimation, especially after plant senescing, could be improved by capturing
biomass per plant, potentially by means of deep learning-based computer vision. UAV is
an efficient and promising platform in plant phenotyping and holds the potential to reliably
automatize labor-intense measurements and thus save precious time in plant breeding.
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