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Abstract: Cover cropping (CC) is the most promising in-field practice to improve soil health and 

mitigate N losses from fertilizer use. Although the soil microbiota play essential roles in soil health, 

their response to CC has not been well characterized by bioindicators of high taxonomic resolution 

within typical agricultural systems. Our objective was to fill this knowledge gap with genus-level 

indicators for corn [Zea mays L.] monocultures with three N fertilizer rates (N0, N202, N269; kg N 

ha−1), after introducing a CC mixture of cereal rye [Secale cereale L.] and hairy vetch [Vicia villosa 

Roth.], using winter fallows (BF) as controls. A 3 × 2 split-plot arrangement of N rates and CC treat-

ments was studied in a randomized complete block design with three replicates over two years. 

Bacterial and archaeal 16S rRNA and fungal ITS regions were sequenced with Illumina MiSeq sys-

tem. Overall, our high-resolution bioindicators were able to represent specific functional or ecolog-

ical shifts within the microbial community. The abundances of indicators representing acidophiles, 

nitrifiers, and denitrifiers increased with N fertilization, while those of heterotrophic nitrifiers, ni-

trite oxidizers, and complete denitrifiers increased with N0. Introducing CC decreased soil nitrate 

levels by up to 50% across N rates, and CC biomass increased by 73% with N fertilization. CC pro-

moted indicators of diverse functions and niches, including N-fixers, nitrite reducers, and mycor-

rhizae, while only two N-cycling genera were associated with BF. Thus, CC can enhance the soil 

biodiversity of simplified cropping systems and reduce nitrate leaching, but might increase the risk 

of nitrous oxide emission without proper nutrient management. This primary information is the 

first of its kind in this system and provided valuable insights into the limits and potential of CC as 

a strategy to improve soil health. 

Keywords: bioinformatics; nitrogen cycling; soil microbiota; maize; nitrate leaching; nitrous oxide 

emission 

 

1. Introduction 

Soil health represents a soil’s capacity for ecosystem services, making it a crucial 

component of sustainable agriculture [1,2]. Hence, the soil health of critical agricultural 

regions such as the US Midwest must be protected to maintain global food security [3–6]. 

However, this region is dominated by simplified and intensely managed cropping sys-

tems centered on corn [Zea mays L.] and soybean [Glycine max (L.) Merr.], which makes 

the soil more vulnerable to both anthropogenic and natural disturbances [7–9]. Corn-

based systems often have low N use efficiency, leading to excess soil N [10] that causes a 
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chemical imbalance that degrades soil health and contributes to greenhouse gas (GHG) 

emissions and nutrient pollutions [11–14]. 

Cover cropping (CC) has many potential benefits for soil health, such as providing 

physical protections, adding organic matter, and scavenging excess soil N [3,15,16]. Thus, 

CC has been proposed as a tool of ecological intensification to improve soil health [17,18]. 

In particular, CC is anticipated for its ability to mitigate soil chemical imbalances by im-

mobilizing excess soil nutrients as biomass and releasing them slowly through decompo-

sition. Indeed, past primary research and research syntheses demonstrated that CC that 

includes non-legumes significantly reduces NO3− leaching [3,16]. Yet, many aspects of CC 

interaction with the soil remain unexplored or ambiguous. For example, whether CC can 

effectively reduce emissions of nitrous oxide (N2O), a very potent GHG, may depend on 

soil microbial responses to CC management [19]. Thus, the soil microbes can regulate the 

CC impacts on soil health as the fundamental driver of soil processes [15,20,21]. Likewise, 

a diverse microbial community with groups of overlapping roles leads to higher func-

tional redundancy that indicates a healthy and resilient soil [22]. Therefore, proper evalu-

ation of CC as a tool to alleviate soil health degradation and N loss requires a better un-

derstanding of the soil biodiversity under CC management. 

Despite the importance of soil biodiversity for successful CC strategies, many gaps 

in knowledge still exist due to the vast complexity of the soil microbiome. Therefore, in-

dicators need to be identified to describe a microbiome reliably. Initially, properties of the 

whole microbial community, such as total microbial biomass, respiration, and α-diversity, 

served as indicators in CC research [15,23–26]. For example, a global meta-analysis by Kim 

et al. [25] found beneficial effects of CC on thirteen parameters of microbial abundance, 

activity, and diversity. However, these indicators from broad-scale integrative methods 

do not describe the microbial diversity and functionality with enough detail. Therefore, 

CC research adopted approaches, such as metabarcoding, that can quantify the changes 

in the abundances of individual microbial taxa and identify those sensitive to the treat-

ments as a type of bioindicator [27]. These indicator taxa can provide taxonomic charac-

terization of the responsive microbes that can complement other bioindicators such as β-

diversity and the functional genes. This effort started from identifying the taxa sensitive 

to CC at lower taxonomic resolutions [28]. For example, a study by Castle et al. [29] 

showed that the N fertilization rate changed the relative abundances of bacterial phyla, 

while CC proved to be a stronger predictor of fungal community composition [29]. How-

ever, due to the wide ecological and functional diversity within each phylum, these bio-

indicators are still too low in taxonomic resolution to infer on more specific microbial pro-

cesses, such as plant symbiosis or a particular step of denitrification [30]. 

The recent advancements in sequencing technology and bioinformatics have enabled 

the identification of genus- or even species-level indicators from surveying the vast mi-

crobial community data at higher taxonomic resolutions. Thus, these indicator taxa can 

represent more specific microbial guilds or functions. For example, Villamil et al. [31] used 

bacterial and archaeal 16S rRNA and fungal internal transcribed spacer (ITS) sequence 

data to select genus-level indicators through predictor screening and principal component 

analysis. They found indicator genera whose responses to management practices were 

consistent with their known characteristics, such as those of acidophiles that increased 

with soil acidification. Thus, the authors demonstrated that low-rank indicator taxa can 

reliably describe the soil microbial community and complement other taxonomic or func-

tional bioindicators. Therefore, identifying genus-level bioindicators after introducing CC 

may lead to detailed insights into whether CC can improve the soil biodiversity. So far, 

however, only a few studies have identified the high taxonomic resolution indicators of 

CC. Alahmad et al. [32] identified species-level indicators to represent guilds that special-

ize in different C substrate groups, but their system widely differed from the simple crop-

ping systems. Another study by Kim et al. [33] identified indicator genera within a typical 

corn–soybean rotation after five years of CC. However, this study did not include an un-

fertilized control to test the N rate effect and included tillage treatments in the model. 
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Thus, high-resolution indicator taxa have not been well-identified for CC deployment in 

simplified cropping systems with and without N fertilization. 

Therefore, our objective was to describe the soil microbial community of a typical 

corn monoculture with and without N fertilizers upon introducing CC with high taxo-

nomic resolution, using bacterial, archaeal, and fungal genera as indicators. Our aim was 

to use these bioindicators to investigate whether CC can increase soil biodiversity and has 

the potential to improve soil health of this system. Three published studies have each 

characterized the soil properties [14], the N-cycling genes [21], and the indicator genera 

[31] of the experimental site of this study before CC deployment. Consistent with these 

past studies, we expected to still observe soil acidification and an increased abundance of 

acidophiles, nitrifiers, and denitrifiers with N fertilization. Thus, based on the assumption 

that CC will improve the soil biodiversity and N use efficiency of corn monocultures, we 

hypothesized that CC would (1) reduce soil NO3− levels through assimilation, which 

would (2) compete with the denitrifiers for NO3− and decrease their abundances, and that 

(3) indicators associated with CC would represent more diverse niches and functions than 

those of bare fallow. These bioindicators will help us assess whether CC can improve the 

soil health of simplified and intensely managed cropping systems and reduce their soil N 

loss. In addition, these bioindicators will facilitate identifying the core microbiota that 

could be managed to optimize CC in high-N-input agroecosystems. 

2. Materials and Methods 

2.1. Experimental Site Description and Management Practices 

The field experimental site was established in 1981 at the Northwestern Illinois Ag-

ricultural Research and Demonstration Center (40°55′50″ N, 90°43′38″ W) to study the ef-

fects of N fertilization rates on corn yields when the crop is in a corn monoculture or short 

rotation with soybeans (Figure S1). The site has mean annual precipitation and tempera-

ture of 914 mm and 10.6 °C, respectively [34]. The soil series is Muscatune silt loam (fine-

silty, mixed, mesic Aquic Argiudoll) on nearly flat topography [35]. These are dark-col-

ored and very deep soils with moderate permeability and low surface runoff potential 

developed under prairie vegetation in a layer of loess 2–3 m thick over glacial till [35]. 

Further information regarding the experimental site and management before 2018 can be 

found in Kim et al. [14]. 

This study centers on the introduction of CC into the continuous corn management 

plots that spanned two CC growing seasons: 2018–2019 and 2019–2020. Before introduc-

ing CC, these plots had average topsoil pH of 6.31, soil organic C of 20.08 g kg−1, bulk 

density of 1.34 Mg m−3, NO3− level of 7.65 mg kg−1, and NH4+ level of 6.15 mg kg−1 [14]. A 

split-plot arrangement of N fertilization rates (0, 202, and 269; kg N ha−1) and CC (cover 

crop, CC; bare fallow control, BF) in a randomized complete block design with three rep-

licates was used on the continuous corn production plots. The main plots were 18 m long 

by 6 m wide, and the subplots were 18 m long and 3 m wide. Corn was planted on 3 June 

2019 and 26 May 2020 at 88,000 seeds ha−1. Nitrogen fertilization occurred in early to mid-

May with urea ammonium nitrate solution (UAN 28%). No P or K fertilizers or lime were 

applied. Fertilizer, herbicide, and pest management decisions followed the best manage-

ment practices for the site as recommended by the Illinois Agronomy Handbook [36]. 

Cash crop harvesting occurred in mid-October with a plot combine (Almaco, Nevada, IA, 

USA). Following harvest each year, a CC mixture of cereal rye [Secale cereale L.] and hairy 

vetch [Vicia villosa Roth.] was no-till drill-seeded at the rate of 84 kg seeds ha−1 on 3 October 

2018 and on 19 October 2019. The CC were terminated in early May after soil sampling 

and before corn planting with glyphosate [N-(phosphonomethyl)glycine] (Roundup 

WeatherMAX®, Bayer AG, Leverkusen, Germany) at the rate of 1.89 kg a.i. ha−1. Spring 

tillage was conducted in all plots following CC suppression using a rotary tiller (Dyna 

Drive Cultivator, EarthMaster, Alamo Group, Inc., Seguin, TX, USA) on 3 June 2019 and 

on 11 May 2020. 
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2.2. Soil and Cover Crop Biomass Sampling and Determinations 

Soil samples were taken on 26 April 2019 and on 30 April 2020. Within each experi-

mental unit, three composited soil subsamples at a depth of 10 cm were taken with an 

Eijelkamp grass plot sampler (Royal Eijkelkamp Company, Giesbeek, The Netherlands) 

collecting plugs while walking in a zig–zag pattern. For each plot, a composited soil sam-

ple had about 15 plugs, rendering a total of 500 g of soil used for microbial DNA extrac-

tion. These soil samples were transported from the experimental site in coolers filled with 

ice and then stored at −20 ℃ in the lab. Additionally, three soil core subsamples 0–90 cm 

in depth per experimental unit were taken using a tractor-mounted soil sampler with soil 

sleeve inserts (Amity Tech, Fargo, ND, USA). These soil cores were cut at depths of 0–30 

cm, 30–60 cm, and 60–90 cm in the lab and composited to determine general soil proper-

ties. This study only used the soil property data from the top 0-30 cm soil. Water content 

was determined by gravimetry (%), and the available soil NO3− and ammonium (NH4+) 

(mg kg−1) were determined using KCl extraction (1:5 ratio of soil to solution) followed by 

flow injection analysis with a SmartChem 200 (Westco Scientific Instruments, Inc., Dan-

bury, CN). The soil pH (1:1 soil–water) was determined via potentiometry [37] by a com-

mercial laboratory (Brookside Laboratories, Inc., New Bremen, OH, USA). Samples of CC 

aboveground biomass growth were collected at the same time as soil sampling using three 

random 0.25 m2 quadrat tosses in each CC plot. The dry weight of the biomass samples 

was measured after drying them in the oven at 60 °C for 48 h. 

2.3. Soil DNA Extraction, Sequencing, and Taxonomic Classification 

Soil DNA was extracted from 0.25 g of each soil subsample using PowerSoil® DNA 

isolation kits (MoBio Inc., Carlsbad, CA, USA) following the manufacturer’s instructions. 

The quantity and quality of the extracted DNA were tested using Nanodrop 1000 Spec-

trophotometer (ThermoFisher Scientific, Waltham, MA, USA), and the extracted DNA 

samples were stored at −20 ℃ until analysis. The DNA samples were sequenced for the 

bacterial V4 region and archaeal 16S rRNA, and the fungal internal transcribed spacer 

(ITS) region for taxonomic analysis with Illumina MiSeq paired-end System (2 × 250 bp) 

(Illumina, Inc., San Diego, CA, USA) by the W.M. Keck Center for Comparative and Func-

tional Genomic lab at the University of Illinois Biotechnology Center (Urbana, IL, USA). 

The sample DNA concentration was limited to 50 ng μL−1. The primer sets used for am-

plification were 515F (GTGYCAGCMGCCGCGGTAA) and 806R (GGAC-

TACVSGGGTWTCTAAT) for the bacterial 16S rRNA gene [38], 349F (GTGCAS-

CAGKCGMGAAW) and 806R (GGACTACVSGGGTATCTAAT) for the archaeal 16S 

rRNA gene [39], and 3F (GCATCGATGAAGAACGCAGC) and 4R 

(TCCTCCGCTTATTGATATGC) for the fungal ITS region [40]. 

Quality check and processing of the sequences were carried out using QIIME 2.0 

pipeline [41,42]. When checking the archaeal demultiplexed sequences from the MiSeq 

System, not enough sequences were retained for further analysis when the sequences 

were trimmed at the base positions where the 25th percentile of the quality scores fell 

below 20 on QIIME 2.0 View [43]. Therefore, the sequences were not trimmed for all bac-

teria, archaea, and fungi to keep a consistent method across taxa. Nonetheless, bacterial 

and fungal sequence qualities were mostly very high (25th percentile Q > 30) or at least 

good (25th percentile Q > 20) throughout the base pair positions, so trimming was unnec-

essary [43]. The plugin DADA2 was used to denoise and remove chimeric and low-quality 

sequences with the option chimera-method consensus, and then resulting sequences were 

clustered into amplicon sequence variants (ASVs) [44]. The rarefaction curve for each bac-

terial, archaeal, and fungal ASVs plateaued around 900, 150, and 300, respectively, in sam-

pled sequences on average (Figure S2). 

The ASVs were classified with Ribosomal Database Project (RDP) web classifier or 

RDPTool package [45] using 16S rRNA training set 18 and Warcup Fungal ITS trainset 2. 

RDP database was chosen because it has a lower annotation error rate than other 16S 
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rRNA databases [46]. The resulting classified ASVs were grouped by genus and those 

with low (<0.1%) per-sample relative abundances averaged across all samples were fil-

tered out using package dplyr version 1.0.5 [47] in R, version 4.1.0 [48]. The ASV sequences 

were aligned using MAFFT method [49], and then the maximum-likelihood phylogenetic 

tree was built using fasttree and midpoint-root methods in QIIME2. The resulting phylo-

genetic tree was used to calculate the UniFrac distance for β-diversity in QIIME2. The α-

diversity measures extracted were observed for a number of ASVs for richness, Pielou’s 

evenness parameter, J, for evenness, and Shannon’s H’ for diversity. The β-diversity be-

tween treatment levels was analyzed with pairwise permutational multivariate analysis 

of variance (PERMANOVA) that reports the pseudo-F-value for testing the null hypothe-

sis and the probability values before (p-value) and after (q-value) using the Benjamini–

Hochberg false discovery rate (FDR) correction for multiple testing [33,50,51]. 

2.4. Indicator Microbes and Statistical Analysis 

After classifying the ASVs to genus-level, a bootstrap forest partitioning method de-

ployed within the JMP® predictor screening platform was used to select the genera sensi-

tive to N fertilization and CC treatments [52–54]. The sparsity in the abundance data of 

these selected indicator genera was resolved by using zero-replacement with the function 

cmultRepl from R package zCompositions [55]. These datasets were then normalized by 

central log-ratio transformation to manage the compositionality of the data [56]. Then, a 

principal component analysis (PCA) was used as a data reduction technique to further 

select the indicator genera. Procedure FACTOR in SAS software version 9.4 (SAS Institute, 

Cary, NC) with priors = 1 summarized the abundances of each genus into a set of uncor-

related composite variables, or principal components (PCs). The PCs with eigenvalues ≥ 

1 that also explained at least 5% of the variability in the dataset were used as response 

variables for statistical analysis. Genera with an important correlation with each PC (load-

ing value > |0.5|) were considered as the bioindicators [57]. Each indicator genus was then 

searched in the List of Prokaryotic names with Standing in Nomenclature (LPSN), or other 

primary research, for its known characteristics [58]. 

Linear mixed models were fitted using the GLIMMIX procedure in SAS software to 

determine the effects of N rates, CC, and their interactions on soil properties, CC biomass, 

α-diversity measures, and PC scores of the indicator genera [59]. N rates, CC, and their 

interaction were considered fixed effects, whereas blocks, years, and their interactions 

with the fixed effects were considered random terms in the analysis of variance (ANOVA). 

For any significant treatment effects on the response variables based on ANOVA results, 

the least square means of the response variables were separated by treatment levels, using 

the lines option and setting the probability of a type I error at α = 0.1. The ggplot2 package 

in R was used to create figures [60]. The figures for indicator genera visualized the com-

bined results of the PCA and mean separation procedure, illustrating the responses of 

each indicator genus’s abundance to N rates, CC, and their interactions. These responses 

were calculated as the mean PC score for a given treatment level multiplied by the PC 

loading score of the listed indicator genus, which will be referred to as the “M × L” [33]. 

To assess the relationships between indicator microbes and the soil properties, R function 

cor with option method = “pearson” was used to calculate the Pearson’s correlation coef-

ficients among the selected soil properties, and the bacterial, archaeal, and fungal PC 

scores. Here we considered the associations with coefficients above |0.8| as “very strong”, 

those with values between |0.6–0.8| as “strong”, and those with values between |0.4–0.6| 

as “moderate”, modified from the ranges used in Huang et al. [21]. The statistical signifi-

cance of these associations was calculated with rcorr function in R package Hmisc [61] 

setting the Type I error rate (α) at 0.05. 
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3. Results 

3.1. Soil Properties and Cover Crop Biomass 

Table 1 summarizes the estimated treatment means, the standard errors of the mean 

(SEM), sample size (n), degrees of freedom (df), and the probability values associated with 

the ANOVA for each source of variation (p-values), as well as the results of mean separa-

tion procedures for CC biomass and selected soil properties of NH4+, NO3−, and soil pH. 

In this study, Nrate main effect was statistically significant for soil pH (p = 0.0025) and CC 

biomass (p = 0.0099). Soil pH decreased sequentially with higher N rates. The CC biomass 

significantly decreased in the unfertilized controls (N0, 1.87 Mg ha−1) when compared with 

the biomass recorded under both N rates, N202 and N269 (3.20 and 3.29 Mg ha−1, respec-

tively). The soil NO3− level showed a marginal CC main effect (p = 0.1601) where it nearly 

halved with CC, compared to BF.  

Table 1. The estimated treatment means, standard errors of the treatment mean (SEM), and the 

sample size (n) of the selected soil chemical properties, including soil ammonium level (NH4+; mg 

kg−1), nitrate level (NO3−; mg kg−1), and soil pH, and cover crop biomass dry weight (CC biomass; 

Mg ha−1) during the two years of experiment determined by the main effects of N fertilization 

(Nrate), cover cropping (CC), and the interaction (Nrate × CC). Probability values (p-values) and 

degrees of freedom (df) associated with the different sources of variations from Type III Test analy-

sis of variance results are shown below. 

Treatments  NH4+ NO3− pH  CC Biomass 
  n Mean  SEM Mean  SEM Mean  SEM n Mean  SEM 

Nrate 2               

0 12 24.32  4.602 1.23  0.380 6.72 a 1 0.126 6 1.87 b 0.273 

202 12 28.24   1.68   5.82 b  6 3.20 a  

269 12 25.48   1.76   5.43 c  6 3.29 a  

CC 3               

BF 18 25.20  3.654 2.06  0.426 5.92  0.115     

CC 18 26.83   1.06   6.06       

Nrate × CC               

BF0 6 25.02  5.205 1.72  0.464 6.72  0.160     

CC0 6 23.62   0.75   6.72       

BF202 6 28.32   2.07   5.72       

CC202 6 28.17   1.30   5.92       

BF269 6 22.27   2.40   5.32       

CC269 6 28.70   1.12   5.53       

Sources of 

Variation 
df NH4+ NO3− pH  CC biomass 

Nrate 2 0.7995 0.3440 0.0025  0.0099 

CC 1 0.7071 0.1601 0.3079     

Nrate × CC 2 0.4137 0.2141 0.6806     

1 The treatment means followed by the same lowercase letter were not statistically different within 

a given column of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare 

fallow control; CC, hairy vetch and cereal rye mixture cover cropping. 

3.2. Overall Characterization of the Soil Microbial Community 

The Supplementary Table S1 summarizes the estimated treatment means, standard 

errors of the mean (SEM), and the probability values (p-values) of the α-diversity param-

eters of bacterial, archaeal, and fungal communities. Supplementary Table S2 shows the 

PERMANOVA results for the β-diversity among the treatment levels of Nrate and CC, 

and their interactions for the three taxa, including the pseudo-F-values and the probability 

values after correction for multiple comparisons (q-value). For α-diversity, the evenness 
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parameter Pielou’s J of bacteria and the observed number of fungal ASVs both showed a 

statistically significant main effect of Nrate (p = 0.0279, and p = 0.0394, respectively) (Table 

S1). The bacterial community became more “even” under N269 compared to N0 and 

N202. Meanwhile, the number of fungal ASVs decreased more in the unfertilized controls 

than in the fertilized plots. As for the β-diversity, the differences between bacterial com-

munity composition were statistically significant between N0 and N202 (q = 0.0015) and 

N269 (q = 0.0015), while they were only marginal (q = 0.0740) between N202 and N269 

(Table S2). The bacteria β-diversity did not have a statistically significant CC effect (q = 

0.2860). The β-diversity between the archaeal community was also statistically significant 

(q = 0.0030) between N0 and N202 and N269, but did not differ between N202 and N269 

(q = 0.2510). Additionally, the archaeal community did not have a significant CC main 

effect (q = 0.5480). The fungal community structure, on the other hand, showed statisti-

cally significant interaction effects of Nrate × CC, as well as CC main effects (q = 0.0010). 

Thus, the fungal community structure differed between CC and BF across Nrate compar-

isons. The fungal community structure differed between N0 and N202 and N269 within 

CC, but not with in BF. 

Metabarcoding analysis comprised 2,625,449 bacterial, 199,685 archaeal, and 424,800 

fungal sequences. After denoising and removing chimeric sequences, the bacterial se-

quences were grouped into 778 genera, of which 176 had average relative abundances 

greater than 0.1%. Likewise, the archaeal sequences were grouped into four genera whose 

average relative abundances were greater than 0.1%. Lastly, the fungal sequences were 

grouped into 321 genera, with 144 of them being above average relative abundances of 

0.1%. The most abundant bacterial phylum among all classified ASVs was Proteobacteria 

(34.2%), followed by Actinobacteria (12.0%), Acidobacteria (11.9%), Bacteroidetes (11.2%), 

and Chloroflexi (5.2%). Archaea was dominated by Thaumarchaeota (90.3%). The most 

abundant fungal phylum was Ascomycota (59.5%), followed by Basidiomycota (29.7%), 

Zygomycota (5.7%), and Glomeromycota (3.1%). 

3.3. Indicators of Cover Crop and N Rate Treatments 

Supplementary Tables S3–S5 each summarizes, for bacteria, archaea, and fungi re-

spectively, the eigenvalues and cumulative proportions of the variability in the data set 

explained by each principal component (PC) in the PCA among the genera selected by 

predictor screening, along with their respective eigenvectors. The eigenvectors consist of 

the loading scores on these PCs from each of these selected genera. Tables 2 and 3 each 

show the estimated treatment means, standard errors of the mean (SEM), their probability 

values (p-values), and the results of the mean separation procedures for bacterial and ar-

chaeal PC scores and fungal PC scores, respectively. 

Table 2. The estimated treatment means and standard errors of the mean (SEM) of each group of 

principal components (PC) calculated for bacterial and archaeal indicators determined by the main 

effects of N fertilization (Nrate), cover cropping (CC), and their interaction. Probability values (p-

values), sample size (n), and degrees of freedom (df) associated with the different sources of varia-

tion from Type III Test analysis of variance results are shown below. 

   Bacteria        Archaea  

Treatment   PC1 PC2 PC3 PC4 PC5 PC1 PC2 

Nrate 2                

0   1.26 a 1 −0.25  0.05  0.00  −0.17  −0.66 b −0.10 

202   −0.43 b 0.40  0.36  0.07  0.48  0.17 a 0.16 

269   −0.83 c −0.14  −0.42  −0.07  −0.31  0.49 a −0.06 
 SEM 0.180  0.359  0.687  0.492  0.517  0.323  0.365 

CC 3                

BF   −0.02  −0.60 b −0.13  0.06  −0.14  0.18  0.15 

CC   0.02  0.60 a 0.13  −0.06  0.14  −0.18  −0.15 
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 SEM 0.183  0.311  0.664  0.483  0.374  0.267  0.324 

Nrate × CC                

BF0   1.26  −0.61  −0.35  −0.18 b −0.63 b −0.60  0.20 

CC0   1.27  0.10  0.46  0.18 ab 0.28 a −0.72  −0.40 

BF202   −0.39  −0.45  0.60  0.66 a 0.76 ab 0.50  0.12 

CC202   −0.47  1.24  0.12  −0.52 b 0.21 ab −0.16  0.21 

BF269   −0.93  −0.75  −0.63  −0.31 b −0.54 ab 0.64  0.14 

CC269   −0.73  0.46  −0.20  0.17 ab −0.07 ab 0.34  −0.26 
 SEM 0.245  0.446  0.714  0.547  0.561  0.412  0.466 

Sources of 

Variation 

  Bacteria        Archaea  

n df PC1 PC2 PC3 PC4 PC5 PC1 PC2 

Nrate 12 2 <0.0001 0.4017 0.1589 0.9115 0.5350 0.0679 0.7921 

CC 18 1 0.8727 0.0475 0.3274 0.7735 0.3948 0.4031 0.3722 

Nrate × CC 6 2 0.7702 0.3717 0.1686 0.0436 0.0415 0.7121 0.6910 
1 The treatment means followed by the same lowercase letter are not statistically different within a 

given column of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare 

fallow control; CC, hairy vetch and cereal rye mixture cover cropping. 

Table 3. The estimated treatment means and standard errors of the mean (SEM) of each group of 

principal components (PC) calculated for fungal indicators determined by the main effects of N 

fertilization (Nrate), cover cropping (CC), and their interaction. Probability values (p-values), sam-

ple size (n), and degrees of freedom (df) associated with the different sources of variation from Type 

III Test analysis of variance results are shown below. 

   Fungi 

Effect   PC1  PC2  PC3  PC4  PC5  PC6  PC7  

Nrate 2                 

0   −0.31 −0.89b 1 0.25  −0.13 0.34 −0.18 −0.20  

202   0.22 0.32a −0.35  −0.14 0.02 −0.12 0.01  

269   0.09 0.56a 0.10  0.27 −0.36 0.29 0.18  

 SEM 0.735 0.414 0.429  0.407 0.403 0.329 0.298  

CC 3      

BF   0.20 0.19 0.48 a 0.27 0.32 0.23 0.15  

CC   −0.20 −0.19 −0.48 b −0.27 −0.32 −0.23 −0.15  

 SEM 0.706 0.433 0.342  0.373 0.335 0.314 0.244  

Nrate × CC      

BF0   −0.22 −0.79cd 0.81  0.06 0.28 −0.35bc −0.10  

CC0   −0.40 −0.98d −0.32  −0.33 0.41 −0.01ab −0.30  

BF202   0.47 0.22b 0.06  0.34 0.48 0.64a 0.42  

CC202   −0.03 0.43ab −0.76  −0.61 −0.45 −0.87c −0.39  

BF269   0.34 1.15a 0.57  0.41 0.21 0.40ab 0.14  

CC269   −0.16 −0.03abc −0.36  0.13 −0.93 0.19ab 0.23  

 SEM 0.789 0.471 0.502  0.501 0.520 0.422 0.422  

Sources of 

Variation 

              

n df PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Nrate 12 2 0.5901 0.0010 0.5654 0.5473 0.4633 0.4289 0.6725 

CC 18 1 0.3361 0.4656 0.0753 0.2566 0.1782 0.3705 0.3828 

Nrate × CC 6 2 0.9079 0.0318 0.8742 0.6983 0.3638 0.0353 0.5602 
1 The treatment means followed by the same lowercase letter are not statistically different within a 

given column of each taxon (α = 0.10); 2 Nrate levels: 0, 202, and 269 kg N ha−1; 3 CC levels: BF, bare 

fallow control; CC, hairy vetch and cereal rye mixture cover cropping. 
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3.3.1. Bacterial and Archaeal Community 

For bacteria, five PCs explained 51.6% of the variability in the 68 selected top contrib-

uting ASVs. PC1 explained 24.5% of the variability, including positive loadings from genera 

Archangium, Arenimonas, Formivibrio, Niabella, Pseudonocardia, Longimicrobium, Thermanaero-

thrix, Rhodoplanes, Nitrospira, Phaselicystis, Methyloligella, Basilea, Povalibacter, and uncultured 

Acidobacteria subgroups 4 and 7; it had negative loadings from Micropepsis, Porphyrobacter, 

Baekduia, Nitrobacter, Rhizomicrobium, Chujaibacter, Denitratisoma, Pseudolabrys, Vicingus, 

Flavitalea, and uncultured Acidobacteria subgroups 1 and 3 (Table S3). PC1 had a statistically 

significant N rate main effect (p < 0.0001) where its mean PC scores decreased sequentially 

from N0 to N269, and their differences were statistically significant (Table 2). Therefore, in-

dicator bacteria with positive loadings on PC1 increased in abundance under N0, while 

those with negative loadings increased with N202 and N269 (Figure 1). 

 

Figure 1. The top panel shows the estimated mean principal component (PC) scores of the bacterial 

PC1 for each level of N rate treatment with their standard errors as whiskers. The asterisks indicate 

the probability value of the treatment effect from analysis of variance (***: p < 0.001). The bottom 
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panel shows the contribution of each bacterial indicator (genera) to PC1 multiplied by the mean PC 

scores of each level of N treatment (M × L). The treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 

(orange), and 269 kg N ha−1 (brown). 

PC2 accounted for 9.7% of the variability and included positive loadings from genera 

Panacibacter, Racemicystis, Mesorhizobium, Luteimonas, Hydrobacter, and Stenotrophobacter, 

and negative loadings from Gemmata and Gemmatirosa. PC2 had a statistically significant 

(p = 0.0475) CC main effect, separating the mean PC scores between BF and CC. The abun-

dances of indicator bacteria that had positive loadings on PC2 thus increased in abun-

dance under CC, while those with negative loadings increased under BF (Figure 2). 

 

Figure 2. The top panel shows the estimated mean principal component (PC) scores of the bacterial 

PC2 for each level of cover cropping treatment with their standard errors as whiskers. The asterisks 

indicate the probability value of the treatment effect from analysis of variance (**: p < 0.05). The 

bottom panel shows the contribution of each bacterial indicator to PC2 multiplied by the mean PC 

scores of each level of cover cropping treatment (M × L). The treatment levels are bare fallow (BF; 

crossed box) and cover crop mixture (CC; filled box). 

PC3 explained 6.4% of the variability and had positive loadings from genera Cae-

nibius and negative loadings from uncultured Acidobacteria subgroup 6 and Nitrolancea 



Agronomy 2022, 12, 954 11 of 26 
 

 

(Table S3). However, PC3 had no significant effect from the treatments (Table 2). PC4 ex-

plained 5.7% of the variability and had a negative loading from genus Parafilimonas. PC5 

accounted for 5.4% of the variability and had positive loadings from genus Pirellula and 

Bacillariophyta and a negative loading from Luteimonas. However, Bacillariophyta is a 

misnomer of unclassified sequences in the RDP database; thus, this taxon was excluded 

from further results [62]. Interaction effects were statistically significant for both bacterial 

PC4 (p = 0.0436) and PC5 (p = 0.0415). For PC4, the mean PC score increased statistically 

significantly with N202 compared to N0 and N269 within BF; within CC, it rather de-

creased with N202, but the difference was not statistically significant (Table 2). Therefore, 

the abundance of Parafilimonas decreased within BF202 compared to BF0 and BF269. Un-

der CC, this trend flipped so that its abundance was the highest within CC202, but the 

differences among N rates were not significant (Figure 3). A statistically significant differ-

ence in the mean PC5 scores between CC0 and BF0 was detected (Table 2). Thus, indicator 

bacteria with positive loadings on PC5 were more abundant with CC0 than BF0, while 

those with negative loadings increased in abundance with BF0 than CC0 (Figure 4). 

The archaeal PC1 explained 48.3% of the variability in the archaeal data and included 

negative loading from the genus Nitrososphaera and positive loadings from the uncultured 

Woesearchaeota AR16 and AR20 (Table S4). The mean scores of PC1 had a marginally sig-

nificant statistical main effect of Nrate (p = 0.0679) where they were greater with N202 and 

N269 than N0 (Table 2). Therefore, with higher N rates, Nitrososphaera decreased in abun-

dance while AR16 and AR20 increased (Figure 5). Archaeal PC2 explained 29.2% of the var-

iability in the data and included positive loading from the genus Methanomassiliicoccus. 

However, PC2 did not have any significant effects from the treatments (Table 2). 

 

Figure 3. The top panel shows the estimated mean principal component (PC) scores of the bacterial 

PC4 for each level of N rate and cover cropping (CC × Nrate) treatment interactions with their stand-

ard errors as whiskers. The asterisks indicate the probability value of the treatment effect from anal-

ysis of variance (**: p < 0.05). The bottom panel shows the contribution of each bacterial indicator to 

PC4 multiplied by the mean PC scores of each level of N rate and cover cropping treatment interac-

tions (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 (orange), and 269 kg 

N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; crossed box) and cover 

crop mixture (CC; filled box). 
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Figure 4. The top panel shows the estimated mean principal component (PC) scores of the bacterial 

PC5 for each level of N rate and cover cropping (CC × Nrate) treatment interaction with their stand-

ard errors of the mean as whiskers. The asterisks indicate the probability value of the treatment 

effect from analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each bac-

terial indicator to PC5 multiplied by the mean PC scores of each level of N rate and cover cropping 

treatment interactions (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 

(orange), and 269 kg N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; 

crossed box) and cover crop mixture (CC; filled box). 

 

Figure 5. The top panel shows the estimated mean principal component (PC) scores of the archaeal 

PC1 for each level of N rate treatment with their standard errors of the mean as whiskers. The as-

terisks indicate the probability value of the treatment effect from analysis of variance (*: p < 0.1). The 
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bottom panel shows the contribution of each archaeal bioindicator to PC1 multiplied by the mean 

PC scores of each level of N treatment (M × L). The treatment levels are: 0 kg N ha−1 (tan), 202 kg N 

ha−1 (orange), and 269 kg N ha−1 (brown). 

3.3.2. Fungal Community 

Seven PCs explained a total of 58.8% of the variability among 36 selected top contrib-

uting ASVs (Table S5). PC1 explained 16.0% of the variability and included positive load-

ings from genera Acremonium, Alternaria, Davidiella, Exophiala, Phaeosphaeria, and Phaeo-

sphaeriopsis and negative loadings from Coemansia, Glomus, and Mortierella. However, fun-

gal PC1 did not have a statistically significant treatment effect (Table 3). PC2 accounted 

for 11.3% of the variability in the data and included positive loadings from genera Podo-

spora, Sporobolomyces, and Pestalotiopsis and negative loadings from Tetracladium, Ajellomy-

ces, and Edenia. PC2 had a statistically significant (p = 0.0318) Nrate × CC interaction effect. 

The mean PC2 scores generally increased with N fertilization for both CC and BF; within 

BF, the mean PC2 score increased sequentially with higher N rates, but it was rather 

smaller with N269 than N202 within CC (Figure 6). The mean separation results in Table 

3 also show a statistically significant difference between BF202 and BF269. Therefore, the 

abundances of indicator fungi with positive loadings on PC2 generally increased with N 

fertilization, so that they continued to increase with BF269 but not with CC269. Con-

versely, those with negative loadings on PC2 showed the opposite trend where their abun-

dances decreased with N fertilization. 

 

Figure 6. The top panel shows the estimated mean principal component (PC) scores of the fungal 

PC2 for each level of N rate and cover cropping (CC × Nrate) treatment interaction with their stand-

ard errors of the mean as whiskers. The asterisks indicate the probability value of the treatment 
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effect from analysis of variance (**: p < 0.05). The bottom panel shows the contribution of each fungal 

indicator to PC2 multiplied by the mean PC scores of each level of N rate and cover cropping treat-

ment interaction (M × L). The N rate treatment levels are: 0 kg N ha−1 (tan), 202 kg N ha−1 (orange), 

and 269 kg N ha−1 (brown). The cover cropping treatment levels are bare fallow (BF; crossed box) 

and cover crop mixture (CC; filled box). 

PC3 explained 7.3% of the variability and included a positive loading from genus 

Talaromyces and a negative loading from Albatrellus. PC3 had a marginally significant sta-

tistical effect of (p = 0.0753) for the CC main effect, separating the mean PC scores between 

CC and BF treatment. Thus, Talaromyces increased in abundance with BF, while Albarellus 

did so with CC (Figure 7). PC4 accounted for 6.9% of the variability and included positive 

loadings from genera Gibberella and Phoma. PC5 explained 6.0% of the variability and in-

cluded a negative loading from the genus Guehomyces. However, PC4 and PC5 did not 

have statistically significant responses to treatment effects. PC6 explained 5.6% of the var-

iability but did not have ASVs with significant loading scores. PC6 had a statistically sig-

nificant (p = 0.0353) Nrate × CC interaction effect where the mean scores differed statisti-

cally significantly between BF202 and BF0 and CC202, with other interactions being inter-

mediate. PC7 accounted for 5.6% of the variability and included a negative loading from 

the genus Tetraploa. PC7 did not have a statistically significant treatment effect. 

 

Figure 7. The top panel shows the estimated mean principal component (PC) scores of the fungal 

PC3 for each level of cover cropping treatment with their standard errors of the mean as whiskers. 

The asterisks indicate the probability value of the treatment effect from analysis of variance (*: p < 

0.1). The bottom panel shows the contribution of each fungal indicator to PC3 multiplied by the 

mean PC scores of each level of cover cropping treatment (M × L). The treatment levels are bare 

fallow (BF; crossed box) and cover crop mixture (CC; filled box). 

3.4. Pearson’s Correlation Matrix among Variables 

A heatmap in Figure 8 visualizes the Pearson’s correlation matrix, showing the coef-

ficients among the bacterial, fungal, and archaeal PC scores (BPC# for bacteria, FPC# for 

fungi, and APC# for archaea), NH4+, NO3−, and soil pH. Overall, we found one very strong 

(>|0.8|), three strong (|0.6–0.8|), and six moderate (|0.4–0.6|) associations of statistical 

significance (p < 0.05). As expected, when following a PCA, bacterial, fungal, and archaeal 

PCs were not correlated within their respective taxa. BPC1 had very strong positive asso-

ciations with soil pH. Meanwhile, BPC1 was associated negatively and strongly with FPC2 
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and moderately with APC1. BPC2 had moderately negative associations with FPC3 and 

NO3−. BPC3 did not have any significant association. BPC4 was associated strongly and 

positively with FPC1. BPC5 did not have significant associations. FPC1 was associated 

moderately and positively with NO3−, and negatively with NH4+. FPC2 was associated 

negatively and strongly with soil pH. Besides those already described, FPC3, FPC4, FPC5, 

FPC6, and FPC7 did not have additional significant correlations. In addition to a moderate 

negative association with BPC1, APC1 also had a moderate negative association with soil 

pH. Lastly, APC2 did not show any statistically significant association with soil properties 

or the bacterial or fungal PCs. 

 

Figure 8. The heatmap depicting the matrix of Pearson’s correlation coefficients among the principal 

components (PCs) of the bioindicators and the selected soil properties: soil ammonium (NH4), ni-

trate (NO3), and pH. The red and blue hues indicate positive and negative associations, respectively. 

The higher saturation of these colors indicates greater absolute values of Pearson’s correlation as 

shown in the legend on the right. BPC#, bacterial PC; FPC#, fungal PC; APC#, archaeal PC. 

4. Discussion 

4.1. Short-Term Agronomic Effects of Legume and Grass Cover Crop Mixture 

Overall, this study observed that N fertilization acidified the topsoil by more than a 

unit in pH. This was expected as protons from nitrification of N fertilizers and increased 

crop root nutrient uptake, among many other factors, are known to acidify the soil [14,63]. 

As hypothesized, CC decreased soil NO3− levels in this study, likely by scavenging it. Sim-

ilarly, Acuña and Villamil [64] evaluated the short-term effects of CC on soil properties 

under soybean production in Illinois and found a significant decrease in soil NO3− each 

spring after the CC season. The NO3− reduction by CC also agrees with the significant 

increase in CC biomass with N fertilization, showing that CC indeed assimilated the ex-

cess soil NO3− as biomass, decreasing the risk of NO3− leaching in this system [3,16]. On 

the contrary, NH4+ did not respond significantly to CC. This showed that cereal rye and 

hairy vetch CC preferred the uptake of NO3− over NH4+ in corn monoculture, suggesting 
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that CC may not alleviate soil acidification from nitrification. Another study on the effects 

of tillage, CC, and crop rotation on Missouri Entisols also reported a pH increase of about 

0.2 with grass CC within corn monoculture, similar to this study [65]. Overall, our results 

demonstrate that while CC can effectively reduce the risks of NO3− leaching, it has a lim-

ited ability to alleviate soil acidification from NH4+ fertilizers. 

4.2. Bacterial and Archaeal Indicators 

4.2.1. Indicators of N Fertilization 

Bacterial genera sensitive to N rate treatment were primarily grouped in PC1. Of its 

27 indicator genera, 12 increased in abundance under N fertilization, while 15 experienced 

decreased abundance. Interestingly, some of the genera favored by N fertilization were 

also responsive to high N rates within corn monoculture in 2015–2016 data from Villamil 

et al. [31]: uncultured Acidobacteria subgroup Gp1, Micropepsis, Porphyrobacter, Denitrati-

soma, Rhizomicrobium, Chujaibacter, and Pseudolabrys. The consistent associations of these 

indicators with high N rates across studies of the same site suggested that these genera 

are reliable indicators of soil environment under heavy N fertilization. Here, the N rate 

main effect does not exclude the underlying CC effect in our model. Thus, the persistent 

associations of these indicators with N fertilizers across studies imply that the changes 

brought about by N fertilization in the soil environment have overwhelmed those induced 

by introducing CC. Indeed, our study and that of Villamil et al. [31] did not share any 

genera favored by unfertilized control, which suggests the two studies used different mi-

crobial communities in unfertilized soils. Therefore, the different assortments of indica-

tors before [31] and after introducing CC (this study) indicated that CC did shift the soil 

microbial community of corn monocultures. However, this shift was outshined by the 

dominating effects of N fertilization. 

As demonstrated by a very strong association between soil pH and bacterial PC1, soil 

acidification from N fertilization seems to be a primary factor that shaped the soil envi-

ronment for the microbes across studies. Villamil et al. [31] observed that the acidophilic 

indicators flourished with soil acidification from N fertilization. Indeed, some of the indi-

cators favored by N-input have been characterized or suspected to be acidophiles, includ-

ing Micropepsis [66], Rhizomicrobium [67], and Acidobacteria subgroup Gp1 and Gp3 [68]. 

The opposite also held as some of the indicators favored by unfertilized control were ei-

ther associated with higher pH (Acidobacteria subgroup Gp4 [69]; Nitrospira [70]), or were 

neutrophilic (Archangium [71]; Formivibrio [72]; Rhodoplanes [73]; Povalibacter [74]; Therman-

aerothrix [75]), or alkaliphilic (Arenimonas [76]). Soil pH has already been recognized as a 

primary modulating factor for the bacterial community, as demonstrated by Wu et al. [77], 

who found bacterial diversity indices decreased at lower pH. Additionally, Ma et al. [78] 

observed a strong association between soil pH and bacterial β-diversity after 35 years of 

NPK fertilization in Chinese Mollisols. Therefore, our bioindicators further suggest that 

the pH-sensitive guilds largely dictate the shifts in the bacterial community upon soil acid-

ification from excessive N inputs. 

Many of these N-rate-associated indicators had potential roles in the soil microbial 

N-cycling. Of those that increased with N fertilization, Nitrobacter is a well-known genus 

of nitrifiers that oxidize nitrite (NO2−) into NO3− [79]. Their proton-producing NO2− oxida-

tion could have contributed to soil acidification that favors the acidophilic indicators men-

tioned above. Meanwhile, Baekduia includes denitrifiers that reduce NO3− to NO2− [80], and 

Denitratisoma includes denitrifiers that reduce NO3− to N2O and nitrogen (N2) gas [81]. The 

abundance of NO3− substrates from fertilizers and nitrification would have promoted 

these denitrifiers, while the NO2− reduced from NO3− by Baekduia would, in turn, promote 

the growth and activity of Nitrobacter. Likewise, Villamil et al. [31] identified several bio-

indicators of denitrification that increased with N fertilization (Acidobacteria subgroup 

Gp1, Denitratisoma, Dokdonella, and Thermomonas). These findings agree well with the 

meta-analysis of field studies by Ouyang et al. [82] that found consistent increases in the 
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abundances of nitrifying (amoA) and denitrifying (nirK, nirS, and nosZ) genes with N rates 

over 200 kg N ha−1. Therefore, our indicators suggest that frequent N fertilization at above-

optimal rates typical for the corn monoculture may augment the nitrifying and denitrify-

ing communities and contribute to the risk of soil N loss as NO3− and N2O. 

A longer list of N-cycling indicators associated with unfertilized control. Povalibacter 

is known to assimilate N by reducing NO3− and NO2− into NH4+ [74]. For the nitrifiers, 

Pseudonocardia includes ammonia-oxidizers and species capable of heterotrophic nitrifica-

tion [83]. The genus Niabella potentially includes heterotrophic nitrifiers as well [84,85]. 

Nitrospira includes known chemolithotrophic NO2− oxidizers [86] and complete ammonia 

oxidizers (comammox) [87]. As for the denitrifiers, Rhodoplanes is known for photoor-

ganotrophy, but also completely denitrifies NO3− into N2 gas under darkness [73]. Ar-

enimonas is a complete denitrifier as well [88]. While Thermanaerothrix is known to harbor 

NO2− reducing gene, nirS, its denitrification capacity is not yet confirmed [89]. Detecting 

these indicators involved in diverse N metabolisms can be explained by the inorganic N 

deficiency being a major ecological pressure in unfertilized soils. Under such pressure, the 

microbes represented by Pseudonocardia and Niabella could heterotrophically nitrify or-

ganic N, instead of NH3, into NO3− [90]. Even if NH3 is partially nitrified, the guild repre-

sented by Nitrospira could complete the nitrification. Subsequently, these nitrifiers could 

supply the NO3− to the denitrifiers represented by Rhodoplanes and Arenimonas, which they 

will completely denitrify into N2 gas. Thus, the two complete denitrifiers (Rhodoplanes and 

Arenimonas) and Povalibacter (reduces NO3− and NO2− into NH4+) imply less risk of N2O 

emission and NO3− leaching, as the NO3− from nitrifiers could be either assimilated back 

to NH4+ or be completely denitrified into N2 gas. Although heterotrophic nitrifiers could 

denitrify and produce N2O, this process is associated with low pH condition, which 

should be less of the case for unfertilized soils [90]. Therefore, these bioindicators sug-

gested that the microbial N-cycling unaffected by heavy N input may have greater func-

tional diversity and redundancy. Nonetheless, changes in the abundances of these indica-

tors do not warrant subsequent changes in soil N-cycling, because abundance may not 

translate to activity and not all members of these genera necessarily perform N-cycling. 

Thus, the results of this study should be complemented by analyses on the overall soil N-

cycling and on the microbial functionality, such as enzyme assays and functional genes. 

Besides the sensitivity to pH and involvement in the soil N-cycling, bioindicators in 

PC1 also have been characterized for other interesting properties. Among those that pre-

ferred N fertilization, Micropepsis [91] and Rhizomicrobium [67] have fermentative metabo-

lisms. Rhizomicrobium can reduce ferrous and ferric iron in the presence of glucose, which 

may be an adaptation to iron that readily oxidizes into a ferrous state in acidic soils, and 

to the overall increase in the iron solubility with decreasing soil pH [67,92]. Indeed, soil 

iron level increased sequentially with a higher N rate, with 202 kg N ha−1 being interme-

diate, in the topsoil (data not shown). As for those favored by unfertilized control, 

Longimicrobium is a known oligotrophic genus adapted to low nutrient concentration, 

which is consistent with the relatively nutrient-poor conditions of the control [93]. 

Methyloligella includes specialized obligatory methylotrophs that reduce single carbon 

compounds as carbon source but does not grow on methane [94]. Understanding what 

these indicators and their relations with soil properties signify within the microbial net-

work however, will require more exploration. Thus, future efforts should expand our 

findings, improving the characterization of more soil microbial taxa in field settings and 

their interconnection with their soil environment. 

4.2.2. Archaeal Indicators 

The archaeal indicators were primarily sensitive to N fertilization, as demonstrated 

by archaeal PC1. This PC was moderately associated with soil pH, similar to bacterial PC1 

as discussed above. Its component, Nitrososphaera, increased in abundance with unferti-

lized control, which is expected considering that this ammonia-oxidizing archaea (AOA) 

is neutrophilic [95] and oligotrophic [96]. Thus, it may not be well adapted to the relatively 
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acidic and N-rich environment under heavy N input. This observation also agrees with 

Yu et al. [97] who studied the relationships between the ammonia-oxidizing community 

and soil biogeochemical processes, reporting a positive correlation between soil pH and 

the family Nitrososphaeraceae that includes Nitrososphaera. Therefore, our results well 

demonstrated that Nitrososphaera flourishes as neutrophilic and oligotrophic AOA in an 

unfertilized agroecosystem. This poses the possibility that Nitrososphaera contributes to 

nitrification in this system along with the bacterial nitrifiers described above. Meanwhile, 

PCA suggested that uncultured Woesearchaeota AR16 increased with N fertilization. 

While these uncultured genera are much less studied, Woesearchaeota AR16 is found to 

have some association with soil pH and nitrogen level, consistent with its preference for 

N fertilization [98]. This study used the universal primer that targets 16S rRNA of both 

bacteria and archaea because of its common use. The small number of archaeal sequences 

and indicators compared to those of bacteria and fungi in this study demonstrated that 

these primers have low specificity to this domain and might not fully capture the archaeal 

diversity [99]. Therefore, future efforts that focus on archaeal communities using more 

specific primer sets may reveal more archaeal indicators of this system. 

4.2.3. Indicators of Cover Cropping 

The bacterial indicators that responded to CC were mainly grouped in PC2 (Figure 

2). Of the indicators that increased in abundance with CC, Mesorhizobium is a known nod-

ule-forming N-fixing symbiont of legumes including the species of Vicia [100,101]. The 

abundance of this genus with legume-grass CC mixture indicated that hairy vetch CC 

may recruit N-fixers during their growth [102]. Additionally, Mesorhizobium includes spe-

cies that reduce NO2− into N2O under both aerobic and anaerobic conditions [103]. Simi-

larly, Luteimonas includes known denitrifiers that reduce NO2− into nitric oxide [104], and 

one of its species L. memphitis reduces NO2− into N2O [105]. Additionally, as hypothesized, 

genera associated with CC indicated diverse niches with unique metabolic or adaptive 

characteristics. For example, genus Racemicystis includes species of various properties in-

cluding desiccation resistance, bacteria, and yeast lysis, growth under starch, fructose, and 

glucose, and inability to lyse cellulose [106]. Panacibacter grows optimally in near-neutral 

pH and does not hydrolyze starch and cellulose but grows on other various sugars [107]. 

Stenotrophobacter is a suspected oligotroph [108] and has been observed to increase in 

abundance with CC [109]. Conversely, only two indicators increased in abundance with 

bare fallow. The species of Gemmata can perform heterotrophic nitrification and anaerobic 

ammonia oxidation (anammox) [87]. Gemmatirosa includes known oligotrophic chemohet-

erotrophs holding N2O reducing nosZ gene [110,111]. 

The four N-cycling indicators that responded to CC (Gemmata, Gemmatirosa, Luteimo-

nas, and Mesorhizobium) suggest that the guilds that they represent may mediate the fate 

of N2O in fertilized CC soil; with CC, less NO2− may be directly converted into N2 gas 

(fewer Gemmata), more NO2− is reduced to N2O (more Luteimonas and Mesorhizobium), but 

less N2O is reduced to N2 gas (fewer Gemmatirosa). These indicators imply that the rela-

tionship between CC and the denitrifier guilds may not be as simple as initially hypothe-

sized. Indeed, a field and lab study in Illinois Mollisols by Foltz et al. [112] reported that 

grass CC decreased N2O emissions in the field of corn fertilized at 180 kg N ha−1, but that 

the soil with CC showed greater denitrification potential and N2O emissions in laboratory 

assays. The authors explained that the rye CC decreased N2O emissions by immobilizing 

its NO3− substrate in a field setting, but adding abundant labile C (glucose) and N (NO3−) 

under an assay setting led to more emissions in CC soil than the bare control [112]. Mean-

while, a climate chamber study in Germany by Wang et al. [113], on perennial ryegrass 

[Lolium perenne L.] growth, reported more NO2−-reducing nirK genes with ryegrass growth 

regardless of N rates (0, 50, 100, 200 kg N ha−1), although the ryegrass growth still de-

creased the N2O emissions by scavenging soil N. The authors explained that the labile C 

from CC root exudates promoted the nirK-holding NO2− reducers, regardless of nutrient 
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availability [113]. Therefore, the observed CC effects in this study on the denitrifying bio-

indicators support the scenario that CC modulates the soil nutrient availability via means 

such as root exudates to make the soil microbial community more prone to N2O produc-

tion. Yet, the actual N2O production is determined by conditions such as net NO3− availa-

bility, labile C availability from residue decomposition, and waterlogging [20]. Nonethe-

less, this scenario should be further investigated with studies that encompass functional 

genes, potential denitrification rates, and N2O emissions. 

Meanwhile, the bacterial indicators in PC4 and PC5 showed a N fertilization and CC 

interaction effect. The genus Parafilimonas in PC4  includes neutrophilic decomposers 

[114] whose positive response to an intermediate N rate and CC could be a combined 

result of this genus exploiting the greater residue return from CC and fertilizer input and 

negatively responding to soil acidification from the highest N rate. As for PC5, besides 

Luteimonas, which is already discussed with PC2, the genus Pirellula includes species that 

perform anammox [87]. Performing ANOVA and mean separation on its gene counts 

(normalized by central log-ratio) revealed a statistically significant interaction effect (p = 

0.0105; data not shown) where their mean was greater in unfertilized CC soil compared 

to all other N rate and CC combinations (Figure S3). Thus, this genus may work against 

N2O emissions by oxidizing NO2− and NH4+ into N2 gas if the soil’s N availability is low. 

Along with the four above-mentioned N-cycling bioindicators of CC, the sensitivity of 

Pirellula to both CC and N input further suggests that soil N availability may play a role 

in microbially mediated N2O emission under CC. 

In this study, more indicators responded positively to CC than bare fallow, and the 

indicators of CC displayed various characteristics and functions, compared to only two 

indicators of bare fallow that were mainly involved in the microbial N-cycling. These re-

sults suggest that introducing CC enhanced the soil biodiversity of corn monoculture. 

Meanwhile, significantly fewer bacterial indicators responded to the CC main effect than 

that of the N rate. The β-diversity results reflect this since the bacterial community com-

position did not differ significantly after CC introduction, unlike among the three N rates 

(Table S2). As speculated earlier with bacterial PC1, perhaps CC has a relatively smaller 

impact on the bacterial community of corn monoculture compared to the overwhelming 

changes brought about by decades of annual N fertilization. Nonetheless, the CC impact 

on the bacterial community should not be underplayed as the indicators imply that this 

practice may increase the soil biodiversity and affect the soil microbial N-cycling. Since 

this study had only two years of CC, future efforts with longer-term CC should test 

whether its effects can accumulate over the years. 

4.3. Fungal Indicators 

The fungal indicators responsive to main treatment effects comprised PC3. The genus 

Albatrellus includes mycorrhizae, but they are known to associate with coniferous hosts 

[115]. Yet, Albatrellus associated very strongly with CC because this genus was nearly ab-

sent in bare fallow (only 1.7% of this genus’s total gene counts; Figure S3) despite being 

one of the most abundant fungal genera in the data. This suggests that the members of 

this genus may have a wider range of hosts or have other unknown relationships with the 

CC species of this study. As for the genus Talaromyces, eight of its species and three Peni-

cillium teleomorphs were observed. This ubiquitous genus occupies a wide range of 

niches, including endophytes, which promote plant growth and resistance, antagonists to 

plant pathogens, and those associated with insects [116,117]. Since Albatrellus and Tala-

romyces were two of the most abundant genera in the data, their differences in abundance 

between CC treatments may have driven the significant β-diversity results for the fungal 

community (Table S2). These results agree well with those of Castle et al. [29], who found 

winter rye CC to be the stronger factor for fungal community structure than N rates in a 

corn–soybean rotation in Minnesota. 

Meanwhile, the six fungal genera in PC2 responded significantly to the N fertilization 

and CC interaction effect. Performing ANOVA and mean separation on the gene copy 
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counts (normalized by central log-ratio) of the genus Tetracladium displayed a clear se-

quential decrease in its abundances with increasing N rates that was statistically signifi-

cant (p < 0.0001; data not shown) (Figure S3). Tetracladium includes saprotrophs [118] and 

endophytes [119] and prefers neutral to slightly acidic soil pH [120]. Therefore, its nega-

tive response to higher N rates seems largely driven by soil acidification, which also 

agrees with fungal PC2 associating negatively with soil pH, as this genus had a negative 

loading on PC2. A negative loading from Genus Edenia to PC2 suggests that this genus 

responded positively to the unfertilized control, which agrees with the results of Bello et 

al. [121], who observed a negative correlation between this genus and soil NO3− levels in 

a study on the effects of biochar application on fungal community structure after one year 

of corn on Chinese Mollisols. 

Of the fungal indicators that preferred N fertilization, Podospora includes known co-

prophilous fungi that are associated with animal dung [122] and endophytes of plant 

barks and shoots [123]. Sporobolomyces is a known yeast genus common in agricultural soil 

and on the phyllosphere of crops, which may explain its positive response to the treatment 

with the highest N rate, which typically leads to a higher crop yield [124]. Moreover, in a 

Spanish study by Illescas et al. [125], calcium nitrate fertilization helped this genus to col-

onize wheat. Thus, our results suggest that this genus might also be associated with corn 

and benefits from N fertilization. Finally, Pestalotiopsis occupies a wide spectrum of niches 

from plant pathogens, endophytes, and saprobes [123,126]. Thus, this genus may have 

responded positively to an increased crop yield and residue with N fertilization. Com-

pared to bacterial indicators, fungal genera did not show clear overarching ecological pat-

terns between their known characteristics and their responses to treatments. Nonetheless, 

the strong association between fungal PC2 and soil pH, and the increased number of ob-

served ASVs with N fertilization (Table S1) suggest that soil pH and soil N availability 

could have acted as major modulating factors for these fungal indicators. Moreover, con-

sidering that many of the fungal genera included endophytes, further research on the crop 

microbiome might elucidate the potential endophytic relationship among the fungal indi-

cators of this study, crop production, and the soil fungal community. 

5. Conclusions 

This study provided a unique opportunity to use bioindicators to characterize and 

monitor the soil microbial community upon introducing cover crops to an intensely man-

aged corn monoculture common in the US Midwest region. In this study, most of the bi-

oindicators had known characteristics that could reasonably explain their responses to the 

treatments. Therefore, we found that genus-level indicators with high-taxonomic resolu-

tion can provide detailed insights into the soil microbiota that were inaccessible for past 

taxonomic and functional indicators. Namely, the opposite responses to N fertilization 

from acidophilic bioindicators versus those of neutrophiles and alkaliphiles demonstrated 

that soil acidification from N fertilizers dominated the soil microbiota of this system. The 

N-cycling bioindicators suggested that N fertilization may stimulate the nitrifiers and de-

nitrifiers. Conversely, unfertilized soils may form a more diverse N-cycling community 

with functions that might mitigate the risks of NO3− leaching and N2O emissions. The bi-

oindicators under cover cropping indicated greater microbe–plant symbiosis and diverse 

ecological niches. However, this study also observed that the soil microbiota under cover 

crops may be more primed for N2O production than bare soil under high nutrient availa-

bility. Thus, although cover cropping may effectively reduce the NO3− leaching risk, fur-

ther investigation is needed to understand the microbial contribution to N2O emissions 

under cover crop management. Overall, cover cropping has the potential to improve the 

soil health of a simplified cropping system by increasing its soil biodiversity, but its short-

term use may have a limited impact in a heavily fertilized system. Future research should 

expand on this study by identifying bioindicators of similar taxonomic resolutions in var-

ious conditions and cropping systems, especially with longer use of cover cropping. 
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Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/agronomy12040954/s1. The Supplementary Material section 

has five tables and three figures. Table S1 shows the α-diversity indices, observed number of am-

plicon sequence variants, Pielou’s J, and Shannon’s H’, by N rate, CC, and their interactions for each 

bacteria, archaea, and fungi. Table S2 refers to the β-diversity measure and probability values (p- 

and q-value) of compositions of the bacterial, archaeal, and fungal communities by N rate, CC, and 

their interactions. Tables S3–S5 show the eigenvalue and cumulative proportion of the variability 

that each principal component (PC) explains in a dataset for each bacteria, archaea, and fungi, re-

spectively; they also show the loading values that each indicator genus contributed to each PC. Fig-

ure S1 shows the location of the experimental site within the USA and the state of Illinois. Figure S2 

shows the rarefaction curves of bacteria, archaea, and fungi. Figure S3 shows the estimated means 

of gene counts of bacterial indicators Luteimonas and Pirellula and fungal indicators Albatrellus, Tetra-

cladium, and Ajellomyces normalized by central log-ratio transformation separated by the interac-

tions of N rate and CC treatments. 

Author Contributions: Conceptualization, M.B.V. and N.K.; methodology, N.K., M.A., C.W.R., 

M.C.Z., M.B.V., and S.L.R.-Z.; formal analysis, M.B.V. and N.K.; resources, M.B.V., S.L.R.-Z., and 

C.W.R.; data curation, M.B.V., M.C.Z., C.W.R., and N.K.; visualization, N.K.; writing—original draft 

preparation, N.K.; writing—review and editing, M.B.V., M.A., and M.C.Z.; supervision, project ad-

ministration, and funding acquisition, M.B.V. All authors have read and agreed to the published 

version of the manuscript. 

Funding: This research was funded by awards ILLU-802-978 and AG 2018-67019-27807, both from 

the United States Department of Agriculture, USDA-NIFA. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data have been deposited with links to BioProject accession num-

ber PRJNA809390 in the NCBI BioProject database. 

Acknowledgments: We acknowledge Alvaro Hernandez and Mark Band from the Roy Carver Bio-

technology Center at the Functional Genomics lab at the University of Illinois at Urbana-Champaign 

for their assistance in creating the amplicon libraries. We are thankful to Greg Steckel and Marty 

Johnson for their contribution in managing the experimental plots, and to Gevan Behnke for his 

assistance with soil sampling and overall lab management. 

Conflicts of Interest: The authors declare that the research was conducted in the absence of any 

commercial or financial relationships that could be construed as a potential conflict of interest. 

References 

1. Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil health assessment: Past accomplishments, current 

activities, and future opportunities. Soil Till. Res. 2019, 195, 104365. https://doi.org/10.1016/j.still.2019.104365. 

2. Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 

2020, 1, 544–553. https://doi.org/10.1038/s43017-020-0080-8. 

3. Behnke, G.D.; Villamil, M.B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field 

Crops Res. 2019, 241, 107580. https://doi.org/10.1016/j.fcr.2019.107580. 

4. Gao, B.; Huang, T.; Ju, X.; Gu, B.; Huang, W.; Xu, L.; Rees, R.M.; Powlson, D.S.; Smith, P.; Cui, S. Chinese cropping systems are 

a net source of greenhouse gases despite soil carbon sequestration. Glob. Change Biol. 2018, 24, 5590–5606. 

https://doi.org/10.1111/gcb.14425. 

5. Russell, A.E.; Laird, D.A.; Mallarino, A.P. Nitrogen fertilization and cropping system impacts on soil quality in Midwestern 

Mollisols. Soil Sci. Soc. Am. J. 2006, 70, 249–255. https://doi.org/10.2136/sssaj2005.0058. 

6. USDA.-NASS. Crop Production; USDA: Washington, DC, USA, 2020. 

7. Socolar, Y.; Goldstein, B.R.; de Valpine, P.; Bowles, T.M. Biophysical and policy factors predict simplified crop rotations in the 

US Midwest. Environ. Res. Lett. 2021, 16, 054045. https://doi.org/10.1088/1748-9326/abf9ca. 

8. Wang, T.; Jin, H.; Fan, Y.; Obembe, O.; Li, D. Farmers’ adoption and perceived benefits of diversified crop rotations in the 

margins of U.S. Corn Belt. J. Environ. Manag. 2021, 293, 112903. https://doi.org/10.1016/j.jenvman.2021.112903. 

9. Hendrickson, J.; Colazo, J.C. Chapter 6—Using Crop Diversity and Conservation Cropping to Develop More Sustainable Arable 

Cropping Systems. In Agroecosystem Diversity; Lemaire, G., Carvalho, P.C.D.F., Kronberg, S., Recous, S., Eds.; Academic Press: 

Cambridge, MA, USA, 2019; pp. 93–108. 

10. USDA.-ERS. Fertilizer Use and Price. 2020. Available online: https://www.ers.usda.gov/data-products/fertilizer-use-and-

price.aspx (accessed on 4 December 2020). 



Agronomy 2022, 12, 954 22 of 26 
 

 

11. Fagodiya, R.K.; Pathak, H.; Kumar, A.; Bhatia, A.; Jain, N. Global temperature change potential of nitrogen use in agriculture: 

A 50-year assessment. Sci. Rep. 2017, 7, 44928. https://doi.org/10.1038/srep44928. 

12. Smith, K.A. Changing views of nitrous oxide emissions from agricultural soil: Key controlling processes and assessment at 

different spatial scales. Eur. J. Soil Sci. 2017, 68, 137–155. https://doi.org/10.1111/ejss.12409. 

13. Rengel, Z. Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; Singh, B.P., Cowie, A.L., Chan, K.Y., Eds.; 

Springer: Berlin/Heidelberg, Germany, 2011; pp. 69–85. 

14. Kim, N.; Behnke, G.D.; Villamil, M.B. Characterization of Mollisols after long-term N fertilization at successive rates in 

continuous and rotated corn systems. Agronomy 2022, 12, 625. https://doi.org/10.3390/agronomy12030625. 

15. Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and 

ecosystem services: Insights from studies in temperate soils. Agron. J. 2015, 107, 2449–2474. 

https://doi.org/10.2134/agronj15.0086. 

16. Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. 

Qual. 2018, 47, 1400–1411. https://doi.org/10.2134/jeq2018.03.0107. 

17. IL-EPA; IL-DOA; University of Illinois Extension.. Illinois Nutrient Loss Reduction Strategy (INLRS).2015. Available online:  

https://www2.illinois.gov/epa/Documents/iepa/water-quality/watershed-management/nlrs/nlrs-final-revised-083115.pdf 

(accessed on 15 December 2021). 

18. Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 2014, 8, 53–61. 

https://doi.org/10.1016/j.cosust.2014.08.006. 

19. Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do cover crops increase or decrease nitrous oxide emissions? A meta-

analysis. J. Soil. Water. Conserv. 2014, 69, 471–482. https://doi.org/10.2489/jswc.69.6.471. 

20. Hirsch, P.R.; Mauchline, T.H. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition. In Advances in Applied 

Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Academic Press: Cambridge, MA, USA, 2015; Volume 93; pp. 45–71. 

21. Huang, L.; Riggins, C.W.; Rodríguez-Zas, S.; Zabaloy, M.C.; Villamil, M.B. Long-term N fertilization imbalances potential N 

acquisition and transformations by soil microbes. Sci. Total Environ. 2019, 691, 562–571. 

https://doi.org/10.1016/j.scitotenv.2019.07.154. 

22. Lehman, R.M.; Acosta-Martinez, V.; Buyer, J.S.; Cambardella, C.A.; Collins, H.P.; Ducey, T.F.; Halvorson, J.J.; Jin, V.L.; Johnson, 

J.M.F.; Kremer, R.J.; et al. Soil biology for resilient, healthy soil. J. Soil. Water. Conserv. 2015, 70, 12A. 

https://doi.org/10.2489/jswc.70.1.12A. 

23. Daryanto, S.; Fu, B.; Wang, L.; Jacinthe, P.-A.; Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-

Sci. Rev. 2018, 185, 357–373. https://doi.org/10.1016/j.earscirev.2018.06.013. 

24. Frasier, I.; Noellemeyer, E.; Figuerola, E.; Erijman, L.; Permingeat, H.; Quiroga, A. High quality residues from cover crops favor 

changes in microbial community and enhance C and N sequestration. Glob. Ecol. Conserv. 2016, 6, 242–256. 

https://doi.org/10.1016/j.gecco.2016.03.009. 

25. Kim, N.; Zabaloy, M.C.; Guan, K.; Villamil, M.B. Do cover crops benefit soil microbiome? A meta-analysis of current research. 

Soil Biol. Biochem. 2020, 142, 107701. https://doi.org/10.1016/j.soilbio.2019.107701. 

26. Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.-

E.; et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 2016, 

108, 147–155. https://doi.org/10.1016/j.apsoil.2016.08.004. 

27. Astudillo-García, C.; Hermans, S.M.; Stevenson, B.; Buckley, H.L.; Lear, G. Microbial assemblages and bioindicators as proxies 

for ecosystem health status: Potential and limitations. Appl. Microbiol. Biotechnol. 2019, 103, 6407–6421. 

https://doi.org/10.1007/s00253-019-09963-0. 

28. Anderson, M.J.; Connell, S.D.; Gillanders, B.M.; Diebel, C.E.; Blom, W.M.; Saunders, J.E.; Landers, T.J. Relationships between 

taxonomic resolution and spatial scales of multivariate variation. J. Anim. Ecol. 2005, 74, 636–646. https://doi.org/10.1111/j.1365-

2656.2005.00959.x. 

29. Castle, S.C.; Samac, D.A.; Gutknecht, J.L.; Sadowsky, M.J.; Rosen, C.J.; Schlatter, D.; Kinkel, L.L. Impacts of cover crops and 

nitrogen fertilization on agricultural soil fungal and bacterial communities. Plant Soil 2021, 466, 139–150. 

https://doi.org/10.1007/s11104-021-04976-z. 

30. Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. 

https://doi.org/10.1890/05-1839. 

31. Villamil, M.B.; Kim, N.; Riggins, C.W.; Zabaloy, M.C.; Allegrini, M.; Rodríguez-Zas, S.L. Microbial signatures in fertile soils 

under long-term n management. Front. Soil Sci. 2021, 1, 765901. https://doi.org/10.3389/fsoil.2021.765901. 

32. Alahmad, A.; Decocq, G.; Spicher, F.; Kheirbeik, L.; Kobaissi, A.; Tetu, T.; Dubois, F.; Duclercq, J. Cover crops in arable lands 

increase functional complementarity and redundancy of bacterial communities. J. Appl. Ecol. 2019, 56, 651–664. 

https://doi.org/10.1111/1365-2664.13307. 

33. Kim, N.; Zabaloy, M.C.; Riggins, C.W.; Rodríguez-Zas, S.; Villamil, M.B. Microbial shifts following five years of cover cropping 

and tillage practices in fertile agroecosystems. Microorganisms 2020, 8, 1773. https://doi.org/10.3390/microorganisms8111773. 

34. Illinois State Water Survey. Illinois Climate Normals. 2010. Available online:  

http://www.isws.illinois.edu/atmos/statecli/newnormals/newnormals (accessed on 1 May 2015). 

35. Soil Survey Staff; NRCS; USDA. Web Soil Survey. 2010. Available online: http://websoilsurvey.sc.egov.usda.gov/ (accessed on 

14 November 2020). 



Agronomy 2022, 12, 954 23 of 26 
 

 

36. Fernández, F.G.; Hoeft, R.G. Managing soil pH and crop nutrients. Ill. Agron. Handb. 2009, 24, 91–112. 

37. McLean, E. Soil pH and lime requirement. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1983, 9, 199–224. 

38. Fierer, N.; Jackson, J.A.; Vilgalys, R.; Jackson, R.B. Assessment of soil microbial community structure by use of taxon-specific 

quantitative PCR assays. Appl. Environ. Microbiol. 2005, 71, 4117–4120. https://doi.org/10.1128/aem.71.7.4117-4120.2005. 

39. Colman, D.R.; Thomas, R.; Maas, K.R.; Takacs-Vesbach, C.D. Detection and analysis of elusive members of a novel and diverse 

archaeal community within a thermal spring streamer consortium. Extremophiles 2015, 19, 307–313. 

https://doi.org/10.1007/s00792-014-0715-0. 

40. Crawford, J.W.; Deacon, L.; Grinev, D.; Harris, J.A.; Ritz, K.; Singh, B.K.; Young, I. Microbial diversity affects self-organization 

of the soil microbe system with consequences for function. J. R. Soc. Interface 2012, 9, 1302–1310. 

https://doi.org/10.1098/rsif.2011.0679. 

41. Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; 

Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 

2019, 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9. 

42. Hall, M.; Beiko, R.G. 16S rRNA Gene Analysis with QIIME2. Methods Mol. Biol. 2018, 1849, 113–129. https://doi.org/10.1007/978-

1-4939-8728-3_8. 

43. Li, X.; Nair, A.; Wang, S.; Wang, L. Quality control of RNA-seq experiments. Methods Mol. Biol. 2015, 1269, 137–146. 

https://doi.org/10.1007/978-1-4939-2291-8_8. 

44. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference 

from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. https://doi.org/10.1038/nmeth.3869. 

45. Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new 

bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. https://doi.org/10.1128/aem.00062-07. 

46. Edgar, R. Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 2018, 6, e5030. 

https://doi.org/10.7717/peerj.5030. 

47. Wickham, H.; Francois, R.; Henry, L.; Muller, K. dplyr: A Grammar of Data Manipulation. In R Package Version 1. 0. 5; 2021. 

48. R Core Team R: A Language and Environment for Statistical Computing 4. 1. 0.; R Foundation for Statistical Computing: 2019. 

Vienna, Austria. 

49. Rozewicki, J.; Li, S.; Amada, K.M.; Standley, D.M.; Katoh, K. MAFFT-DASH: Integrated protein sequence and structural 

alignment. Nucleic Acids Res. 2019, 47, W5–W10. https://doi.org/10.1093/nar/gkz342. 

50. Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; 

Balakrishnan, N., Colton, T., Everitt, B., Piegorsch, W., Ruggeri, F., Teugels, J.L., Eds.; Wiley: Hoboken, NJ, USA, 2017; pp. 1–15. 

51. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. 

Stat. Soc.Ser. B Methodol. 1995, 57, 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x. 

52. SAS Institute Inc. JMP 14 Predictive and Specialized Modeling; SAS Institute: Cary, NC, USA, 2018. 

53. Tracy, B.; Coopersmith, C.; Silverman, M.; Fassler, M.; McCarty, E.; Gelbard, R. Bootstrap forest model predicts neurostimulant 

therapy after severe traumatic brain injury. Crit. Care Med. 2020, 48, 851. 

54. Vlasova-St. Louis, I.; Chang, C.C.; Shahid, S.; French, M.A.; Bohjanen, P.R. Transcriptomic predictors of paradoxical 

cryptococcosis-associated immune reconstitution inflammatory syndrome. Open Forum Infect. Dis. 2018, 5, ofy157. 

https://doi.org/10.1093/ofid/ofy157. 

55. Palarea-Albaladejo, J.; Martín-Fernández, J.A. zCompositions—R package for multivariate imputation of left-censored data 

under a compositional approach. Chemom. Intellig. Lab. Syst. 2015, 143, 85–96. https://doi.org/10.1016/j.chemolab.2015.02.019. 

56. Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome datasets are compositional: And this is not 

optional. Front. Microbiol. 2017, 8, 2224. https://doi.org/10.3389/fmicb.2017.02224. 

57. Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. 

58. Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of Prokaryotic names with Standing in 

Nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 2020, 70, 5607–5612. 

https://doi.org/10.1099/ijsem.0.004332. 

59. Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Oliver, S. SAS for Mixed Models; SAS Institute: Cary, NC, USA, 2006. 

60. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. 

61. Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. R package version 4. 6-0. 2021. Available online: https://CRAN.R-

project.org/package=Hmisc (accessed on 15 January 2022). 

62. Lesack, K.; Birol, I. Nomenclature errors in public 16S rRNA gene reference databases. bioRxiv 2018, 441576. 

https://doi.org/10.1101/441576. 

63. Barak, P.; Jobe, B.O.; Krueger, A.R.; Peterson, L.A.; Laird, D.A. Effects of long-term soil acidification due to nitrogen fertilizer 

inputs in Wisconsin. Plant Soil 1997, 197, 61–69. https://doi.org/10.1023/A:1004297607070. 

64. Acuña, J.C.M.; Villamil, M.B. Short-term effects of cover crops and compaction on soil properties and soybean production in 

Illinois. Agron. J. 2014, 106, 860–870. https://doi.org/10.2134/agronj13.0370. 

65. Haruna, S.I.; Nkongolo, N.V. Tillage, cover crop and crop rotation effects on selected soil chemical properties. Sustainability 

2019, 11, 2770. 



Agronomy 2022, 12, 954 24 of 26 
 

 

66. Harbison, A.B.; Price, L.E.; Flythe, M.D.; Bräuer, S.L. Micropepsis pineolensis gen. nov., sp. nov., a mildly acidophilic 

Alphaproteobacterium isolated from a poor fen, and proposal of Micropepsaceae fam. nov. within Micropepsales ord. nov. Int. J. 

Syst. Evol. Microbiol. 2017, 67, 839–844. https://doi.org/10.1099/ijsem.0.001681. 

67. Ueki, A.; Kodama, Y.; Kaku, N.; Shiromura, T.; Satoh, A.; Watanabe, K.; Ueki, K. Rhizomicrobium palustre gen. nov., sp. nov., a 

facultatively anaerobic, fermentative stalked bacterium in the class Alphaproteobacteria isolated from rice plant roots. J. Gen. Appl. 

Microbiol. 2010, 56, 193–203. https://doi.org/10.2323/jgam.56.193. 

68. Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.; El Enshasy, H.A.; Dailin, D.J.; Suriani, N. Recent understanding of soil Acidobacteria 

and their ecological significance: A critical review. Front. Microbiol. 2020, 11, 2712. 

69. De Chaves, M.G.; Silva, G.G.Z.; Rossetto, R.; Edwards, R.A.; Tsai, S.M.; Navarrete, A.A. Acidobacteria subgroups and their 

metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Front. Microbiol. 

2019, 10:1680. https://doi.org/10.3389/fmicb.2019.01680. 

70. Mehrani, M.-J.; Sobotka, D.; Kowal, P.; Ciesielski, S.; Makinia, J. The occurrence and role of Nitrospira in nitrogen removal 

systems. Bioresour. Technol. 2020, 303, 122936. https://doi.org/10.1016/j.biortech.2020.122936. 

71. McDonald, J.C. Studies on the genus Archangium (Myxobacterales). II. The effect of temperature and carbohydrates on some 

physiological processes. Mycologia 1967, 59, 1059–1068. https://doi.org/10.1080/00275514.1967.12018489. 

72. Tanaka, K.; Nakamura, K.; Mikami, E. Fermentation of S-citramalate, citrate, mesaconate, and pyruvate by a gram-negative 

strictly anaerobic non-spore-former, Formivibrio citricus gen. nov., sp. nov. Arch. Microbiol. 1991, 155, 491–495. 

https://doi.org/10.1007/BF00244967. 

73. Hiraishi, A.; Ueda, Y. Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as 

Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int. J. Syst. Evol. Microbiol. 1994, 44, 665–673. 

https://doi.org/10.1099/00207713-44-4-665. 

74. Nogi, Y.; Yoshizumi, M.; Hamana, K.; Miyazaki, M.; Horikoshi, K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-

degrading bacterium isolated from grapes. Int. J. Syst. Evol. Microbiol. 2014, 64, 2712–2717. https://doi.org/10.1099/ijs.0.062620-0. 

75. Grégoire, P.; Fardeau, M.-L.; Joseph, M.; Guasco, S.; Hamaide, F.; Biasutti, S.; Michotey, V.; Bonin, P.; Ollivier, B. Isolation and 

characterization of Thermanaerothrix daxensis gen. nov., sp. nov., a thermophilic anaerobic bacterium pertaining to the phylum 

“Chloroflexi”, isolated from a deep hot aquifer in the Aquitaine Basin. Syst. Appl. Microbiol. 2011, 34, 494–497. 

https://doi.org/10.1016/j.syapm.2011.02.004. 

76. Kwon, S.-W.; Kim, B.-Y.; Weon, H.-Y.; Baek, Y.-K.; Go, S.-J. Arenimonas donghaensis gen. nov., sp. nov., isolated from seashore 

sand. Int. J. Syst. Evol. Microbiol. 2007, 57, 954–958. https://doi.org/10.1099/ijs.0.64457-0. 

77. Wu, Y.; Zeng, J.; Zhu, Q.; Zhang, Z.; Lin, X. pH is the primary determinant of the bacterial community structure in agricultural 

soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 2017, 7, 40093. https://doi.org/10.1038/srep40093. 

78. Ma, M.; Zhou, J.; Ongena, M.; Liu, W.; Wei, D.; Zhao, B.; Guan, D.; Jiang, X.; Li, J. Effect of long-term fertilization strategies on 

bacterial community composition in a 35-year field experiment of Chinese Mollisols. AMB Express 2018, 8, 20. 

https://doi.org/10.1186/s13568-018-0549-8. 

79. Poly, F.; Wertz, S.; Brothier, E.; Degrange, V. First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing 

approach targeting functional gene nxrA. FEMS Microbiol. Ecol. 2008, 63, 132–140. https://doi.org/10.1111/j.1574-

6941.2007.00404.x. 

80. An, D.-S.; Siddiqi, M.Z.; Kim, K.-H.; Yu, H.-S.; Im, W.-T. Baekduia soli gen. nov., sp. nov., a novel bacterium isolated from the 

soil of Baekdu Mountain and proposal of a novel family name, Baekduiaceae fam. nov. J. Microbiol 2018, 56, 24–29. 

https://doi.org/10.1007/s12275-018-7107-6. 

81. Fahrbach, M.; Kuever, J.; Meinke, R.; Kämpfer, P.; Hollender, J. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-

degrading, denitrifying betaproteobacterium. Int. J. Syst. Evol. Microbiol. 2006, 56, 1547–1552. https://doi.org/10.1099/ijs.0.63672-

0. 

82. Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes 

in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 2018, 127, 71–78. 

https://doi.org/10.1016/j.soilbio.2018.08.024. 

83. Liu, Z.-P.; Wu, J.-F.; Liu, Z.-H.; Liu, S.-J. Pseudonocardia ammonioxydans sp. nov., isolated from coastal sediment. Int. J. Syst. Evol. 

Microbiol. 2006, 56, 555–558. https://doi.org/10.1099/ijs.0.63878-0. 

84. Bucci, P.; Coppotelli, B.; Morelli, I.; Zaritzky, N.; Caravelli, A. Simultaneous heterotrophic nitrification and aerobic 

denitrification of wastewater in granular reactor: Microbial composition by next generation sequencing analysis. J. Water Process. 

Eng. 2020, 36, 101254. https://doi.org/10.1016/j.jwpe.2020.101254. 

85. Zhang, L.; Fan, J.; Nguyen, H.N.; Li, S.; Rodrigues, D.F. Effect of cadmium on the performance of partial nitrification using 

sequencing batch reactor. Chemosphere 2019, 222, 913–922. https://doi.org/10.1016/j.chemosphere.2019.02.006. 

86. Watson, S.W.; Bock, E.; Valois, F.W.; Waterbury, J.B.; Schlosser, U. Nitrospira marina gen. nov. sp. nov.: A chemolithotrophic 

nitrite-oxidizing bacterium. Arch. Microbiol. 1986, 144, 1–7. https://doi.org/10.1007/BF00454947. 

87. Xia, Z.; Wang, Q.; She, Z.; Gao, M.; Zhao, Y.; Guo, L.; Jin, C. Nitrogen removal pathway and dynamics of microbial community 

with the increase of salinity in simultaneous nitrification and denitrification process. Sci. Total Environ. 2019, 697, 134047. 

https://doi.org/10.1016/j.scitotenv.2019.134047. 



Agronomy 2022, 12, 954 25 of 26 
 

 

88. Xing, W.; Li, J.; Li, D.; Hu, J.; Deng, S.; Cui, Y.; Yao, H. Stable-isotope probing reveals the activity and function of autotrophic 

and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater. Environ. Sci. Technol. 2018, 52, 7867–7875. 

https://doi.org/10.1021/acs.est.8b01993. 

89. Zhao, R.; Chen, Y.; Qu, J.; Jin, P.; Zheng, Z.; Cui, Z. Insights into the variations of hao-dependent nitrifying and nir-dependent 

denitrifying microbial communities in ammonium-graduated lake environments. Appl. Sci. 2019, 9, 3229. 

90. Wrage, N.; Velthof, G.L.; van Beusichem, M.L.; Oenema, O. Role of nitrifier denitrification in the production of nitrous oxide. 

Soil Biol. Biochem. 2001, 33, 1723–1732. https://doi.org/10.1016/S0038-0717(01)00096-7. 

91. Bräuer, S.; Harbison, A.; Ueki, A. Micropepsales. In Bergey's Manual of Systematics of Archaea and Bacteria; Whitman, W.B., DeVos, 

P., Dedysh, S., Hedlund, B., Kampfer, P., Rainey, F.A., Trujillo, M.E., Bowman, J.P., Brown, D.R., Glöckner , F.O.; et al., Eds.; 

John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; p. 1. 

92. Fageria, N.K.; Nascente, A.S. Chapter Six—Management of Soil Acidity of South American Soils for Sustainable Crop 

Production. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 128, pp. 221–275. 

93. Pascual, J.; García-López, M.; Bills, G.F.; Genilloud, O. Longimicrobium terrae gen. nov., sp. nov., an oligotrophic bacterium of 

the under-represented phylum Gemmatimonadetes isolated through a system of miniaturized diffusion chambers. Int. J. Syst. 

Evol. Microbiol. 2016, 66, 1976–1985. https://doi.org/10.1099/ijsem.0.000974. 

94. Doronina, N.V.; Poroshina, M.N.; Kaparullina, E.N.; Ezhov, V.A.; Trotsenko, Y.A. Methyloligella halotolerans gen. nov., sp. nov. 

and Methyloligella solikamskensis sp. nov., two non-pigmented halotolerant obligately methylotrophic bacteria isolated from the 

Ural saline environments. Syst. Appl. Microbiol. 2013, 36, 148–154. https://doi.org/10.1016/j.syapm.2012.12.001. 

95. Kerou, M.; Schleper, C. Nitrososphaera. In Bergey’s Manual of Systematics of Archaea and Bacteria; Trujillo, M.E., Dedysh, S., 

DeVos, P., Hedlund, B., Kämpfer, P., Rainey, F.A., Whitman, W.B., Eds.;John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 

1–10. 

96. Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, 

A.; et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. 

https://doi.org/10.1073/pnas.1013488108. 

97. Yu, W.; Lawrence, N.C.; Sooksa-nguan, T.; Smith, S.D.; Tenesaca, C.; Howe, A.C.; Hall, S.J. Microbial linkages to soil 

biogeochemical processes in a poorly drained agricultural ecosystem. Soil Biol. Biochem. 2021, 156, 108228. 

https://doi.org/10.1016/j.soilbio.2021.108228. 

98. Wang, R.; Han, R.; Long, Q.; Gao, X.; Xing, J.; Shen, G.; Zhu, D. Bacterial and archaeal communities within an ultraoligotrophic, 

high-altitude lake in the pre-Himalayas of the Qinghai-Tibet plateau. Indian J. Microbiol. 2020, 60, 363–373. 

https://doi.org/10.1007/s12088-020-00881-8. 

99. Raymann, K.; Moeller, A.H.; Goodman, A.L.; Ochman, H. Unexplored archaeal diversity in the great ape gut microbiome. 

mSphere 2017, 2, e00026–00017. https://doi.org/10.1128/mSphere.00026-17. 

100. Jarvis, B.D.W.; van Berkum, P.; Chen, W.X.; Nour, S.M.; Fernandez, M.P.; Cleyet-Marel, J.C.; Gillis, M. Transfer of Rhizobium 

loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int. J. 

Syst. Evol. Microbiol. 1997, 47, 895–898. https://doi.org/10.1099/00207713-47-3-895. 

101. Lei, X.; Wang, E.T.; Chen, W.F.; Sui, X.H.; Chen, W.X. Diverse bacteria isolated from root nodules of wild Vicia species grown 

in temperate region of China. Arch. Microbiol. 2008, 190, 657–671. https://doi.org/10.1007/s00203-008-0418-y. 

102. Brainard, D.; Henshaw, B.; Snapp, S. Hairy vetch varieties and bi-cultures influence cover crop services in strip-tilled sweet 

corn. Agron. J. 2012, 104, 629–638. https://doi.org/10.2134/agronj2011.0360. 

103. Okada, N.; Nomura, N.; Nakajima-Kambe, T.; Uchiyama, H. Characterization of the aerobic denitrification in Mesorhizobium sp. 

Strain NH-14 in comparison with that in related rhizobia. Microbes Environ. 2005, 20, 208–215. 

https://doi.org/10.1264/jsme2.20.208. 

104. Zhong, X.-Z.; Zeng, Y.; Wang, S.-P.; Sun, Z.-Y.; Tang, Y.-Q.; Kida, K. Insight into the microbiology of nitrogen cycle in the dairy 

manure composting process revealed by combining high-throughput sequencing and quantitative PCR. Bioresour. Technol. 2020, 

301, 122760. https://doi.org/10.1016/j.biortech.2020.122760. 

105. Finkmann, W.; Altendorf, K.; Stackebrandt, E.; Lipski, A. Characterization of N2O-producing Xanthomonas-like isolates from 

biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas 

broegbernensis gen. nov., sp. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 273–282. https://doi.org/10.1099/00207713-50-1-273. 

106. Awal, R.P.; Garcia, R.; Müller, R. Racemicystis crocea gen. nov., sp. nov., a soil myxobacterium in the family Polyangiaceae. Int. 

J. Syst. Evol. Microbiol. 2016, 66, 2389–2395. https://doi.org/10.1099/ijsem.0.001045. 

107. Siddiqi, M.Z.; Muhammad Shafi, S.; Choi, K.D.; Im, W.-T. Panacibacter ginsenosidivorans gen. nov., sp. nov., with ginsenoside 

converting activity isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 2016, 66, 4039–4045. 

https://doi.org/10.1099/ijsem.0.001307. 

108. Pascual, J.; Wüst, P.K.; Geppert, A.; Foesel, B.U.; Huber, K.J.; Overmann, J. Novel isolates double the number of chemotrophic 

species and allow the first description of higher taxa in Acidobacteria subdivision 4. Syst. Appl. Microbiol. 2015, 38, 534–544. 

https://doi.org/10.1016/j.syapm.2015.08.001. 

109. Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover crop impact on soil organic carbon, nitrogen 

dynamics and microbial diversity in a Mediterranean semiarid vineyard. Sustainability 2020, 12, 3256. 



Agronomy 2022, 12, 954 26 of 26 
 

 

110. DeBruyn, J.M.; Fawaz, M.N.; Peacock, A.D.; Dunlap, J.R.; Nixon, L.T.; Cooper, K.E.; Radosevich, M. Gemmatirosa kalamazoonesis 

gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J. Gen. Appl. Microbiol. 2013, 59, 305–

312. https://doi.org/10.2323/jgam.59.305. 

111. Xu, X.; Liu, Y.; Singh, B.P.; Yang, Q.; Zhang, Q.; Wang, H.; Xia, Z.; Di, H.; Singh, B.K.; Xu, J.; et al. NosZ clade II rather than clade 

I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem. 

2020, 150, 107974. https://doi.org/10.1016/j.soilbio.2020.107974. 

112. Foltz, M.E.; Kent, A.D.; Koloutsou-Vakakis, S.; Zilles, J.L. Influence of rye cover cropping on denitrification potential and year-

round field N2O emissions. Sci. Total Environ. 2021, 765, 144295. https://doi.org/10.1016/j.scitotenv.2020.144295. 

113. Wang, H.; Beule, L.; Zang, H.; Pfeiffer, B.; Ma, S.; Karlovsky, P.; Dittert, K. The potential of ryegrass as cover crop to reduce soil 

N2O emissions and increase the population size of denitrifying bacteria. Eur. J. Soil Sci. 2021, 72, 1447–1461. 

https://doi.org/10.1111/ejss.13047. 

114. Kim, S.-J.; Park, J.-H.; Lim, J.-M.; Ahn, J.-H.; Anandham, R.; Weon, H.-Y.; Kwon, S.-W. Parafilimonas terrae gen. nov., sp. nov., 

isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol. 2014, 64, 3040–3045. 

115. Tedersoo, L.; May, T.W.; Smith, M.E. Ectomycorrhizal lifestyle in fungi: Global diversity, distribution, and evolution of 

phylogenetic lineages. Mycorrhiza 2010, 20, 217–263. 

116. Manoch, L.; Dethoup, T. A potential use of Talaromyces species as biological agents against plant pathogenic fungi. Thai J. Agric. 

Sci 2011, 44, 81–91. 

117. Peterson, S.W.; Jurjević, Ž. New species of Talaromyces isolated from maize, indoor air, and other substrates. Mycologia 2017, 

109, 537–556. https://doi.org/10.1080/00275514.2017.1369339. 

118. Francioli, D.; van Rijssel, S.Q.; van Ruijven, J.; Termorshuizen, A.J.; Cotton, T.E.A.; Dumbrell, A.J.; Raaijmakers, J.M.; Weigelt, 

A.; Mommer, L. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity 

experiment. Plant Soil 2021, 461, 91–105. https://doi.org/10.1007/s11104-020-04454-y. 

119. Kohout, P.; Sýkorová, Z.; Čtvrtlíková, M.; Rydlová, J.; Suda, J.; Vohník, M.; Sudová, R. Surprising spectra of root-associated 

fungi in submerged aquatic plants. FEMS Microbiol. Ecol. 2012, 80, 216–235. https://doi.org/10.1111/j.1574-6941.2011.01291.x. 

120. Grządziel, J.; Gałązka, A. Fungal biodiversity of the most common types of polish soil in a long-term microplot experiment. 

Front. Microbiol. 2019, 10, 6. https://doi.org/10.3389/fmicb.2019.00006. 

121. Bello, A.; Wang, B.; Zhao, Y.; Yang, W.; Ogundeji, A.; Deng, L.; Egbeagu, U.U.; Yu, S.; Zhao, L.; Li, D.; et al. Composted biochar 

affects structural dynamics, function and co-occurrence network patterns of fungi community. Sci. Total Environ. 2021, 775, 

145672. https://doi.org/10.1016/j.scitotenv.2021.145672. 

122. Bell, A.; Mahoney, D. Coprophilous fungi in New Zealand. I. Podospora species with swollen agglutinated perithecial hairs. 

Mycologia 1995, 87, 375–396. 

123. Mueller, G.M. Biodiversity of Fungi: Inventory and Monitoring Methods; Elsevier: Burlington, MA, USA, 2004. 

124. Sláviková, E.; Vadkertiová, R. The diversity of yeasts in the agricultural soil. J. Basic Microbiol. 2003, 43, 430–436. 

https://doi.org/10.1002/jobm.200310277. 

125. Illescas, M.; Rubio, M.B.; Hernández-Ruiz, V.; Morán-Diez, M.E.; Martínez de Alba, A.E.; Nicolás, C.; Monte, E.; Hermosa, R. 

Effect of inorganic n top dressing and Trichoderma harzianum seed-inoculation on crop yield and the shaping of root microbial 

communities of wheat plants cultivated under high basal N fertilization. Front. Plant Sci. 2020, 11, 575861. 

https://doi.org/10.3389/fpls.2020.575861. 

126. Maharachchikumbura, S.S.N.; Guo, L.-D.; Chukeatirote, E.; Bahkali, A.H.; Hyde, K.D. Pestalotiopsis—Morphology, phylogeny, 

biochemistry and diversity. Fungal Divers. 2011, 50, 167. https://doi.org/10.1007/s13225-011-0125-x. 

 


