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Abstract: Respiration and photosynthesis are indispensable plant metabolic processes that are af-
fected by elevated temperatures leading to disruption of the carbon economy of the plants. Increasing
global temperatures impose yield penalties in major staple crops that are attributed to increased res-
piratory carbon loss, through higher maintenance respiration resulting in a shortage of non-structural
carbohydrates and an increase in metabolic processes like protein turnover and maintenance of ion
concentration gradients. At a cellular level, warmer temperatures lead to mitochondrial swelling as
well as downregulation of respiration by increasing the adenosine triphosphate:adenosine diphos-
phate (ATP:ADP) ratio, the abscisic acid-mediated reduction in ATP transfer to the cytosol, and
the disturbance in a concentration gradient of tricarboxylic acid (TCA) cycle intermediates, as well
as increasing lipid peroxidation in mitochondrial membranes and cytochrome c release to trigger
programmed cell death. In this review, we discuss the mechanistic insight into the heat stress-induced
mitochondrial dysfunction that controls dark respiration in plants. Furthermore, the role of hor-
mones in regulating the network of processes that are involved in retrograde signaling is highlighted.
We also propose different strategies to reduce carbon loss under high temperature, e.g., selecting
genotypes with low respiration rates and using genome editing tools to target the carbon-consuming
pathways by replacing, relocating, or rescheduling the metabolic activities.

Keywords: acclimation; alternative oxidase; heat stress; mitochondria; maintenance; respiration

1. Introduction

The rising temperature is an intrinsic component of global climate change that controls
the carbon fluxes in all the crops. High temperature affects the major plant physiologi-
cal processes, such as photosynthesis and respiration; therefore, it becomes important to
estimate the plant carbon dioxide (CO2) balance that finally decides the crop productiv-
ity [1–3].Through these two pathways, the terrestrial ecosystems exchange about 120 Gt
of carbon per year with the atmosphere [4]. A rough estimate states that half of the CO2
assimilated annually through photosynthesis is released back to the atmosphere by plant
respiration [5–7], and merely 15–25% of the fixed carbon finally translates into yield [8,9].
The projected elevation in temperature beyond 2.0 ◦C by the end of the decade [10] may
increase the magnitude of carbon loss exponentially in the physiological temperature range
of 0 to 38 ◦C [11], which will further exacerbate in a species-and environment-dependent
manner at higher temperatures between 48 and 60 ◦C [12–15].
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The carbon lost through the ‘breathing out’ processes in plants can occur via two mech-
anisms, namely photorespiration and dark/mitochondrial respiration. These processes
release CO2, but dark respiration occurs regardless of light in the plant cells [16,17]. Bio-
chemically, dark respiration is an enzymatically regulated, multistep, amphibolic process
that produces ATP by the oxidation of glucose formed during photosynthesis. Glucose
is initially broken into pyruvate during glycolysis, which is oxidized to form acetyl-CoA,
releasing a molecule of CO2. The acetyl-CoA then enters the tricarboxylic acid (TCA)
cycle, where it is oxidized to CO2 and also produces reductants (nicotinamide adenine
dinucleotide: NADH; dihydroflavine-adenine dinucleotide: FADH2) that pass through the
mitochondrial electron transport chain (ETC). The oxidation of the reductants produces a
proton gradient across the inner membrane of the mitochondria that drives the synthesis of
ATP. High temperatures impact dark respiration in plants with an exponential increase [18],
which can become detrimental due to irreversible damage to the enzymatic machinery [15].
Climate change prediction models have speculated a 3–20% decline in the yield of major
crops like wheat, rice, maize, and soybean with every 1 ◦C increase in the global mean
temperatures [19,20], which makes it pertinent to relate this loss to the waste of carbon
due to respiration. The contribution of dark respiration in limiting the productivity of
crops under elevated temperatures has not been extensively reviewed, in comparison to
photorespiration. Therefore, our present review discusses the heat-induced alterations
in dark respiration in plants and proposes strategies to reduce the carbon loss under the
inevitable reality of a changing climate.

2. Respiratory Carbon Loss-A Constraint to Crop Yield

Respiration, rather than photosynthesis, may be the primary contributor to yield losses
in a high temperature climate [11]. Low respiration rates are generally correlated with high
crop yields [21,22]. Walker et al. [23] reported that photorespiration decreased soybean
and wheat yields by 36% and 20%, respectively, in the United States. In another study, a
10–12% and 17–35% decrease in the yields of wheat and rice, respectively, was reported due
to high temperatures [24]. The yield loss in wheat and rice due to high night temperature
(HNT) is mainly ascribed to higher dark respiration, which increases the consumption of
photoassimilates, thereby resulting in the reduction of non-structural carbohydrates (NSCs)
in stem tissues [25,26]. Glaubitz et al. [27] reported that increasing night temperature from
25 ◦C to 35 ◦C resulted in increased leaf respiratory carbon losses in grapevines, as reflected
by the decrease in NSCs of 0.025 and 0.041 mg g−1dry weight, respectively. Such losses are
consistent with metabolite profiling studies in wheat and rice, which revealed an increase
in TCA cycle intermediates in leaves exposed to HNT, supporting increased respiration in
the photosynthesizing tissue [25,28]. Xu et al. [29] suggest that increased dark respiration
restrains source availability under the combined stress of high day and night temperatures,
leading to a considerably more severe yield penalty due to carbon loss.

3. Heat-Induced Changes in the Proportion of Maintenance Respiration

Dark respiration (Rd) is typically partitioned into two functional components, i.e.,
growth respiration (Rg) and maintenance respiration (Rm), which are impacted upon by
environmental stresses [9,30,31]. Figure 1 illustrates the differences in these components
under elevated temperatures. Growth respiration is a dominant component of respiration
in younger tissues, while the latter contributes majorly to the older tissues [32]. Growth
respiration is defined as the amount of photoassimilates respired to provide energy for the
synthesis of additional biomass [33]. It also provides a carbon skeleton and reductants to
facilitate nutrient uptake/assimilation followed by biosynthesis of cellular components to
drive the growth of tissues. Thus, the relationship between the growth rates of a species
and temperature is actually a measure of the rate of the growth respiration component [34].
A recent analysis of 101 evergreen species growing in different biomes (boreal to tropical)
showed that respiration increased with an increase in growth temperatures in accordance
with previous studies [35,36]. Leaf form accounted for the response ratio of Rg to warming,
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as species with needle-like leaves had a significantly higher response (25 ± 9%) than
broad-leaved ones [36].
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FIGURE 1
Figure 1. Growth respiration and maintenance respiration under elevated environmental temper-
ature. HSPs: heat shock proteins; NSCs: non-structural carbohydrates; Rg: growth respiration;
Rm: maintenance respiration; Rt: total respiration.

On the other hand, maintenance respiration comprises the respiratory processes that
help in supporting the already established biomass of the plant [33]. It depends upon the
amount and composition of the biomass, as both these factors undergo change depending
on the environment and developmental stage of the plant. Although the role of both the
components is integral to the life cycle of the plants, their estimation can only be done by
employing physiological models [32,37–39]. The higher temperature responsiveness of
Rm over Rg in mature tissues was concluded from various studies, e.g., Marigolds when
exposed to a 10 ◦C increase in temperature resulted in a 43% to 55% increase in the pro-
portion of maintenance respiration to total respiration (Rt) [40]. Additionally, a significant
reduction in ATP content and total biomass was observed in rice plants subjected to 10 ◦C
higher temperature at the reproductive stage than the ambient temperature (28 ◦C), thereby
suggesting that energy produced by respiration under high temperature conditions was
mainly attributed to maintenance respiration rather than growth respiration [32]. Mathe-
matically, maintenance respiration is expressed as the product of maintenance respiration
coefficient and plant size. The Q10 value (proportional increase in rate of respiration with a
10 ◦C rise in temperature) of the maintenance respiration coefficient varies between 1.35
and 3.0 depending upon the species, developmental stage, and environmental conditions
as shown in the data compiled from various studies (Table 1). The sensitivity of Q10 to
temperature indicates that the response of respiration to temperature cannot be represented
by one value.
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Table 1. Q10 values for maintenance respiration coefficient in various crops.

Crop Experimental Temperature Q10 Value Reference

Marigold (Tagetes patula) 20 ◦C (Control)
30 ◦C (Elevated) 1.35–1.55 [40]

Barley (Hordeum vulgare) 15 ◦C (Control)
28 ◦C (Elevated) 3.00 [41]

Subterranean clover
(Trifolium subterraneum)

10 ◦C (Control)
35 ◦C (Elevated) 1.85 [42]

Japanese knotweed
(Reynoutria japonica)

15 ◦C (Control)
25 ◦C (Elevated) 1.90 [43]

Wheat (Triticum aestivum)

15 ◦C (Control)
20 ◦C (Elevated) 1.80 [44]

10 ◦C (Control-Night
temperature)
21 ◦C (Elevated-Night
temperature)

1.97 [45]

4. Substrate Availability for Respiration under High Temperature

The considerable variation observed in the Q10–temperature relationship is influenced
by the supply of the respiratory substrate and the respiration capacity [4,46]. Environmental
variables that affect the biosynthesis of the substrates [18,46] or increase the metabolism of
energy consuming processes like turnover of proteins and maintenance of ion gradients [47],
make Q10 values highly dynamic in response to temperature. Additional energy costs
are incurred by mechanisms imparting heat tolerance in the crops, e.g., upregulation of
the antioxidant defense system to counteract the upsurge in the level of reactive oxygen
species (ROS), synthesis of osmoprotectants, and accretion of heat shock proteins (HSPs).
The need for respiratory substrate in the plants is mainly met from the non-structural
carbohydrates [25–27,48] and the protein turnover [11,32]. Studies on the effect of elevated
night temperatures have shown that the high rate of nighttime respiration exerted pressure
on the supply of NSCs, which subsequently reduced the biomass and yield of rice [25,26].
The concentration of sugars has been positively correlated with the rate of dark respiration
in Pinus [49], Quercus rubra [50], and Spinacia oleracea [51]. The light control of carbohydrate
synthesis affected the rate of dark respiration in Geum urbanum plants grown under 75%
shade as it declined due to limited photosynthate supply, but Q10 declined only when the
leaves experienced near darkness for long periods. It was concluded that intense shade for
a prolonged period would cause a reduction in both respiration and Q10 due to adenylate
restriction on respiration in addition to the substrate availability [4].

5. Regulation of Respiratory Flux at High Temperature

Adenylates (in particular the ratio of ATP to ADP and the concentration of ADP per
se), are likely the most important in regulating respiratory flux at warm temperatures [52].
Adenylate control would indicate that the respiratory capacity at warmer temperatures
exceeded the level required for cell processes to proceed [18], which in turn would lead
to elevated ATP:ADP ratios or low ADP concentration, causing downregulation of res-
piration [53]. The increased leakiness of membranes at high temperatures could further
contribute to substrate limitation because concentration gradients of TCA cycle inter-
mediates are more difficult to maintain when mitochondrial membranes are excessively
fluid [18].

6. Positive Correlation between Protein Turnover Cost and Respiratory Cost at
High Temperature

Nitrogen (N) utilization processes, including nitrate reduction and ammonium assimi-
lation, are thought to have high respiratory costs [54]. In fact, the estimates of construction
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respiration are greatly influenced by the form of N source, e.g., nitrate or ammonium [55].
The protein turnover rate increases with temperature, suggesting that the protein turnover
cost is a major component of the N-utilization cost and dominates during maintenance
respiration. Hachiya et al. [56] studied the protein turnover cost in Petunia x hybrida petals
grown at three different temperatures (20, 25,and 35 ◦C) during the development of the
petals. Most petals are non-photosynthetic; therefore, ATP and reducing equivalents are
supplied mainly from the respiratory pathway. The integrated protein turnover cost on dry
weight basis was similar between 20 and 25 ◦C but increased by more than four times at 35
◦C, suggesting that the high temperature enhanced the cost of protein turnover, thereby
increasing the total cost of N-utilization along with respiration in the petals.

7. Diurnal Dynamics of Respiration

The diurnal or diel cycle of plant growth interacts with the respiratory metabolism,
which can be directly linked with the availability of respiratory metabolites regulating
the process at different times of the day [57]. The photosynthate synthesized during
the day supports carbon supply for the entire plant during the day, which is reduced to
critical levels by the end of the night [58]. The strong coupling between carbon fixation
through photosynthesis and loss due to respiration [59] indicates the diurnal fluctuation in
rates of dark respiration as a result of changes in the concentration of various metabolites
supporting the respiratory process [60]. In this case, the supply of sugars is stabilized over
the day–night cycle, and the diel variation in respiration may be explained by changes in
the availability of amino acids, proteins, organic acids, and/or lipids. These metabolites
may drive respiration by supplying intermediates to the TCA cycle, reductants for ATP
synthesis via oxidative phosphorylation, and carbon skeletons required for biosynthesis or
nitrogen assimilation into amino acids [61].

Metabolomic studies have shown that warmer day (30 ◦C) and night (28 ◦C) tempera-
tures lead to the accumulation of amino acids derived from shikimate pathways, such as
phenylalanine, tyrosine, tryptophan, aspartic acid, lysine, proline, and γ-amino butyrate
(GABA), in thermo-sensitive rice cultivars (DR2 and M202) but not in intermediate (IR64
and IRRI123) and temperature-tolerant cultivars (IR72 and Taipei 309) [28]. Similarly, in
wheat, high night temperatures showed a prevalence of fumarate and alanine without any
significant change in the level of glutamine, glutamate, and GABA [25]. The accumulation
of TCA intermediates like malate and fumarate during the day, and citrate, aconitate, and
succinate during the night [62,63], reiterates the circadian control of the TCA pathway,
which is a hub for the process of respiration and can be markedly influenced by an increase
in temperature [64]. Rashid et al. [64] assessed the influence of growth temperature and the
diel cycle on the concentrations of metabolites involved in the respiratory network of rice.
They raised the plants under 25 ◦C:20 ◦C, 30 ◦C:25 ◦C, and 40 ◦C:35 ◦C day:night cycles
and measured the dark respiration and changes in metabolites at five time points spanning
a single 24 h period and observed that shikimate pathway-derived aromatic amino acids
were the only metabolites to interact in response to both the growth temperature and
the day:night cycle. Cook et al. [65] reported increased concentrations of α-ketoglutarate,
fumarate, malate, and citrate in Arabidopsis leaves when cooled from 20 ◦C to 4 ◦C. All
these studies suggest that there are distinct respiratory metabolite adjustments to temper-
ature and the diel cycle.Further, detailed experiments on the interaction of the diel cycle
and temperature will generate a better understanding of the metabolites controlling dark
respiration in plants. Therefore, the instantaneous measurement of respiration rates at a
single point during the day can overlook the differential response prevalent during an
extended period.

8. Thermal Acclimation of the Respiration Response in Plants under Heat Stress

Short periods of high temperatures show an exponential increase in dark respira-
tion [66,67], whereas prolonged exposure can result in thermal acclimation of the res-
piration response to lessen the impact of continued carbon loss due to increasing tem-
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peratures [31,68]. Under thermal acclimation, the tissues that develop under the new
temperature show a better homeostatic response to respiration than the ones formed be-
fore the acclimation temperature [31,66,69]. There are two types of thermal acclimation
responses [18] that occur across plant types and biomes (Figure 2):(i) Type I acclimation,
where warm acclimated leaves show lower short-term sensitivity to temperature, and the
regulation by the existing respiratory enzymes causes a reduction in Q10 [46].(ii) Type
II acclimation, which involves a change in the respiratory capacity due to change in the
concentration of the respiratory enzymes or mitochondrial proteins, resulting in lower
respiration across the temperature range and no change in Q10. Type I acclimation is less
efficient and occurs in leaves that mature prior to the temperature change. In contrast,
Type IIis common in leaves that are formed later under higher temperatures with a high
degree of homeostasis. The advantage of Type II acclimation is that it allows the plant to
make both the physiological and developmental adjustments in the size and density of
mitochondria [70], whereas Type I, which solely influences the physiological plasticity to
temperature. Based on this fact, it was found that boreal evergreen tree species, which grow
under changing temperatures, are more efficient in acclimation during their lifetime than
deciduous species that seasonally shed their leaves [71]. A recent meta-analysis by Crous
et al. [36] highlighted the differential respiration response across various biogeographical
regions and leaf forms and found that the leaves of gymnosperms showed a 30–40% re-
duction in respiration rates at a common temperature of 25 ◦C compared to broadleaved
evergreens at >10 ◦C warming.

✓ Reduction in Q10
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high temperature

Type 1

Type II

Heat stress signal

Change in factors regulating

respiratory flux, i.e., substrate

availability and/or turnover of ATP to

ADP

Decrease in respiratory capacity, i.e.,

change in mitochondrial abundance,

structure and/or protein composition

Thermal 

acclimation

FIGURE 2

Figure 2. Types of thermal acclimation in plants in response to heat stress.

The dynamicity in the size, number, and signaling responses of mitochondria can cause
a collective outcome during the acclimation response to meet the demand for metabolic
energy, carbon skeleton, and reductants [72], and it is controlled by a network of genes [73].
The inability to acclimate is the consequence of mitochondrial disorganization under high
temperatures that increase the leakiness of mitochondrial membrane and lipid peroxida-
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tion [74] along with the disruption of the TCA cycle, mitochondrial NADH pool, and ATP
synthesis [75].

9. Mitochondrial Physiology under High Temperature

Temperature stress exerts a thermodynamic influence on the subcellular structures and
intracellular macromolecules in the plant cells [76]. Since mitochondria maintain the energy
requirements of the cells, they become the primary targets for structural and functional
changes under stress [77], as illustrated in Figure 3. The phospholipid, cardiolipin (CL), is
an important constituent of the inner mitochondrial membrane and contributes approxi-
mately 10% toward the total lipid content of the mitochondria [78]. The loss-of-function
mutants of cardiolipin synthase (cls), involved in the synthesis of CL, confirmed its role in
morphogenesis of mitochondria during heat stress in Arabidopsis via stabilizing the protein
complex of mitochondrial fission factor DYNAMIN-RELATED PROTEIN 3 [79]. Addition-
ally, CL is rich in polyunsaturated fatty acids and more vulnerable to lipid peroxidation [80]
by the excess ROS produced during high temperature stress. The damaged CL increases
the pore formation capacity of the membrane, resulting in the dephosphorylation of the
mobile electron carrier cytochrome c and its release from the inner membrane towards the
cytosol [81,82]. This reduces the cytochrome c activity and ATP synthesis and triggers the
programmed cell death (PCD) response under stress [83,84]. A significant association has
also been explained between the release of cytochrome c and Ca2+ dynamics during heat
stress [85]. Complex I, II, and III are known to be the important sites for the production of
ROS in the mitochondrial respiratory chain [86,87]. Increased ROS production is positively
correlated to hyperpolarization of the mitochondrial membrane in cultured wheat cells
under heat treatment. The depolarization of the membrane using the protonophore CCCP
(carbonyl cyanide m-chlorophenylhydrazone) inhibited ROS production and oxidative
phosphorylation [88]. High temperature-induced ROS production increases the cytosolic
concentration of calcium that eventually finds its entry into the mitochondria and other or-
ganelles [89]. Amongst the various channels and transporters, the Ca2+, voltage-dependent
anion channels (VDAC) in the outer mitochondrial membrane, and the mitochondrial
calcium uniporter complex (MCUC) in the inner mitochondrial membrane are involved
in Ca2+ influx into the mitochondria [90]. The influx of Ca2+ through VDAC is free, while
MCUC are pore-forming proteins that regulate the entry of Ca2+ into the mitochondria.
Though transient changes in Ca2+ levels are detected in the mitochondria under a stressed
environment, knowledge of the Ca2+ sensors still remains obscure.

During the stress response, ROS generation in the mitochondria communicates the
signal to the nucleus through the mitochondrial retrograde signaling pathway. Retrograde
signaling operates in the organelles like mitochondria and chloroplast when the organelles
signal to the nucleus about its dysfunction in order to activate certain genes to carry the
adaptive response [91]. The nuclear-encoded upregulation of alternative oxidase (AOX1) is
the most prominent gene involved in the mitochondrial retrograde signaling pathway. It is
a cyanide insensitive terminal oxidase in ETC that, along with alternative NADH dehy-
drogenases, does not generate a proton motive force that is required to produce ATP [92].
The impairment of the cytochrome pathway during stress makes the re-routing of electrons
through the alternative respiratory pathway necessary as it reduces the accumulation of
ROS [93,94].

In addition to the secondary messengers and metabolites discussed above, mitochon-
drial biogenesis and function are also controlled by plant hormones like abscisic acid (ABA),
auxin (AUX), cytokinin (CK), jasmonic acid (JA), and salicylic (SA). Other hormones like
brassinosteroid (BS), ethylene (ET), and gibberellic acid (GA) play a minor role in the
signaling network [95].
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Figure 3. Structural and functional changes in mitochondria under heat stress. Cardiolipin (CL)
involved in mitochondrial morphogenesis is reduced due to the low activity of cardiolipin synthase
(CLS) under heat stress. The damaged CL results in depolarization of Cyt c ultimately leading
to its release from the inner mitochondrial membrane into the cytosol and triggering PCD. ROS
are generated at complexes I, II, and III. Under heat stress, overproduction of ROS in the inner
mitochondrial membrane causes lipid peroxidation of phospholipids. ROS overproduction increases
the cytosolic Ca2+ and influx into mitochondria via voltage-dependent anion channels (VDAC) in the
outer mitochondrial membrane and the mitochondrial calcium uniporter complex (MCUC) in the
inner mitochondrial membrane. ROS can communicate signals to the nucleus through retrograde
signaling to activate genes for an adaptive response to maintain cellular homeostasis. AOX1 is
also upregulated via retrograde signaling, which ultimately inhibits ROS production and helps in
maintaining cellular homeostasis.

10. Hormonal Regulation of Respiratory Metabolism under High Temperature

Heat stress alters the hormonal biosynthesis, stability, compartmentalization, and
homeostasis within the plants [96]. The accumulation of hormones like ABA, ET, SA,
CK, and JA may directly interact with mitochondrial functions in plants [97–100]. High
concentration of SA interacts with mitochondrial ETC complexes I and III, whereas lower
concentrations are observed as uncoupling agents [101,102]. SA oxidizes the ubiquinone
(UQ) pool by altering the kinetics of dehydrogenases [103,104] and blocking the electron
transport between succinate and UQ. Further, SA can also directly bind to the subunit
of α-ketoglutarate dehydrogenase E2 (α-KGDH), an important enzyme of the TCA cycle,
and act upstream to affect ETC during pathogen resistance to tobacco mosaic virus [105].
However, its role in abiotic stress tolerance has not been elucidated so far. Cytokinins
like 6-benzylaminopurine, 6-(∆2-isopentenylamino) purine, and 6-furfuryl aminopurine
target the mitochondrial respiration by restricting the electron transport from NADH to
the cytochrome system in the stems of pea and hypocotyls of mung bean [106]. Cytokinin-
like effects exhibited by N-(2-chloropyridyl)-N′-phenylurea inhibited the oxidation of
malate, succinate, and NADH by the intact mitochondria of pea [107]. The respiratory
control by AUXs was supported by previous studies, where decreased AUX levels and
transport inhibited the functioning of mitochondrial respiratory chain complexes [108]. The
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mechanistic link between AUX signaling and perturbation in mitochondria was inferred by
employing the potent inducers of UDP–glucosyl transfer as encoded by the gene UGT74E2,
which evoked a common response in mitochondrial dysfunction and inhibition of auxin-
related transcription in the meristematic tissues during stress response [109].

ABA can hinder ATP/ADP exchange by the mitochondrial adenine nucleotide translo-
cators (ANTs) to cause a reduction in ATP transfer to the cytosol or renewal of ADP to the
mitochondria [95]. Consequently, the reduced availability of ADP results in the activation
of ROS production in the mitochondria, with detrimental consequences, as discussed ear-
lier [110]. The transcription factor abscisic acid insensitive 4 (ABI 4) has been reported to
be a repressor of the mitochondrial AOX1 gene of A. thaliana. However, AOX expression
was stimulated by the application of ABA; therefore, the repressor effect of ABI4 on AOX1a
is likely to be a part of the complex regulatory circuit [92]. Moreover, altered expression
of genes like ABA hypersensitive germination 11 (AHG 11) involved in the editing of
NADH dehydrogenase subunit 4 (NAD4) [111], slow growth 2 (SLO2) [112] involved in
editing three complex I genes, ABA overly sensitive 6 (ABO6) [113] involved in the splicing
of complex I genes and lovastatin insensitive 1 (LOI 1) involved in the RNA editing of
cytochrome c maturation [114], were associated with altered ABA responses.

The information regarding the regulation of mitochondrial function by ET during
stress is lacking. Nevertheless, the increase in AOX activity has been simultaneously
related to ET biosynthesis during ripening in climacteric fruits, and its blockage leads to
the inhibition of respiratory increase [115]. The implication of crosstalk between ET and
AOX during stress response may help in deciphering a connection that may probably exist
with ROS inhibition during retrograde signaling. Brassinolide also induces increased AOX
activity in tobacco by directly affecting the promoter of the AOX gene [116]. Evidence
linking the network of pathways that are impacted by the high temperature-induced
mitochondrial dysfunction needs to be strengthened to understand the checkpoints that
finally determine the respiratory control of productivity.

11. Strategies to Reduce Carbon Loss

Based on the literature, we propose the following strategies that can help in reducing
the loss at the cellular and plant level.

11.1. Selection of Genotypes with Low Rates of Respiration under High Night Temperature

Studies relating to the increase in carbon loss due to high night temperatures [11,117–119]
emphasize the need to screen genotypes that maintain normal respiration rates under different
environmental regimes. Rice plants grown under high minimum temperatures have generated
data to show that cultivars like Nagina 22 [119], Abhishek, SahbhagiDhan, and Bakal [120],
with insignificant changes in post-flowering respiration, showed a marginal reduction in grain
yield [117]. The biodiversity existing for this trait in the wild or related crop species can be
used for introgression in high yielding cultivars of various crops with the target of generating
a positive carbon balance under future climate change scenarios.

11.2. Genome Editing to Target the Metabolic Processes Consuming Carbon

The genetic improvement of crops by using genome editing approaches like knockout,
replacement base editing, and regulation of expression of desirable/undesirable genes can
effectively target the metabolic processes that lead to futile carbon loss in crops. The few
pathways that can be replaced, relocated, or rescheduled through this approach have been
discussed (Figure 4).

11.2.1. Substitution of the Lignin Biosynthesis Pathway

The lignin biosynthesis pathway involving phenylalanine ammonia lyase (PAL) can
be overridden by substitution with tyrosine ammonia lyase (TAL) as it provides a gain
due to the formation of two NADPH per p-coumarate [121] and can potentially decrease
growth respiration [32].
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Heat stress signal

✓ Disturbed carbon balance and reduced yield

✓ Increased photorespiration

✓ Increased maintenance respiration

✓ Deficit of NSCs

✓ Increased turnover of proteins

✓ Increased emission of BVOCs

✓ Decreased uptake and assimilation of nutrients

• Selection of genotypes with low rates of respiration under HNT

• Genome editing to target metabolic processes that consume carbon:

✓ Substituting lignin biosynthesis pathway

✓ Suppressing futile cycles

✓ Bypassing photorespiration

✓ Engineering crops with low emission of BVOCs

✓ ‘Switching off’ mitochondrial AOX at night

✓ Improving nitrate acquisition efficiency

✓ Relocating nitrate assimilation to leaves during daytime

Strategies to reduce carbon loss 

✓ Enhanced carbon balance and yield

FIGURE 4
Figure 4. Respiratory carbon loss in plants and strategies to enhance yield under high temperature.

11.2.2. Suppression of Futile Cycles

A substantial proportion of the ATP generated during respiration is consumed by
certain pathways that can be called ‘futile’ cycles. For example, the simultaneous synthesis
and degradation of starch in leaves during the day [122], the simultaneous synthesis and
degradation of sucrose [123], and cycling between fructose 6-phosphate and fructose 1,6-
bisphosphate [124] are futile cycles. The suppression of these futile cycles will decrease the
respiratory costs without exerting collateral damage on the metabolic machinery [32].

11.2.3. Designing Carbon Conserving Photorespiration

Photorespiratory bypass to eliminate the loss of CO2 can be designed by incorporating
synthetic routes through metabolic engineering. The reduction of glycolate to glycolalde-
hyde is a promising approach as it can assimilate 2-phosphoglycolate into the Calvin
cycle without the loss of carbon. Screening the germplasm for highly stable and substrate-
specific enzymes, such as acetyl-CoA synthetase and propionyl-CoA reductase, would
help in favoring the reduction process over oxidation and generating a carbon-conserving
pathway [125].

11.2.4. Engineering for Low Emission of Biogenic Volatile Organic Compounds

Plants release a considerable fraction of the assimilated carbon as biogenic volatile
organic compounds (BVOCs). Temperature within the range of 20–40 ◦C has a strong
influence on the activity of enzymes involved in the biosynthesis of BVOCs like isoperenes,
monoterpenes, acetaldehyde, and (E)-2-hexenal. Though BVOCs impart thermal tolerance
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at high temperature [126,127], it happens at the cost of 10% of fixed carbon loss. Engineering
cultivars with reduced emissions of BVOCs can act as a promising strategy to save carbon
under high temperatures.

11.2.5. “Switching Off” Mitochondrial AOX at Night

The AOX pathway continues to remain operative at night, accounting for 10–50% of
the total respiratory rate, resulting in a reduced ATP yield per unit of carbon oxidized [128].
Among the different isoforms of AOX identified so far, one is constitutive, whereas the rest
are stress inducible [129]. Engineering the constitutive AOX with a light-specific promoter
can lower the alternative pathway rate at night and raise it again during the day without
compromising the carbon loss [32].

11.2.6. Improving Nitrate Acquisition and Relocating Nitrate Assimilation

Plants take up nitrogen mainly in the form of nitrates from the soil in an energy-
intensive process [130], which is further reduced in the roots and shoots [131]. The cost of
NO3

− acquisition can be minimized by identification and elimination of NO3
− leaks that

take place via the nitrate excretion transporter (NAXT1) or alternatively, increasing the flux
density of an optimized NO3

− transporter on root hair cells [32]. Further, the cost of nitrate
reduction is 1.72 kg glucose C respired per kg nitrate N reduced to ammonia [132]. If the
entire or most of the nitrate assimilation during the daytime takes place in the leaves, then
the excess of NADPH and ATP produced during light reaction can be exploited under high
light. This would reduce the additional cost of sucrose respiration in the roots, which is
required for the generation of the carbon skeleton [32].

12. Conclusions and Future Outlooks

The significant upsurge in respiration rate under climate warming rather than an
antagonistic change in photosynthetic rate disrupts the carbon economy of the plant, re-
sulting in a yield penalty. The mechanism responsible for this yield penalty is increased
utilization of non-structural carbohydrates to carry out maintenance respiration to support
increased turnover of proteins, maintenance of ion gradients, and activation of energetically
expensive heat tolerance mechanisms, thereby creating an overall deficit of carbohydrates
partitioned towards growth respiration, eventually reducing the total dry matter produc-
tion. At a cellular level, warmer temperatures lead to mitochondrial swelling as well as
downregulation of respiration by increasing the ATP:ADP ratio, the ABA-mediated reduc-
tion in ATP transfer to the cytosol, and the disturbance in a concentration gradient of TCA
cycle intermediates, as well as increasing lipid peroxidation in mitochondrial membranes
and enough cytochrome c release to trigger programmed cell death. In plants, distinct
respiratory metabolic adjustments are available in response to high temperatures and the
diel cycle. Plants show thermal acclimation of the respiration response to lessen the impact
of carbon loss due to increasing temperatures. Genome editing approaches to reduce
unnecessary carbon loss and to increase the energy utilization efficiency of processes are
ways to escalate positive carbon balance. This can be addressed by replacing, relocating,
or rescheduling the metabolic pathways like substituting the lignin biosynthesis pathway,
suppressing futile cycles that decrease the respiratory costs, bypassing photorespiration
via metabolic engineering, engineering cultivars with reduced emission of BVOCs and
a low alternative pathway rate at night, minimizing the cost of NO3

− acquisition, and
relocating NO3

− assimilation from roots and shoots to leaves during the daytime. Thus,
cutting respiratory losses and increasing photosynthesis are the most effective solutions
to beat the heat in the presently warming world for and sustain crop productivity in the
long run.
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