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Abstract: Precision crop production requires accurate yield prediction and nitrogen management. 

Crop simulation models may assist in exploring alternative management systems for optimizing 

water, nutrient and microelements use efficiencies, increasing maize yields. Our objectives were: (i) 

to access the ability of the CERES-Maize model for predicting yields in long-term experiments in 

Hungary; (ii) to use the model to assess the effects of different nutrient management (different ni-

trogen rates—0, 30, 60, 90, 120, and 150 kg ha−1). A long-term experiment conducted in Látókép 

(Hungary) with various N-fertilizer applications allowed us to predict maize yields under different 

conditions. The aim of the research is to explore and quantify the effects of ecological, biological, 

and agronomic factors affecting plant production, as well as to conduct basic science studies on 

stress factors on plant populations, which are made possible by the 30-year database of long-term 

experiments and the high level of instrumentation. The model was calibrated with data from a long-

term experiment field trial. The purpose of this evaluation was to investigate how the CERES-Maize 

model simulated the effects of different N treatments in long-term field experiments. Sushi hybrid’s 

yields increased with elevated N concentrations. The observed yield ranged from 5016 to 14,920 kg 

ha−1 during the 2016–2020 growing season. The range of simulated data of maize yield was between 

6671 and 13,136 kg ha−1. The highest yield was obtained at the 150 kg ha−1 dose in each year studied. 

In several cases, the DSSAT-CERES Maize model accurately predicted yields, but it was sensitive to 

seasonal effects and estimated yields inaccurately. Based on the obtained results, the variance anal-

ysis significantly affected the year (2016–2020) and nitrogen doses. N fertilizer made a significant 

difference on yield, but the combination of both predicted and actual yield data did not show any 

significance. 

Keywords: long-term experiments; maize yield prediction; CERES-Maize model; sustainable crop 

production 

 

1. Introduction 

Crop production is currently facing the challenge of meeting the increasing demand 

by using less fertilizers, water, and pesticides, while ensuring safety of food, including the 

presence of appropriate microelements. In order to clarify yield predictions, crop simula-

tion models consider several factors, and they can also contribute to more precise, site-

specific crop production [1]. Thus, it is crucial to integrate agronomy and decision support 

systems. Databases of long-term experiments, linking with the possibilities provided by 

plant physiological models, can create an integrated system in agricultural research, 

which can play an important role in mapping the hypotheses of the yield gap. The per-
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formed field experiment has been pivotal in assessing the effects of single or multiple fac-

tors on crop productivity, because the crop yield prediction is based on soil, meteorolog-

ical, crop, and environmental variables. The purpose of this study is to evaluate the sim-

ulation model, based on big data and site-specific measurements. Through this, we can 

improve the decision support system of precision agriculture. Maize (Zea mays L.) is the 

most important crop in Hungary [2]. Although, sustainability of high crop yield under 

intensive cultivation is possible only through the use of water, and the use of adequate 

chemical fertilizer, i.e., microelements. 

The dataset of the Látókép long-term experiment (2016–2020) was used for the anal-

ysis of this study. By testing the model, the yield of maize was analyzed: 

- Growth and yield of maize hybrids in a context of environmental conditions; 

- The initial parameters for the model run were established (soil chemical variables, 

soil physical properties, soil mechanical structure, soil moisture, etc.); 

- Phenological and growth characteristics of individual maize hybrids. 

Use of the DSSAT Software under Precision and Experimental Conditions 

In addition to comparing models, DSSAT is considered to be suitable for demonstrat-

ing the effect of phenological and N-fertilizer, but it is less suitable for expressing water 

stress or soil moisture. Modelling has been the subject of numerous publications and stud-

ies, and continuous calibration and validation (temporal and spatial scaling) have been 

shown to be essential to achieve the goals of sustainable crop production. They also be-

came important because of new scientific directions and hypotheses [3]. Based on the da-

tabase of the Látókép (Hungary) long-term experiment, maize hybrids were analyzed for 

the effects of irrigation, soil tillage, and crop number [4,5], taking into account different 

season effects. The sensitivity of the CERES-Maize model extends to extreme meteorolog-

ical years and vegetation periods. The model over- or underestimates the grain yield in 

rainy and drier years. It overpredicted the yields systematically in extreme rainy years 

[6,7] and under irrigated conditions [8]. For some treatments, the model overestimated 

corn grain yield and underestimated total N uptake as well as underestimated total 

leached nitrogen and soil moisture, which has an effect on yield [9]. Grain yield increased 

with increasing nitrogen content; however, the model underpredicted grain yield with 

control treatment [10]. Li et al. [11] observed a significant difference in two years, which 

were extremely dry. There is also a similar experience with Liu et al. [6] that, in a low-

rainy year, the maize yields were undersimulated by the model. In the study [5], the av-

erage percentage error of maize predictions for the run environment ranged from 4.8% to 

46.6%, with differences of 471 to 2407 kg/ha. Accurate, reliable yield estimates could be 

given by measurements taken during the vegetation period of the crop, as the inaccuracy 

of the prediction at sowing can reach 50% [12]. According to Quiring and Legates [5], the 

model is partially sensitive to row spacing, seed, sowing depth, sowing, and harvesting 

time, hybrid, soil type and soil moisture, as well as temperature and global radiation. Spe-

cifically, the authors draw attention to the effect of the relationship between soil and pre-

cipitation, and the time that can be extremely sensitive to yield development. Li et al. [11] 

used the model to analyze a small plot experiment. 

In addition to yield estimation, DSSAT can to run various dynamics, such as soil dy-

namics, simulation of the nitrogen cycle, and monitoring of changes in soil organic matter 

content [13]. The crop simulation program contributes to decision making for environ-

mental risks, this model is applied to the evolution of the climatic conditions [14]. Provides 

crop simulation models for management decision making, risk management, and evalua-

tion [15]. The CERES-Maize model was applied under farm conditions [16], and embed-

ded in the Apollo [17] decision support system. A 20.25 ha experimental parcel [18] was 

divided into nearly 100 management zones, based on which the current and future corn 

yield was validated in the Apollo framework. Based on his studies, he found that later 

larger treatment units also could be effective as yields show a smaller spatial distribution. 



Agronomy 2022, 12, 785 3 of 16 
 

 

Paz et al. [19] tested the optimum (141–160 kg/ha) application of N (between 60 and 220 

kg/ha) on ~500 m2 units of a 16 ha parcel. DSSAT and APSIM models were examined, and 

the most notable difference in treatment units was 6 tons based on a comparison of the 

three-year model estimates. Salmerón et al. [20] simulations in the La Violada watershed 

did not adequately estimate yield loss under high yield conditions under reduced nitro-

gen. Furthermore, under optimized water and nitrogen management N leaching (44–98 

kg N ha−1 yr−1) would still be high. Zhu et al. [21] emphasizes that without the adaptation 

of precision crop cultivation techniques, or in the absence of these data, the development 

of models for plant physiology and agro-ecosystems and the use of newer model genera-

tions will fail. However, there is little information on modelling the combined effects of 

water and N limitations on water productivity responses of maize to irrigation. 

2. Materials and Methods 

2.1. Experimental Site and Treatments 

The Látókép Crop Production Experiment Site was established in 1983. The area of 

the Látókép experiment is 190 ha, most of which, i.e., a 125 ha site, can be irrigated. The 

experiment site is located in eastern Hungary in the Hajdúság region (47°33′27″ N, 

21°26′52″ E.) (Figure 1.) The site is relatively isolated, which provided excellent conditions 

for establishing long-term experiments. Over the past 38 years, the experiment has re-

mained unchanged in terms of location, nutrient replenishment rate, soil tillage, and ag-

ricultural elements. The field experiment is arranged in a randomized complete block de-

sign with 360 blocks (including 6 treatments, 15 hybrids in four replications). Size of one 

repetition: 1260 m2, for fertilizer plots: 210 m2. In this study we examined 1 hybrid includ-

ing 6 treatments in four replications. There were 24 blocks in a year 

 

Figure 1. The experimental design in Látókép. 

The recommended fertilizer doses were 0: 0 kg ha−1 N, 1: 30 kg ha−1 N, 2: 60 kg ha−1 

N, 3: 90 kg ha−1 N, 4: 120 kg ha−1 N, and 5: 150 kg ha−1 N in the experimental treatments. 

The application rates of chemical fertilizers are described in Table 1, based on a soil anal-

ysis recommendation. In the experiment, 30% of the total nitrogen dose and 100% of the 

phosphorus and potassium doses were applied at the beginning, before plowing, and 70% 

of the nitrogen dose was applied as top-dressing in April. 
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Table 1. Fertilizer input of different treatments in our experiment. 

Fertilizer Amount N P2O5 K2O Sum 

0 - - - - 

1 30 23 27 80 

2 60 46 54 160 

3 90 69 81 240 

4 120 92 108 320 

5 150 115 135 400 

2.2. Soil Data 

The long-term experiment was set up to collect data for calibrating and validating 

the CERES-Maize model. It was conducted on silty clay loam soil as classified in USDA 

[22] (Table 2.). The collected soil samples were analyzed for texture, bulk density, pH, 

organic matter, total nitrogen, potassium (K), and phosphorus (P). The soil of the experi-

ment site is calcareous chernozem formed on the Hajdúság loess ridge with 80–90 cm 

depth top soil, and the organic matter content is around 2.7%. The soil has a pH of 6.6 

(slightly acidic). In terms of its physical variety, it is a clayey loam, with Arany’s plasticity 

index number of 44 in 2017 and 2020. The soil input dataset was created by measuring soil 

properties such as soil texture, soil bulk density, pH, organic carbon, total N, and available 

phosphorus and nitrogen. 

Table 2. Soil physical properties in the experimental site (2020). 

Depth (cm) Sand Silt Clay 

cm 2–0.25 0.25–0.05 0.05–0.02 0.02–0.01 0.01–0.005 0.005–0.002 <0.002 

0–20 0.08 8.24 34.81 12.78 8.55 7.47 28.07 

20–45 0.04 8.6 32.72 15.34 8.05 7.34 27.91 

45–65 0.04 10.39 32.43 15.51 7.8 8.81 25.02 

65–95 0.24 10.15 29.11 14.88 7.87 10.12 27.63 

95–105 0.2 8.36 32.82 15.93 7.79 8.2 26.7 

105–140 0.32 11.5 34.08 15.7 8.12 7.28 23 

2.3. Climatic Conditions of the Experimental Site (2016–2020) 

The experiment data were obtained from Centre for Agricultural Sciences, Institute 

of Crop Sciences, at Látókép, and the daily weather data from the Meteorological Obser-

vatory Debrecen of the National Meteorological Service. It was performed on the basis of 

the data of an automatic weather station set up next to the experimental plots [23] (Tables 

3 and 4). The station provided the daily radiation, precipitation, wind speed, as well as 

minimum and maximum temperature data. This area has a typical continental climate 

with one growing season for maize production: from April to October. The mean annual 

rainfall is around 600 mm, the distribution of which causes strong atmospheric drought 

at times, resulting in low maize yield [24]. 

Table 3. Mean monthly air temperature (°C) in the growing season of maize at Debrecen-Látókép 

(2016–2020). 

 2016 2017 2018 2019 2020 

April (1) 13.3 (+2.1)  10.7 (−0.5) 16.0 (+4.8) 12.4 (+1.2) 10.8 (−0.4) 

May (2) 16.5 (−0.1)  17.2 (+0.6) 19.7 (+3.1) 14.1 (−2.5) 14 (−2.6) 

June (3) 21.1 (+1.8)  22.2 (+2.9) 20.2 (+0.9) 22.8 (+3.5) 19.6 (+0.3) 

July (4) 22.3 (+1.0)  22.3 (+1.0) 21.7 (+0.4) 21.1 (−0.2) 20.9 (−0.4) 

August (5) 20.8 (0)  23.2 (+2.4) 23.2 (+2.4) 23.1 (+2.3) 22.6 (+1.8) 

September (6) 17.6 (+1.6)  16.4 (+0.4) 17.1 (+1.1) 17.1 (+1.1) 17.9 (+1.9) 
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October (7) 9.7 (−0.9)  10.8 (+0.2) 12.3 (+1.7) 12.6 (+2.0) 11.7 (+1.1) 

Summer period (IV–IX.) (8) 18.6 (+1,1) 18.7 (+1.2) 19.7 (+2.2) 18.4 (+0.9) 17.6 (+0.1) 

Winter period (X–III.) (9) 3.9 (−0.3) 4.1 (−0.1) 4.1 (−0.1) 4.4 (+0.2) 4.6 (+0.4) 

Note: Differences (in °C) from the climatic normal values of 1981–2010 are shown in brackets; (1) 

April, (2) May, (3) June, (4) July, (5) August, (6) September, (7) October, (8) Summer period (April–

September), (9) Winter period (October–March). 

Table 4. Monthly sum of precipitation (mm) in the growing season of maize at Debrecen-Látókép 

(2016–2020). 

 2016 2017 2018 2019 2020 

April (1) 16 (−37)  51 (−2) 37 (−16) 33 (−20) 17 (−36) 

May (2) 68 (+4)  27 (−37) 57 (−7) 76 (+12) 45 (−19) 

June (3) 146 (+80)  67 (+1) 64 (−2) 32 (−34) 119 (+53) 

July (4) 87 (+21)  73 (+7) 55 (−11) 99 (+33) 188 (+122)  

August (5) 72 (+23)  61 (+12) 92 (+43) 15 (−34) 70 (+21) 

September (6) 64 (+16)  76 (+28) 14 (−34) 35 (−13) 44 (+4) 

October (7) 98 (+60)  38 (0) 9 (−29) 22 (−16) 79 (+41) 

Summer period (IV–IX.) (8) 453 (+107)  354 (+8) 318 (−28) 290 (−56) 483 (+137) 

Note: Differences (in mm) from the climatic normal values of 1981–2010 are shown in brackets; (1) 

April, (2) May, (3) June, (4) July, (5) August, (6) September, (7) October, (8) Summer period (April–

September). 

After the winter period of 2016, the considerably dry and warm April had a positive 

effect. In April, a total amount of 16 mm of rain fell on several occasions. The remaining 

part of the growing season was characterized by high rainfall and above-average temper-

atures. The ideal conditions were provided for maize growth and its yield. Precipitation 

was above average in each month. The total precipitation for the summer semester is 453 

mm, of which the values of 146 mm in June and 87 mm in July should be highlighted. The 

temperature was mostly above average, but there was no long and extremely warm pe-

riod. The months of September (+1.6 °C) and June (+1.8 °C) showed positive temperature 

anomalies. The average temperature in August conformed to the multi-year average. 

Regarding the summer months (2017), precipitation (354 mm) is essentially the same 

as the multi-year average (+8 mm), and it was well balanced in terms of monthly precipi-

tation. There was a significant difference from the multiple-year average in May (−37 mm) 

and September (+28 mm). Significant positive temperature anomalies occurred in June 

(+2.9 °C), July (+1.0 °C), and August (+2.4 °C). 

In the year 2018, from the beginning of April, the nature of weather changed funda-

mentally and permanently, which is also well reflected in the monthly data. The growing 

season started with a very warm April, with an average temperature of 16.0 °C, almost 5 

°C above the average value. Sunny, warm weather continued in May, again resulting in a 

record high average temperature (19.7 °C). These two significantly warm months contrib-

uted favorably to the emergence and initial development of maize. 

The positive temperature anomaly in April 2019 (+1.2 °C) was followed by a signifi-

cantly negative anomaly in May (−2.5 °C). The development of maize was slow, but the 

water supply was optimal. In the summer months, the temperatures in June (+3.5 °C) and 

August (+2.3 °C) were well above average. The positive anomaly continued into the fall. 

During the growing season, April (−20mm), June (−34 mm), and July (−34 mm) had signif-

icantly below average rainfall. The 99 mm rainfall in July was favorable during the silking 

and grain filling phase of maize. 

In the initial growing season in 2020, the significant negative temperature anomaly 

(−0.4 °C in April; −2.6 °C in May) was associated with low precipitation. Spring precipita-

tion was followed by particularly high monthly meteorological values during the three 

summer months. This weather negatively affected the development of the sown maize 
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and its emergence. During the summer months, there was a significant surplus of precip-

itation compared to the multiple-year average (June +53 mm, July +122 mm, August +21 

mm). This rainy weather continued into the fall months. The difference in the average 

monthly temperatures from the average continued even in August (+1.8 °C), September 

(+1.9 °C), and October (+1.1 °C) months. 

2.4. Model Calibration and Evaluation/Data Requirements for Calibrating and Validating the 

Ceres-Maize Model 

The CSM-CERES Maize model (v.4.7) is a deterministic model to simulate crop 

growth and development on a daily basis [25]. The CERES-Maize model simulates con-

version processes of soil water, carbon, and nitrogen balances and predicts maize yield 

and N uptake, as well as water use efficiency. Daily records of minimum and maximum 

temperature, total rainfall, and solar radiation are required for the model. The Weather-

man utility also needs information from the weather station. Soil data tool (SBuild, Ver-

sion 4.7.5, DSSAT Foundation, Gainesville, Florida, USA) was used to adapt site coordi-

nates, soil profile, and classification. Measured soil characteristics were used to calculate 

soil physical and chemical parameters that are needed to run the model for yield predic-

tion (Tables 5 and A1). For simulation options, initial conditions were reported for each 

year and location (hybrids). The Priestly–Taylor (Ritchie method) was selected for simu-

lating evapotranspiration and the Soil Conservation Service method for infiltration. The 

Ritchie Water Balance model was set for soil evaporation. Photosynthesis was configured, 

while phosphorus and potassium were not modelled in all runs. 

Table 5. The physical and chemical parameters of the soil in the experimental area in 2020. 

2020 

Layer 

Depth, cm 

Organic 

Carbon % 

Total Ni-

trogen % 

pH in Wa-

ter 

Lower 

Limit, cm3 

cm−3 

Drained 

Upper 

Limit, cm3 

cm−3 

Saturated 

Water 

Holding 

Capacity, 

cm3 cm−3 

Bulk Den-

sity g/cm3 

Sat. Hy-

draulic 

Conduct, 

cm/h 

Root Growth 

Factor, 0.0 to 

1.0 

5 1.39 0.13 7.3 0.204 0.414 0.489 1.26 0.15 1.000 

10 1.39 0.13 7.3 0.204 0.414 0.489 1.26 0.15 1.000 

15 1.45 0.14 7.3 0.206 0.417 0.488 1.26 0.15 1.000 

20 1.45 0.14 7.3 0.206 0.417 0.488 1.26 0.15 1.000 

25 1.39 0.13 7.2 0.203 0.412 0.489 1.26 0.15 0.638 

30 1.39 0.13 7.2 0.203 0.412 0.489 1.26 0.15 0.577 

35 1.59 0.15 7.2 0.209 0.423 0.495 1.24 0.15 0.522 

40 1.59 0.15 7.2 0.209 0.423 0.486 1.24 0.15 0.472 

45 0.27 0.12 7.2 0.2 0.406 0.493 1.27 0.15 0.427 

50 0.27 0.12 7.2 0.186 0.392 0.484 1.25 0.68 0.387 

55 0.95 0.09 7.2 0.177 0.376 0.484 1.28 0.68 0.35 

60 0.95 0.09 7.2 0.177 0.376 0.484 1.28 0.68 0.317 

65 0.81 0.08 8.0 0.173 0.369 0.478 1.3 0.68 0.287 

70 0.81 0.08 8.0 0.186 0.378 0.478 1.3 0.15 0.259 

75 0.75 0.07 8.0 0.184 0.375 0.479 1.3 0.15 0.235 

80 0.75 0.07 8.0 0.184 0.375 0.479 1.3 0.15 0.212 

85 0.92 0.09 8.4 0.189 0.384 0.481 1.29 0.15 0.192 

90 0.92 0.09 8.4 0.189 0.384 0.481 1.29 0.15 0.174 
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2.5. Weather Data 

Daily records of solar radiation amount (SRAD), maximum temperature (Tmax), min-

imum temperature (Tmin), and precipitation (RAIN), wind speed, and the relative humid-

ity (RHUM) are required for the CERES-Maize model. According to Banda (2005) [26], the 

most important factors are the intensity and distribution of precipitation during the grow-

ing season, which greatly influences the development of maize yield. 

2.6. Examined Hybrid Parameters 

In the field experiment (11 measuring points), hybrids were characterized in the veg-

etation period of 2018 on the basis of Hanway’s scale, and values were used to determine 

genetic parameters [27]. To calibrate the genetic coefficients of the maize cultivar, dates of 

emergence, silking and physiological maturity, biomass, grain yield, and leaf area index 

were used. These phenological parameters include thermal time from seedling emergence 

to the end of the juvenile phase (P1), photoperiod-sensitivity (P2), thermal time from silk-

ing to physiological maturity above base temperature of 8 °C (P5), potential kernel num-

ber (G2), potential grain filling rate (G3), and interval in degree-days between successive 

leaf tip appearance (PHINT) (Table 6). In this study, we selected one hybrid Sushi (FAO 

340). Crop development was assessed by observing the phenology of different maize va-

rieties and recording the daily sum of heat required to reach each phenological phase 

(Hanway, 1963) [28]. Maize is a heat-demanding crop, but temperatures higher than 30 °C 

are not taken into account in the heat sum calculation. The total heat demand of the hy-

brids during the growing season is 1100–1400 °C [24]. Hanway (1963) [28] determined the 

growth stages before silking based on the number of leaves, the subsequent stages defined 

on kernel development, the growing season of maize was divided into eleven growth 

stages [24]. 

Table 6. Genetic coefficients for the Sushi hybrid. 

Hybrid P1 P2 P5 G2 G3 PHINT 

Sushi 118 0.500 926 830 7.1 42 

The Sushi hybrid was sown on 19 April 2016, 25 April 2017, 24 April 2018, 16 April 

2019, and 17 April 2020. The harvesting dates were in 14 October 2016, 12 October 2017, 

19 September 2018, 16 October 2019, and 24 October 2020. The sowing machine was set by 

76 cm at intervals 18 cm in row with 70.000 ha−1 seedlings (Table 7). 

Table 7. Sowing and harvest dates between 2016 and 2020 years. 

Years Sowing Date Harvest Date 

2016 19 April 14 October 

2017 25 April 12 October 

2018 24 April 19 September 

2019 16 April 16 October 

2020 17 April 24 October 

Initial conditions were based on those reported for each year and location (hybrids). 

The Priestly–Taylor (Ritchie method) was selected for simulating evapotranspiration and 

the Soil Conservation Service method for infiltration. The Ritchie Water Balance model 

was set for soil evaporation. Photosynthesis was configured and Phosphorus and Potas-

sium were not modelled in all runs. In addition to the agrotechnological applications per-

formed during the long-term experiment (tillage, sowing, fertilizer application, method, 

and dates of harvest), additional information was used to build the model. The objective 

of this study is to analyze the effect of fertilizer doses on yields and the differences be-

tween seasons. 
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2.7. Statistical Analysis 

Statistical assessment to judge the accuracy of CERES-Maize outputs included the 

root mean square error (RMSE), normalized-RMSE (nRMSE). These indicators were meas-

ured as Yang and Huffman (2004) [29]: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑚𝑖 − 𝑠𝑖)

2𝑛
𝑖=1

𝑛
  

𝑛 − 𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑚̅
  

where n is the number of measured dataset, si is simulated data, mi is measured data, and 

𝑚̅ is the mean of the measured data. In addition, because n-RMSE is unbounded, and it is 

unstable if 𝑚̅ or n approaches zero, an index of agreement (d) statistic was used in this 

study [30]. 

In this study, the univariate statistical method was used (regression analysis and 

analysis of variance) to analyze hybrids and NPK treatment interactions. Regression ex-

amines the trend in the relations and describes the mode of the relation with a certain 

function, i.e., it quantifies the causal relations. The regression coefficient gives the average 

change in the “explanatory” variable per unit change in the “response” variable, 

Y = β0 + β1X, 

where β1 represents the regression coefficient. Parameter β0 can usually only be inter-

preted mathematically if the variable X is set to 0, then β0 is the estimate given 0 in X. 

The linear correlation coefficient is known as the coefficient of determination (R2), and it 

shows the percentage of the variance of the response variable is explained by the factor 

variable, explain its reliability. 

Comparing two or more groups observed by ANOVA (variance of analysis) shows 

if there are significant differences. The value of R2 is between 0 and 1, and it expresses a 

percentage of the strength of the relations between the variables. The assay performs an 

F-test. The value can be used to determine if the test is statistically significant. The pro-

gram determines the p-value from the F-value, which determines whether the treatments 

have produced significant results. If the results are significant, the model is predictably 

valid. All analyses were performed using Minitab. 

3. Results and Discussion 

The weather variations from year to year in this study were significant. Examining 

the five years, 2016 and 2020 can be considered significantly rainy years. In 2018 and 2019, 

high average temperature values were associated with drought [23,31]. The total rainfall 

in the experimental years was 817 mm (2016), 641 mm (2017), 552 mm (2018), 479 mm 

(2019), and 708 mm (2020). 

3.1. CERES-Maize Simulation Results 

The CERES-Maize model was used to analyze the N-fertilization experiments con-

ducted in Látókép during the given growing seasons (2016–2020). The hybrid Sushi (FAO 

340) that we tested was calibrated from preliminary field and crop phenological measure-

ments. From the long-term experiment field measurement results and according to the 

agrotechnical elements for the given year, simulation settings were determined. The per-

formance of the CERES-Maize model was evaluated by comparison between simulated 

and observed grain yield under different N treatments (Table 8). The observed yield 

ranged from 5016 to 14,920 kg ha−1 during the 2016–2020 growing season, respectively. 

Higher yields (at 150 kg ha−1 N dose) were measured in the rainy years: 13,858 kg ha−1 

(2016), 13,400 kg ha−1 (2020), with the exception of the average rainfall year 2018 (14,920 

kg ha−1). The simulated data of maize yield ranged between 6671–13,136 kg ha−1. Simulated 
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and observed maize yield results are similar to the results obtained by Bao et al. (2017) 

[32], and in other research works [9–12]. The aim of this evaluation was to investigate how 

the CERES-Maize model simulated the effects of different N treatments on the observed 

yield data in long-term experiments, in Hungarian conditions. In both years (2016 and 

2017), the maximum yield of the Sushi hybrid was achieved at 150 kg ha−1 N [33]. 

Table 8. Measured and simulated yields of Sushi maize hybrid (2016–2020). 

Year 
N Rate (kg N 

ha−1) 

Grain Yield (kg ha−1) 

Measured Simulated 

2016 0 8657 8838 

 30 11,036 10,010 

 60 12,318 11,010 

 90 12,773 11,792 

 120 13,467 12,624 

 150 13,858 13,136 

2017 0 5016 8344 

 30 6629 8638 

 60 8627 9095 

 90 9652 9438 

 120 11,011 9866 

 150 11,688 10,004 

2018 0 6995 6671 
 30 9980 6984 
 60 11,540 7338 
 90 12,030 7525 
 120 14,640 7595 
 150 14,920 7592 

2019 0 7200 7740 
 30 9920 8639 
 60 9940 9181 
 90 9780 9269 
 120 10,240 9387 
 150 10,860 9392 

2020 0 5488 10,520 
 30 7999 11,186 
 60 8629 11,864 
 90 10,259 12,056 
 120 11,757 12,056 
 150 13,400 12,056 

Based on the obtained results, the model most accurately predicted the yield of our 

test plant in 2016 and 2019. The agrotechnical settings were used according to the given 

year and the soil test results were also different only in 2020 due to the new sampling tests. 

Figures 2–6 show the comparisons of the measured and estimated yields by the simulation 

model. The good fit between predicted and measured yield data showed that the model 

could be relevant to simulate the performance of yield for the dissimilar N treatments. 

Maize grain yield is significantly affected by fertilization (N). In the examined years, the 

Sushi hybrid yields increased with increasing doses of N. In 2016, except for the N0 dose, 

the model underestimated the yield in all cases. Due to the year with favorable rainfall, 

the high yields are also reflected in the simulation results. The measured yield data were 

determined with R2 = 0.88 (R2 = coefficient of determination) and the simulated results 
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with R2 = 0.98. One unit increase in nitrogen dose increased the yield by 32.14 kg/ha for 

the measured data, while it was 28.68 kg/ha for the simulated data (Figure 2). 

 

Figure 2. Comparisons between simulated and measured maize grain yield (2016). 

An increase in the nitrogen dose per unit increases the yield by 45.26 kg/ha for the 

measured data, while it was 11.74 kg/ha for the simulated data. Up to the N60 dose, the 

model estimated yields at the top and then at the bottom (Figure 3) In 2018, the simulated 

results (R2 = 0.87) followed the increase in yield in parallel with the increase in the fertilizer 

dose. However, the values lagged far behind the measured results (R2 = 0.94). An increase 

in the nitrogen dose per unit increases the yield by 51.51 kg/ha for the measured data, 

while it was 6.30 kg/ha for the simulated data (Figure 4) 

 

Figure 3. Comparisons between simulated and measured maize grain yield (2017). 
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Figure 4. Comparisons between simulated and measured maize grain yield (2018). 

In 2019, the measured yields were also below the average and the highest yield was 

10 t/ha. An increase in the nitrogen dose per unit increases the yield by 18.19 kg/ha for the 

measured data, while it was 10.08 kg/ha for the simulated data. This trend was followed 

by the simulation yield, but underestimated the yields in all cases except for the N0 dose. 

The measured results were determined with R2 = 0.65 and the estimated yields with R2 = 

0.76 (Figure 5) In the year 2020, the measured yield values are R2 = 0.98 and the simulated 

R2 = 0.77. An increase in the nitrogen dose per unit increases the yield by 49.96 kg/ha for 

the measured data, while it was 9.98 kg/ha for the simulated data. The model accurately 

estimated the yield of the N120 dose in 2020, but examining the other doses showed dif-

ferent results, maintaining the increasing trend (Figure 6). 

 

Figure 5. Comparisons between simulated and measured maize grain yield (2019). 
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Figure 6. Comparisons between simulated and measured maize grain yield (2020). 

According to similar studies [34–38], the CERES-Maize model was very sensitive to 

changes in climate factors. In summary, the model simulated the maize yields inaccurately 

in different N treatments and for the different growing season. 

3.2. Results of the Statistical Analysis 

According the analysis variance had a significant effect on years (2016–2020) and ni-

trogen doses. N fertilizer had significant impact on yield but the simulated data and meas-

urement data do not show any significance together (Table 9). The Tukey analysis showed 

that there was a significant difference between the examined years. There was no differ-

ence between 2016 and 2020 (group A), in case of 2017, 2018, and 2019, but there was a 

significant difference compared to 2016 and 2020 (group B) (Table 10). On average, over 

the examined years, the Tukey grouping analysis showed that there was a significant dif-

ference between the various nitrogen doses. There were similar values in the case of the 

150 and 120 N doses, while the second group involved the 90 and 60 N doses, and the 

third group included the 30 N dose and the fourth group is 0 nitrogen (Table 11). Based 

on the Tukey grouping analysis, there was no significant difference between measured 

and simulated values in the case of averaged years (Table 12). 

Table 9. Component variance analysis on parameters. 

Source DF Adj SS Adj MS F-Value p-Value 

year 4 57283327 14320832 5.78 0.001 

N 5 114917792 22983558 9.28 <0.001 

type 1 2040570 2040570 0.82 0.396 

Error 49 121361829 2476772   

Total 59 295603519    

Table 10. Tukey Pairwise Comparisons on years. 

Year N Mean Grouping 

2016 12 11,626.6 A  

2020 12 10,605.8 A B 

2018 12 9484.2  B 

2019 12 9295.7  B 

2017 12 9000.7  B 

Means that do not share a letter are significantly different. 
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Table 11. Tukey Pairwise Comparisons on N fertilizer. 

N N Mean Grouping 

150 10 11,690.6 A   

120 10 11,264.3 A   

90 10 10,457.4 A B  

60 10 9954.2 A B  

30 10 9102.0  B C 

0 10 7546.9   C 

Means that do not share a letter are significantly different. 

Table 12. Tukey Pairwise Comparisons on modeling. 

Type N Mean Grouping 

M 30 10,187.0 A 

S 30 9818.2 A 

Means that do not share a letter are significantly different. 

The analysis of variance had a significant effect on nitrogen, measured and simulated 

values. The Tukey grouping analysis showed that there was a significant difference be-

tween measured and predicted yields in 2016. The analysis of variance showed no signif-

icant effect on nitrogen and type. The Tukey grouping showed no significant difference 

between measured and simulated data in 2017. The analysis of variance showed no sig-

nificant effect on nitrogen; however, the analysis of variance showed a significant effect 

on type factor. The Tukey grouping analysis showed significant difference between meas-

ured and simulated values in 2018. The analysis of variance had a significant effect on 

nitrogen; however, no significant effect was shown on measured and simulated values. 

The Tukey grouping analysis showed that there were not significantly difference between 

measured and simulated values in 2019. The analysis of variance did not have any signif-

icant effect on the examined parameters. The Tukey grouping analysis showed no signif-

icant difference between simulated and measured values in 2020 (Tables 13 and 14). 

Table 13. Simple variance analysis on yield. 

Year Source DF Adj SS Adj MS F-Value p-Value 

2016 

N 5 30900853 6180171 47.16 <0.001 

type 1 1840050 1840050 14.04 0.013 

Error 5 655247 131049   

Total 11 33396151    

2017 

N 5 26086128 5217226 2.86 0.137 

type 1 635720 635720 0.35 0.581 

Error 5 9125963 1825193   

Total 11 35847811    

2018 

N 5 27856557 5571311 1.63 0.303 

type 1 58080000 58080000 16.98 0.009 

Error 5 17102215 3420443   

Total 11 103038772    

2019 

N 5 8826853 1765371 6.99 0.026 

type 1 1563852 1563852 6.19 0.055 

Error 5 1262346 252469   

Total 11 11653051    

2020 

N 5 28850326 5770065 2.20 0.204 

type 1 12415536 12415536 4.73 0.082 

Error 5 13118546 2623709   

Total 11 54384408    
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Table 14. Tukey Pairwise Comparisons. 

Year Type N Mean Grouping 

2016 
S 6 12,018.2 A  

M 6 11,235.0  B 

2017 
S 6 9230.83 A  

M 6 8770.50 A  

2018 
M 6 11,684.2 A  

S 6 7284.2  B 

2019 
M 6 9656.67 A  

S 6 8934.67 A  

2020 
S 6 11,623.0 A  

M 6 9588.7 A  

4. Conclusions 

The CERES-Maize model was evaluated using a long-term experiment in Hungary. 

In summary, simulated maize yields were not associated with site-specific measured 

maize yields from experimental plots. Our long-term experiment indicated that, as a result 

of increasing fertilization, crop yields increase. In addition to fertilization, yields were also 

affected by the weather. The model did not simulate the annual Sushi yields precisely. 

The examined years in this study differed significantly depending on the seasonal condi-

tions. In the rainy year (2016), the hybrid Sushi reached a yield of 13.858 kg ha−1, while the 

obtained yield was 3 tons less (10,860 kg ha−1) even in the drought year (2019). 

The simulated results of the model followed the increase in yields with increasing N 

dose. The measured and predicted yield during the years tracked the maize yields reason-

ably well for the 0N treatments. On specific treatment levels, the model accurately esti-

mated yields for the Sushi hybrid, but in several cases, the model under- or overestimated 

yields. According the performed variance analysis, a significant effect was observed on 

crop year (2016–2020) and nitrogen doses. The Tukey analysis showed significant differ-

ence between each year. Even though the DSSAT-CERES Maize have showed some un-

certainties associated in estimating the yields of different years, the increase in yield under 

the nitrogen dose was accurately modeled. The results of this study support the potential 

of using the model for the application of appropriate agrotechnics, including the determi-

nation of the nitrogen dose. Higher fertilizer doses resulted in higher yields each year. 

In order to predict yields that meet the requirements of precision farming, care must 

be taken to collect data from experiments performed under optimal conditions. In addi-

tion, the data required for calibration should be collected from a location where detailed 

soil data are available. Analysis of varieties (hybrids) will help farmers to have more ac-

curate decision support tools. Precision farming, which takes into account low spatial res-

olution management units, requires accurate, reliable crop yield models. Without validat-

ing these decision support systems for our growing conditions, we will not be able to 

make good agronomic decisions. 

Author Contributions: A.Z.: data collection, modelling, and writing, A.S.: data curation, statistical 

analysis, and writing, J.N.: project administration and supervision, A.N.: conceptualization and 

writing. All authors have read and agreed to the published version of the manuscript. 

Funding: The publication was supported by Széchenyi István Egyetem. 

Data Availability Statement: Not applicable. 

Acknowledgments: Project no. TKP2021-NKTA-32 was implemented with the support provided 

from the National Research, Development and Innovation Fund of Hungary, financed under the 

TKP2021-NKTA funding scheme. The authors thank the “Thematic Excellence Program—National 

Challenges Subprogram—Complex Precision Crop Production Research at Széchenyi István Uni-

versity (TKP2020-NKA-14)” project. 



Agronomy 2022, 12, 785 15 of 16 
 

 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

Table A1. The physical and chemical parameters of the soil in the experimental area in 2017. 

2017 

Layer 

Depth, cm 

Organic 

Carbon % 

Total Ni-

trogen % 

pH in Wa-

ter 

Lower 

Limit, cm3 

cm−3 

Drained 

Upper 

Limit, cm3 

cm−3 

Saturated 

Water 

Holding 

Capacity, 

cm3 cm−3 

Bulk Den-

sity g/cm3 

Sat. Hy-

draulic 

Conduct, 

cm/h 

Root 

Growth 

Factor, 0.0 

to 1.0 

5 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000 

10 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000 

15 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000 

20 1.58 0.16 7.3 0.21 0.424 0.495 1.24 0.15 1.000 

25 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.638 

30 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.577 

35 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.522 

40 1.34 0.13 7.2 0.202 0.41 0.489 1.26 0.15 0.472 

45 0.97 0.1 7.2 0.192 0.391 0.477 1.3 0.15 0.427 

50 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.387 

55 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.35 

60 0.97 0.1 7.2 0.177 0.377 0.484 1.28 0.68 0.317 

65 0.6 0.06 8.0 0.167 0.358 0.472 1.32 0.68 0.287 

70 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.259 

75 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.235 

80 0.6 0.06 8.0 0.18 0.367 0.472 1.32 0.15 0.212 

85 0.5 0.05 8.4 0.178 0.362 0.47 1.33 0.15 0.192 

90 0.5 0.05 8.4 0.178 0.362 0.47 1.33 0.15 0.174 
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