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Abstract: Regression models to predict leaf area and leaf weight in common bean (Phaseolus vulgaris)
were fitted using the three leaflets of the leaves. A total of 1504 leaves from 40 genotypes were
collected, covering a large range of leaf sizes. Width, length, area, and weight were measured for each
leaflet. The total leaf area and weight was obtained by the sum of left, central, and right leaflets. The
dataset was randomly divided into training and validation sets. The training set was used for model
fitting and selection, and the validation dataset was used to obtain statistics for model prediction
ability. The leaf area and leaf weight were modeled using different linear regression models based on
the length and width of the leaflet. Polynomial regressions involving both length and width of the
leaflet provided very good models to estimate the expected area (R? = 0.978) and weight (R? = 0.820)
of leaves.

Keywords: multiple regression analysis; leaf morphology; model validation

1. Introduction

One of the main crops in the diet of the tropics of Latin America and East Africa is
the common bean (Phaseolus vulgaris L.). The common bean is produced by smallholders
in areas with high climatic vulnerability. Due to their importance, there are currently
many issues in relation to the adaptation of improved varieties to different environmental
conditions, particularly in the face of imminent challenges posed by global climate change.
Leaf area is crucial to evaluating water stress [1], as a larger leaf area leads to greater hydric
conductance [2].

To determine the adaptation of bean materials to different conditions, growth should
be evaluated and simulated using mathematical models that describe the relationship
between plant growth, dry matter production, and expansion of total leaf area. One of the
ways to evaluate the interactions between environmental conditions and genotypes is the
area and weight of the leaf, which are considered indicators of growth and yield in crops.

Determining leaf area and weight requires the destructive sampling of many leaves, a
process that can be time-consuming and labor-intensive, as well as have an impact on plant
growth. Regression models allow the prediction of leaf area and weight using variables that
can be measured without destructive sampling techniques. In addition, this process allows
the repeated measurement of leaves over time, while avoiding the biological alteration
characteristic of destructive methods. Phaseolus vulgaris leaves are trifoliate. Therefore, the
length and width of each leaflet can be used to estimate the leaf total area and weight.

Several models have been reported to predict leaf area in legumes such as Alfalfa
(Medicago sativa) [3], chestnut (Castanea sativa) [4], chickpea (Cicer arietinum L.) [5], cowpea
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(Vigna unguiculata L.) [6], faba bean (Vicia faba L.) [7,8], peanut (Arachis hypogaea L.) [9,10],
pigeon pea (Cajanus cajan L.) [11], and soybean (Glycine max) [12-14], where equations
were developed from the length or width of some of the leaflets; however, no models are
reported to predict leaf weight and area from leaflet measurements for a large number of
genotypes of Phaseolus vulgaris.

Specifically for the common bean, a few models have been generated to predict leaf
area. The first linear model was reported by Lakitan [15], whose objective was to predict
the area of the central and lateral leaflets for three bean genotypes from the length and
width of a leaflet. Mufioz et al. [16] proposed to measure leaf area by multiplying the
length by the width of the leaflet corrected by a correction factor; then, lamauti [17] and De
Jesus et al. [18] mentioned an empirical model from leaflet length, a situation that was also
reported by Figueiredo et al. [19] for the cultivar Perola type Carioca, Toebe et al. [20] for
cultivar “Macarrao” and Queiroga et al. [21] for cultivar UEL-2, but these last two specify
only the use of the central leaflet to predict leaf area. Bhatt and Chanda [22] reported
different models for bean cultivation under different stress conditions. Likewise, Ramirez-
Builes et al. [23] reported models for different bean genotypes (BAT 477, Morales, SER 16
and SER 21), some of them resistant to water-stress conditions, based on length, width,
and its product, as well as Hara et al. [24]. Finally, Lakitan et al. [25] proposed a simplified
procedure for the non-destructive estimation of the trifoliate leaf area using the length and
width of the leaflets. Therefore, the objective of this study was to determine an empirical
model to estimate the leaf area and weight of different lines of the common bean from
the linear dimensions of the leaflets, with an emphasis on 40 advanced modern lines
developed with the capacity to adapt to drought, high temperatures, low soil fertility,
aluminum toxicity, resistance to pests, and high nutrient content. These lines were obtained
by crossing P. vulgaris with other species of genus Phaseolus sp.

2. Materials and Methods
2.1. Plant Material and Experimental Design

Evaluation of leaflet morphometric measurements in bean genotypes was carried
out in the Centro de Investigaciones Amazonicas CIMAZ Macagual, Universidad de la
Amazonia, Colombia (1°37' N and 75°36' W) located in Florencia, Caqueta (Colombia) in a
tropical rainforest ecosystem. The location has an average annual precipitation of 3800 mm
with 1700 h of sunshine per year, an average temperature of 25.5 °C, and an average relative
humidity of 84%. A total of 40 improved lines of common bean from the Mesoamerican and
Andean gene pools were used developed by CIAT’s Bean Breeding Program: 18 advanced
lines of Phaseolus vulgaris (ALB 349, AMADEUS, BFS 10, BFS 29, ICA QUIMBAYA, ICTA
PETEN, SCR 23, SCR 40, SCR 61, SEN 48, SEN 70, SER 323, SER 324, SMC 234, SMN 98,
SMR 181, SMR 182, SMR 185), 3 interspecific lines from P. vulgaris x P. coccineus which
resulted in a group of Mesoamerican gene pool lines (ALB 350, ALB 352, ALB 60) and
Andean (ALB 267, RRA 57), 2 interspecific lines from P. vulgaris x P. acutifolius (SER 213, SIN
351-1), 5 interspecific lines from P. vulgaris x P. dumosus (SMC 101, SMC 33, SMC 41, SMN 24,
SMR 84), 4 interspecific lines from P. vulgaris x P. acutifolius x P. coccineus (SEF 1, SEF 10,
SEF 49, SEF 70, SEF 73), 1 interspecific lines from P. vulgaris x P. acutifolius x P. dumosus
(SMR 195), 4 interspecific lines from P. vulgaris x P. acutifolius x P. dumosus x P. coccineus
(SMC 199, SMC 209, SMC 216, SMR 140).

These selected genotypes were resistant to different abiotic and biotic stress factors,
high micronutrient content, and other desirable attributes that enhance adaptation and
grain yield. The ALB (small red kidney, black kidney) lines have enhanced adaptation to
drought and Al toxicity. AMADEUS is a high-temperature tolerant improved line, the BFS
lines (small red) have enhanced adaptation to low soil fertility, RRA (various colored) were
developed to generate resistance to Andean root rot, genus Pythium sp. and Sclerotium sp.
The SEF (red), SEN (black) and SER (small red) lines were improved to adapt to drought
and heat. The SIN (black) lines were interspecific with drought tolerance. SCR (red), SMC
(colored), SMR (red) and SMN (black) lines are tolerant to drought with a high mineral
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content in seeds (Fe). ICA QUIMBAYA (red) is a commercial variety resistant to bean
golden mosaic virus and Al toxicity, and ICTA PETEN (black) is a commercial variety, it
has tolerance to rust and golden mosaic virus with high Fe content.

Approximately twenty plants per plot were sown in a greenhouse for each genotype,
and the plots were arranged in a nonreplicated complete randomized design. The same
substrate was used in each plot. The plot size was 2 m x 2 m, with three furrows at 0.6 m
between them. For each plot, three plants were selected from the middle part of the central
furrow to control border effects for a total of 120 plants (3 plants x 40 genotypes). For each
plant, between 4 and 19 leaves (depending on the plant size) were systematically selected
(one out of three) from the 7th leaf developed from the base to the top of the plant in the
growth stage of pod filling (Rg), which corresponds to a period of 70 to 80 days after sowing.
To predict leaf area and weight, we measured the length and width of each leaflet to see if
the morphological relationship between them remains constant for leaves of different ages.

We obtained the measurements of morphometric variables for a total of 4512 leaflets
of 1504 leaves. Each leaflet (left, right, and center) on each leaf was weighed independently
using an Ohaus Scout electronic scale (100 £ 0.001 g), after which it was scanned using the
HP Scan]et Pro 2500 scanner. The length, width, and area of each leaflet was measured from
its scanned image using the ImageJ program V1 [26]. From this information, we calculated
descriptive statistics for each of the morphometric variables evaluated, as well as calculated
the Pearson’s correlation coefficients between morphometric variables.

2.2. Data Analysis

Only 28 genotypes from a total of 40 had enough observations (n > 14) to fit their
own complete polynomial model (Model 1, see below). Nevertheless, the observations
of these 28 genotypes (1 = 1398) represented 93.2% of the complete dataset (n = 1500). To
compare the performance of genotype-specific models against a unique one, we used both
strategies to obtain predictions. Then, we calculated correlation concordance coefficients
for the predictions under the two strategies. For total leaf area, the correlation concordance
coefficient was 0.99, whereas for total leaf weight it was 0.93. According to these preliminary
results, we decided to fit unique models for all genotypes which are more suitable for
practical applications.

We used multiple linear regression models to predict leaf area and weight from leaflets
length and width. Due to the curvilinear trends between the dependent (leaf weight and
area) and predictor variables (leaflet length and width), multiple linear regression models
including second-order polynomials on length, width or both variables, and the interaction
(length x width) were used to estimate the expected value of leaflet weight and area. The
best model was selected using AIC and BIC criteria. The smaller the better, for both criteria.
Because none of them were uniformly the best, we decided to choose a model in which
both criteria agree.

We evaluated five different models according to the morphometric measures used
(c = central, r = right, and 1 = left leaflets; W = width, WW = width?, L = length, LL =
length? and LW = length x width):

Model 1: to estimate leaf area and weight using all the leaflet data:

Yi = [50 + [31 CLi + ﬁz CWi + [.))3 CLLi + (?)4 CWWi + [55 1L1 + BG 1W1 + [57 H_,Ll + (1)
[38 IW‘/\]1 + [39 I‘Li + 610 I‘Wi + Bll I‘LLi + [312 I'WWi + €

Model 2: to estimate leaf area and weight using the central leaflet data:
Y= [30 + [31 cLi + [32 cW; + [33 cLL; + [54 cWW; + ¢ (2)
Model 3: to estimate leaf area and weight using the left leaflet data:

Yi = Bo + B1 1Li + B2 IW; + B3 ILL; + B4 IWW; + ¢ 3)
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Model 4: to estimate leaf area and weight using the right leaflet data:
Y; =Bo + By rLi + B2 tW; + B3 rLL; + B4 rtWW; + e 4)
Model 5: to estimate leaf area and weight using only the leaflet width data:
Yi =P+ B1 cWi + B c(WW; + B3 IW; + B4 IWW; + B5 W + B TWW; + ¢ ®)

For all models, e; (i =1, ..., 1200) is the error term assumed to be normal and
independently distributed, with zero mean and a common variance.

The models using only length information from the three leaflets were not reported
because they were much less predictive than those based only on width.

From the total of the 1504 leaves recorded, we obtained 1500 valid data values. We
randomly selected 1200 leaves to conform the training set used to estimate the models. The
remaining 300 leaves were used as a validation set to measure the predictive ability of a
fitted model, calculating, from this set, the coefficient of determination (R?) and prediction
mean square error (PMSE). We used the adjusted R? in multiple linear regression models
and R? in the case of simple regression models. Adjusted R? (or R?) and PMSE are summary
statistics commonly used for the comparison of models. However, they do not say anything
about patterns of departure of observed values against predicted. A simple and effective
way to visualize any trouble regarding this issue is to draw a scatter plot of observed
vs. predicted values and overlap a reference line (y = x) as well as the regression line of
observed vs. predicted values. Departures of the regression line from the reference line can
suggest problems of over or underestimation [27]. All the statistical analyses were done in
InfoStat version 2021 [28] and R version 3.6.1 [29].

3. Results
3.1. Summary Measures of Morphometric Variables Evaluated in the Different Bean Lines

The summary statistics are shown for each of the morphometric variables evaluated
(Table 1). The maximum and minimum statistics of the regressors are useful to approx-
imate the range of prediction space in which the prediction model is reliable. Pairwise
Pearson’s correlation coefficients were also calculated among the set of morphometric
variables (Figure 1). The correlation between leaf total area and the leaflet measurements
(Figure 1) was higher than the correlation between leaf total weight and leaflet measure-
ments (Figure 2) (ranged between 0.886-0.931 and 0.78-0.86, respectively). For leaf total
area, the width measurements of the leaflets were more correlated than those of leaflet
length (ranged between 0.886-0.9 and 0.91-0.93, respectively). The leaf total weight and the
width measurements of the leaflets were more correlated than with those of leaflet length
(ranged between 0.78-0.826 and 0.804-0.813, respectively).

Table 1. Summary statistics for morphometric variables of leaflets of improved lines of common bean.
The sample was taken to cover a large range of leaf sizes.

Variable Leaflet Mean Std. Dev Minimum Maximum
Right 38.24 20.62 1.70 132.78
A 5 Central 39.65 20.09 2.33 132.76
rea (cm”) Left 39.50 20.58 248 146.99
Total 117.40 59.34 8.94 41253
Right 0.57 0.35 0.02 217
. Central 0.60 0.35 0.03 2.13
Weight (g) Left 0.58 0.34 0.03 228

Total 1.75 1.01 0.09 6.58
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Variable Leaflet Mean Std. Dev Minimum Maximum
Right 8.77 2.30 2.51 16.84
Length (cm) Central 9.13 2.31 2.53 17.88
& Left 8.91 2.34 2.40 17.14
Mean 8.93 2.21 2.48 16.94
Right 6.27 1.89 1.02 12.86
. Central 6.59 1.95 1.18 12.65
Width (cm) Left 6.40 1.93 1.03 13.34
Mean 6.42 1.84 1.20 12.95

Total Area Central Length Right Length Left Length Central width Right width Left width
)
Corr: Corr: Corr: Corr: Corr: Corr: &
0.89 0.9 0.886 0.91 0.931 0.922 §
1]
g o]
15 = Y 3
o Corr: Corr: Corr: Corr: Corr: S
0.876 0.854 0.875 0.829 0.817 5
57 =
15 = o o )
[(e]
10 = Corr: Corr: Corr: Corr: §
0.878 0.797 0.903 0.83 §
5 - e
15 = o
- =k
10 - Corr: e
0.9 &
5= =
125 = o
100 = , g
75 = Corr: =
50 = 0.869 £
o
25 = 5
- LY
10 Corr: =
5 = 0889 | §
=
10 = o
=
3
59 =
=

1 1 [ I I I B | 1 |
0 100200300400 5 10 15

1
5 10 15 25507510025 5 10

Figure 1. Scatter plots matrix between leaf total area versus length and width of the central, right,
and left leaflet of leaves in common bean. Validation observations in red, training observations in
black. Corr: Pearson correlation coefficients.
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Total Weight

Central Length Right Length Left Length Central width Right width Left width
3
Corr: Corr: Corr: Corr: Corr: Corr: %
0.78 0.826 0.796 0.804 0.863 0.835 i
=
(@]
g
Corr: Corr: Corr: g
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Q
A
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Figure 2. Scatter plots matrix between leaf total weight versus length and width of the central, right,
and left leaflet of leaves in common bean. Validation observations in red, training observations in
black. Corr: Pearson correlation coefficients.

3.2. Regression Models

In all the models, evaluating the inclusion of interaction (length x width) was not
necessary (p > 0.10), but the second-order polynomial term on leaflet length and leaflet
width was included. In addition, the inclusion of an interaction term in any model increases
both AIC and BIC values. Regression coefficients for the five models described above were
estimated for both dependent variables: weight and leaf area (Table 2). In total area
estimation, Model 1, which is a second-order polynomial on all leaflet length and leaflet
width, without their interaction, has the lowest PMSE and the greatest adjusted R? (90.95
and 0.9781, respectively) and has the least values for both AIC and BIC. The models to
estimate the total area from the individual leaflets (Models 2 to 4) have greater PMSE and
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lesser adjusted R? (ranged between 345.65 and 368.13, and ranged between 0.9108 and
0.9154, respectively). The model to estimate leaf area using only the width information
(Model 5) has a PMSE = 177.72 and adjusted R? = 0.9571 (Table 2).

Table 2. Regression coefficients of the five models evaluated to predict leaf area and weight from
leaflet measures of improved lines of common bean. Prediction mean square error (PMSE) and

determination coefficient (adjusted R2) are calculated on the validation dataset.

Leaf Area Leaf Weight
Parameter Coefficient t p-Value Coefficient t p-Value Model
Bo 1.360385 0.39 0.6958 0.1151 0.71 0.4752
By cL —1.217674 —0.78 0.4375 —0.0025 —0.03 0.9730
By cW —1.851119 —1.14 0.2540 0.0310 0.41 0.6800
B3 cLL 0.192913 248 0.0134 —0.0004 —0.11 0.9114
By CWW 0.719912 6.67 0.0000 0.0044 0.87 0.3828
Bs 1L 2.264534 1.33 0.1848 —0.1135 —144 0.1512
B IW 1.858530 0.99 0.3209 0.1704 1.97 0.0496
f7ILL 0.057770 0.66 0.5113 0.0081 2.00 0.0460 1. All the leaflets’
Bg IWW 0.351000 2.68 0.0075 —0.0050 —0.82 0.4113 measures
Bo rL 1.732512 0.97 0.3303 —0.0600 —0.73 0.4670
B TW —3.661254 -1.92 0.0553 0.0144 0.16 0.8706
B rLL 0.095602 1.03 0.3039 0.0077 1.79 0.0736
B1p TWW 0.845674 6.17 0.0000 0.0128 2.02 0.0439
R? 0.9781 0.8205
PMSE 90.9593 0.2033
AIC 8447.72 1492.26
BIC 8518.09 1562.63
Bo 13.614836 2.16 0.0313 0.2187 1.20 0.2317
By cL —6.117789 —2.63 0.0087 —0.1971 —2.93 0.0035
By W 6.701626 2.59 0.0097 0.2465 3.29 0.0010
B3 cLL 0.866885 7.51 0.0000 0.0175 5.23 0.0000
By CWW 0.837329 471 0.0000 0.0036 0.70 0.4834 2. Only central leaflet
R? 0.9164 0.6988
PMSE 345.6574 0.3412
AIC 9930.04 1944.81
BIC 9960.20 1974.97
Bo —3.350078 —0.52 0.6007 0.0972 0.57 0.5669
By 1L 2.210764 0.82 0.4139 —0.1692 —2.36 0.0185
By IW 2.094504 0.67 0.5002 0.2575 3.12 0.0018
fsILL 0.319671 2.28 0.0230 0.0149 4,01 0.0001
By IWW 1.364022 6.09 0.0000 0.0056 0.95 0.3434 3. Only left leaflet
R? 0.9153 0.7545
PMSE 350.0354 0.2784
AIC 10,045.55 1858.97
BIC 10,075.51 1889.13
Bo —8.177508 —142 0.1562 —0.0085 —0.05 0.9570
BqrL 5.809652 2.39 0.0170 —0.0901 —1.36 0.1734
By TW —1.468532 —0.54 0.5879 0.1679 2.28 0.0229
fsrLL 0.152891 1.19 0.2348 0.0114 3.25 0.0012
Bs TWW 1.676578 8.44 0.0000 0.0133 2.46 0.0140 4. Only right leaflet
R? 0.9108 0.8092
PMSE 368.1351 0.2160
AIC 9755.55 1616.08
BIC 9785.71 1646.24
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Table 2. Cont.
Leaf Area Leaf Weight
Parameter Coefficient t p-Value Coefficient t p-Value Model
Bo 7.928129 -7.16 0.0000 —0.0813 —4.67 0.0000
B1 W 1.895257 3.54 0.0004 0.0458 2.47 0.0136
Bo rW —3.845477 0.57 0.5674 —0.0339 0.54 0.5915
B3 IW 2.634387 2.14 0.0326 0.0507 0.71 0.4752
By CWW 0.543651 10.16 0.0000 0.0022 —0.10 0.9212
Bs tWW 1.212421 11.62 0.0000 0.0230 6.21 0.0000 5. All the leaflets width
Be IWW 0.608981 9.14 0.0000 0.0076 2.92 0.0035
R? 0.9571 0.8109
PMSE 177.72 0.2142
AIC 9001.98 1556.72
BIC 9042.19 1596.93

Bo = intercept, B1, ..., P12 = correlation coefficients, ¢ = central, r = right, and 1 = left leaflets; W = width,
WW = width?, L = length, LL = length? and LW = length x width, AIC = Akaike information criteria,
BIC = Bayesian information criteria.

In total weight estimation, Model 1 has the lowest PMSE and the greater adjusted R?
(0.2033 and 0.8205, respectively) and has the least values for both AIC and BIC. The models
to estimate the total weight from the individual leaflets (Models 2 to 4) have the greatest
PMSE and lower adjusted R? (PMSE ranged between 0.2160 and 0.3412, and R? ranged
between 0.6988 and 0.8092, respectively). The model to estimate leaf weight using only the
width information (Model 5) has a PMSE = 0.2142 and adjusted R? = 0.8109 (Table 2).

In order to evaluate the prediction quality, we used scatter plots of observed against
predicted values, adding the reference line y = x. A departure of the regression line of
observed vs. predicted from the reference line is evidence of bias. For leaf area estimation
(Figure 3), the model with the least bias is Model 2. However, because it only considers
the central leaflet, its R? is lower than the R? in Model 1. Model 1 shows a little departure
from the reference line for large values of area, showing a little underestimation. Model 4
is similar in bias to Model 1 but shows a smaller RZ. Finally, Model 5 exhibits a similar
behavior to Model 1, also underestimating for large-area leaves but showing a high R? in
both cases. When modeling the area and considering the PMSE (smaller is better), these
two models have lower PMSE (90.95 and 177.72, respectively) and higher R? than the other
models. For this reason, we recommend using Model 1 or Model 5, but it is important to
consider that Model 5 only needs width measures of leaflets (more parsimonious model).

For leaf weight estimation (Figure 4), the model with the least bias is Model 4. However,
because it only considers the right leaflet, its R? is lower than the Model 1 R? (considering
the three leaflets). In the same way as for area estimation, Model 1 shows a little departure
from the reference line for large values of weight, showing a little underestimation. Model 2
and Model 3 show a little bias for large weight values but underestimate and overestimate,
respectively. Finally, Model 5 shows a similar behavior to Model 1, also underestimating
for large leaf weights but showing a high R? in both cases (0.81 and 0.82, respectively).
Considering the PMSE, these two models have lower PMSE (0.20 for Model 1 and 0.21
for Model 5) and higher R? than the other models. In weight estimation, Model 5 has
almost the same PMSE and R? as Model 1, but only uses width measures of leaflets (more
parsimonious model).
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Figure 3. Relationship between the observed leaf area and the predicted leaf total area of improved
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Figure 4. Relationship between the observed weight and the predicted leaf total area of improved
lines of common bean for the five evaluated models. Regression line of observed versus predicted
values: red line, reference line (x = y): black line.

4. Discussion

The estimation of the leaf total area and weight by non-destructive methods is widely
used in studies of physiology (photosynthetic capacity) and management intensity (fertil-
ization levels, water availability), among others [30-33]. The use of destructive methods
has a disadvantage when the aim is to evaluate growth, because the use of different leaves
through time increases the experimental error [21,34].

Some research proposes statistical models to estimate leaf area and weight in
legumes [3-14]. In all cases, the linear regressions used involve measurements of length
and width (L and W) of one or more leaflets of the leaf. Furthermore, due to the non-linear
relationship between these measurements and leaf area or weight, their squares (LL and
WW) or their interactions (LW) are incorporated (e.g., Lakitan et al. [25]).

In the case of Phaseolus vulgaris, the leaf is trifoliate, therefore, the length and width of
each leaflet can be obtained to estimate the leaf’s total area and weight. A few models have
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been proposed to estimate the leaf area in beans using linear regressions [20-22,25]. These
models were made using one, two or three cultivars. The major novelty of our research lies
in the dataset covering a large variety of genotypes and leaf sizes and ages, which makes it
a general-use model. In addition, we propose models to estimate leaf weight based on L
and W measurements of the leaflets. In our models, estimates were made using a training
dataset and a validation dataset, which allowed us to obtain independent measurements of
the PMSE and R? statistics [35]. Among the models found for beans, only Lakitan et al. [25]
and Queiroga et al. [21] used a validation dataset.

The number of leaves measured in this research (1500) far exceeds the sample size
used by other authors. Due to the number of intervening genotypes, compared to other
research, the range of variation of the length and width measurements of each leaflet was
much greater, increasing the range of validity of the models that we propose in this research.
The minimum and maximum W (1.02 cm; 13.34 cm) and the minimum and maximum L
(2.40 cm; 17.88 cm) in this study have both a larger range than reported by Lakitan et al. [25]
(W: 0.9 cm; 9 cm, L: 1.5 cm; 15.5 cm). The range of regressor values should always be
reported [36], however, sometimes the ranges are not provided (e.g., Queiroga et al. [21]).

Several studies have determined that some species present more regularity in the area
of the central leaf compared with the lateral ones, finding that there is more correlation
between length and width of the central leaf with respect to the other two [21]. In our
research, the correlation between L and W for central leaflet was 0.87, while the correlation
between L and W for right and left leaflets was 0.90 in both cases, showing a similar
behavior for the shape of the three leaflets. This different result may be due to the fact
that in our study, there were 40 genotypes instead of one, as with Queiroga et al. [21].
Marshall [37] and Chanda et al. [38] point out that this correlation can change according to
the plant age and environmental conditions.

The best models in our research do not include the LW interaction, but they include
the second-order polynomial term. Lakitan et al. [25] developed models using L, W, and
LW. However, they use zero intercept in their models, because for them “it makes sense
to force intercept to zero, since if L, W or LW is zero, then leaf area should also be zero”.
This is a common error in regression models. When the zero-intercept regression model
is fitted, it should not be based only on conceptual issues but mainly on the data. If there
are not near-zero-regressor values available, when assuming zero intercept, we are also
assuming the linearity of the model in a range of values were the regressors were not
observed. Forcing the model to have zero-intercept because of a non-sense estimated
intercept (for example negative area) leads, at the same time, to miss-fitting the model for
observed values.

Pompelli et al. [39] and Lakitan et al. [25] found that the power model predicted the
leaf area with good accuracy but increasing heteroscedastic residual dispersion compared
with the use of LW. We could not verify such a behavior.

We obtained the best model to estimate leaf area and weight using all the leaflet
information (L and W) and its second-order polynomial (LL and WW, Model 1). These
models showed only a little underestimation for large leaf area and weight values. In
addition, estimates of leaf total area and weight are provided based on the length and
width measurements of leaflets, achieving that with only two measurements, there are
models with R2 greater than 0.9 in the case of total area. In addition, for total area estimation,
the models using the central, left, or right leaflet measurements are very similar in terms of
their PMSE and R?.

For weight, there is a marked difference between the estimates obtained from the
individual leaflets. Those from the length and width of the right leaflet shows the highest
R? and lowest PMSE than the central and left leaflets. The correlation between leaf area
and weight with W measurements was higher than the correlation with L measures for
all leaflets. Queiroga et al. [21] estimated the leaf area by measuring only the width of the
central leaflet. Using a logarithmic regression with zero intercept they obtained a good
percentage of explained variability (R? = 0.98), but they do not evaluate the presence of
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under or overestimation of their models. The selection of the best model must be based not
only on R2 and PMSE but also use some measure of accuracy [27].

As in Queiroga et al. [21], in our research, we found a good estimation of leaf total
area and weight only based on the measurement of the width of the three leaflets. Other
authors found more correlation between width and leaf area than length (for instance,
Zaffaroni [40] in Vigna unguiculata L. and Bianco [41] in Amarantus retroflexus L.). The width
of the leaflets on the leaf is easier to measure than the length, due, among other things, to
the boundary between the lamina and the petiole of the leaflet. The results using only the
width of the leaflets gave estimates with R? values very similar to those corresponding to
the use of the two dimensions for both total area and weight, but unlike the area estimation,
the weight showed a very similar PMSE between Models 1 and 5, meaning that only
measuring the width of the leaflets is better in the case of leaf weight estimation. We also
evaluated a model using only central W as in Queiroga et al. [21], but the estimated model
(Area =1.19 + 5.86 W + 1.66 WW) showed an R? = 0.86. This result is a consequence of the
number of genotypes in our study, and the corresponding differences between W in the
central, leaf, and right leaflets are because of the genotype effect.

5. Conclusions

Second-order polynomial regression involving both the length and width of each
leaflet provided a very good fit to estimate the expected area and weight of leaves in
Phaseolus vulgaris. However, it is possible to estimate total leaf area and weight with good
accuracy using a second-order polynomial regression involving only the width of each
leaflet. The loss of accuracy due to the use of this simplified model is less when estimating
weight than when estimating area. Because the purpose of the predictive models we are
presenting is not specific to a given genotype, using any model depending on only one
leaflet is less accurate than a model using all of them.
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