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Abstract: Photovoltaic solar energy is becoming very important globally due the benefits of their
use. Climate change is resulting in frequent climatic variations that have a direct effect on the energy
production in photovoltaic installations, so their good management is essential. This can be a big
problem, for example, in photovoltaic pumping systems where irrigated crops can be affected due to
lack of water. In this work, a PREPOSOL (PREdiction of POwer in SOLar installations) model was
developed in MATLAB® software, which allowed to predict the power generated in the photovoltaic
installations up to 3 h in advance using Artificial Neural Networks (ANNs) in a Bayesian framework
with Genetic Algorithms. Despite that the PREPOSOL model can be implemented for other activities
with photovoltaic solar energy, in this case, it was applied to photovoltaic pumping systems. The
results showed that the model estimated the generated power with a relative error (RE) and R2 of
8.10 and 0.9157, respectively. Moreover, a representative example concerning irrigation programming
is presented, which allowed adequate management. The methodology was calibrated and validated
in a high-power and complex photovoltaic pumping system in Albacete, Spain.

Keywords: solar energy; artificial intelligence; power prediction; irrigation management

1. Introduction

In recent years, the consequences of climate change on the availability of resources
such as fresh water seem to be evident [1]. Moreover, a growing population has resulted in
a significant increase in global food demand that entails greater pressure on water resources
with a direct impact on irrigated agriculture [2]. In order to maximize the efficiency
of this water use, in the last two decades, many irrigated areas have been subjected to
modernization processes [3] where open channels have been replaced by pressurized
networks [4]. However, these modernization processes has led to high energy consumption,
making measures to optimize the use of this resource also necessary [5], which together
with the increase in the price of conventional electricity, can lead to the unfeasibility of
some farms [6]; these are mainly in irrigation areas with underground resources, where the
extraction cost alone can be up to 70% of the total energy cost [7].

Renewable energy resources, which depend on natural resources to generate an
infinite supply of energy that is sustainable and non-pulling, are a promising alternative to
the conventional energy resources and have gained significant importance in the recent
centuries to overcome the energy shortages [8].

Photovoltaic solar energy has emerged as the most popular approach of the renewable
energy resources [9,10], mainly in areas where the number of sunlight hours, among other
things, is very high, as for example in Mediterranean areas [11]. Consequently, irrigation
crops using photovoltaic pumping systems have increasingly gained interest, and have
already been established in many places of the world, for example, USA [12], India [13],
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Algeria [14], Turkey [15] and Spain [4,16]. Photovoltaic energy can be used in standalone or
grid-connected systems to supply power for pumping stations in irrigated agriculture [17].
Although, this energy source has many environmental and economic benefits [18–20], their
dynamic and highly weather-dependent nature makes its management a major challenge.
The variation in solar irradiance could result in dramatic problems in balancing between the
power generation and demand at the pumping station. Thus, solar PV power forecasting
is essential to the efficient management of these PV systems integrated in commercial
irrigated farms.

Fully modelling such PV systems is a hard task that requires the implementation of
many mathematical models that allow the analysis of the factors that affect the performance,
for example, geographical location, solar irradiance, multiplicity of PV-system components
in the market and the complexity of the permutations of these components, their types,
efficiencies, and their different performance indicators. Moreover, the varying methods
used for the design of PV-systems often lead to results with significant differences due to
differing assumptions [21]. Several methods are detailed in [22,23]. Thus, the efficient inte-
gration of photovoltaic (PV) production in energy systems is conditioned by the capacity
to anticipate its variability, that is, the capacity to provide accurate forecasts [24]. Conse-
quently, these accurate methods can present some limitations for users in their regions,
such as the difficulty and specificity of the method, or the necessity to get accurate input
and output data [25], which is not a serious problem due the current capacity to monitor of
these types of systems.

However, Artificial Neural Networks (ANNs) based methods have been proven
to be a useful tool to model different engineering systems under real-world conditions
without having to solve these mathematical methods [26,27]. The ANNs exhibit excellent
characteristics such as high-speed information processing, mapping capabilities, fault
tolerance, adaptively, generalization and robustness. Therefore, ANNs are a powerful and
smart tool for modelling, prediction, and optimization the management of the PV energy
systems. Many researchers have summarized the use of the ANNs in many applications of
PV energy systems. For example, multilayer perceptron networks (MLP) or radial basis
function networks (RBF) have been widely applied to forecast electrical efficiency, energy
performance or PV yield [28–30]. Others implement these ANNs for electrical modelling a
photovoltaic module [31], or MPPT-based artificial intelligence techniques for photovoltaic
systems [32], or even for prediction of solar radiation [33].

However, the most important and easily managed operating variable for the managers
of these irrigation networks is the power available at the outlet of the pumping station,
i.e., the power available to the irrigation system. None of the previous models consider
this essential aspect for the management of the PV systems in irrigation. On the other
hand, none of these works consider the temporal influence of the input variables of the
model, or the degradation of the PV systems over time. Thus, in this work, a new method,
based on BigData techniques and Artificial Intelligence, has been developed to forecast
the power available to the irrigation system (at the outlet of the pumping station) when
PV energy systems are used as the energy source. The forecasting model is based on a
deep recurrent artificial neural network optimized by a genetic algorithm (NSGA-II) [34]
known as deepLSTM (Long-Short Term Memory) [35]. The developed model PREPOSOL
(PREdiction of POwer in SOLar installations) considers each input of the forecasting
model in a time series and analyses the seasonality and trend of each input variable. In
addition, due to the memory capacity of the developed model, it can address the problem
of degradation of the PV system by adapting over time to the real system conditions. The
model PREPOSOL has been developed in MATLAB®(Mathworks Inc., Natick, MA, USA)
software and was tested in a real farm in the southeast of Albacete province (Spain).
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The paper is structured as follows. Section 2.1 describes the case study and all the
measuring equipment used. Section 2.2 details the process to calculate the cloudiness and
power loss in cables leading to the pumping station. Section 2.3 explains a new approach to
forecast the available power at the pumping station fed by PV systems. Sections 2.4 and 2.5
outline the equations to build the PREPOSOL model and their optimization processes.
Section 3 presents the input variables of the PREPOSOL model. Section 3.1 presents the
Pareto front for the last generation and the evolution of the best individual in the model.
Section 3.2 analyses the results obtained from the PREPOSOL model against real data.
Section 4 is the discussion section and finally, Section 5 shows our main conclusions.

2. Materials and Methods
2.1. Case Study and Data Source

In the present work, for developing the model, a commercial farm called “Peruelos”
was used. The geographical coordinates were 38.994◦ latitude and −1.859◦ longitude and
it was in the southeast of Albacete province (Spain). The crop was almond trees with a
plantation framework of 7 × 7 m2 in a total irrigation area of approximately 90 ha. The
photovoltaic system provided energy for a subsurface drip irrigation system, which was
composed by 20 subunits with a highly irregular shape and topography that reached huge
elevation differences (up to 60 m). An accurate description of the installation appears
in [36,37].

The photovoltaic system was composed by 152 polycrystalline silicon photovoltaic
modules. The photovoltaic module was SM6610P 265 (Astronergy/Chint Solar, Frankfurt,
Germany) of 60 solar cells and a unit capacity per photovoltaic module of 265 Wp with
south orientation and a slope of 8.5◦. The PV generator was 40 kWp and was composed by
eight lines in parallel with 19 photovoltaic modules per line.

The variable frequency drive (VFD) model was 3G3RX-A4220-E1F (Omron Europe
B.V., Hoofddorp, the Netherlands), with a nominal power of 30 kW, an output nominal
current of 57 A and an overvoltage protection of 800 V. The VFD efficiency, according to the
manufacturer, is 89.7% at 25% load and 95% at 100% load.

The irrigation pump was connected to the photovoltaic generator mainly by two
different lines of cables. The first line, from the VFD up to the borehole inlet, was in a
buried aluminium cable XZ1 0.6/1kV with a section of 150 mm2 and a length of 470 m, and
the second line, from the borehole inlet up to the submersible motor, was a copper cable
RVK 0.6/1kV with a section of 25 mm2 and a length of 225 m (Figure 1).
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The installed equipment on the farm to generate the PREPOSOL model was a Mid-
dleton EP07/134 calibrated pyranometer (Middleton Solar, Melbourne, Australia), which
allowed to measure the values of irradiance on the horizontal surface (W·m−2) and an
agroclimatic station SICO WS-600 (SICO Control Systems, Madrid, Spain) to measure wind
speed (m·s−1) both located in a corner of the photovoltaic generator (Figure 1).

An AR5 electrical network analyser (CIRCUTOR, Barcelona, Spain), which had an
accuracy better than 1.5%, was used to measure the generated AC power.

The equipment used for the system monitoring was programmed to record the mea-
surements with a time interval of 10 min during 2016, 2017, and 2018; its evolution is
presented in Section 3 of results.

2.2. Objective Photovoltaic Power

The presence of clouds has a negative effect on generating energy with photovoltaic
installations. Thus, an algorithm to calculate the clear sky conditions was used [38,39].
Later, the comparisons between forecasts of the clear sky conditions with the measures of
the irradiance on a horizontal surface allowed calculation of the level of cloudiness (%) at
all times of the day.

The objective was to get photovoltaic power to the inlet machine that requires it,
in this case, an irrigation pump. Figure 1 shows two lines of buried cables in Alternate
Current (AC) between the outlet of the VFD and the inlet of the irrigation pump, which can
produce important power losses that are necessary to calculate. The calculation of power
losses in long cables was based on the cable resistance approach obtained according to the
temperature of the cable (Equation (1)).

CLPOW =
N·R·L·I2

max
1000

(1)

where CLPOW is the power losses in the cable (kW), Imax is the AC current in the cable (A),
N is the number of conductors, L is the length of the cable (m), and R is the resistance
according to the temperature reached (Ω).

2.3. Problem Approach

The available power for the irrigation system, mainly when PV systems are imple-
mented as energy sources, is a key variable to schedule a precision irrigation and the
efficient management of the pumping station. Thus, in this work, a new approach based on
recurrent neural networks with memory optimized by genetic algorithms was developed
to forecast the available power at the pumping station (fed by PV systems), considering
both clear and cloudy days in a single model. The developed model can memorise the most
relevant information over time. This made it possible to optimise the model’s forecasts, as
well as to adapt dynamically to the natural evolution (degradations, efficiency losses, etc.)
of the PV systems. The model was trained to forecast the power available at the pumping
station up to 3 h in advance, which is enough time to carry out the optimal scheduling of
a precise irrigation system. The first phase of the model building process was to identify
the main input variables. There are many techniques to achieve this input space reduction.
Principal component analysis and partial least square cardinal components are two widely
used techniques. However, when the significant input variables resulting from these tech-
niques are used in nonlinear models, very poor results are usually obtained [40]. Therefore,
an adaptation of the methodology developed by [40], which applied fuzzy curves and
fuzzy surfaces for the identification was used to find the significant input variables in an
automatic way. A stacked LSTM (deepLSTM) model was then designed and optimized by
the NSGA-II genetic algorithm.
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2.4. LSTM Cell

The LSTM network belongs to the Recurrent Neuronal Network class and it was
specially designed for sequence problems. The recurrent connection of these kind of neural
networks adds state or memory to the model and allows it to learn and harness the ordered
nature of the sensor measurements with the input sequence. Figure 2 shows the architecture
of a LSTM cell, which is the elemental unit for stacked or deep LSTM models. An LSTM cell
consists of a set of recurrently connected blocks, known as memory blocks. These blocks
can be thought of as a differentiable version of the memory chips in a digital computer.
Each of these blocks contains one or more recurrently connected memory cells and three
multiplicative units (the input, output and forget gates) that provide continuous analogues
of write, read, and reset operations for the cells.

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 

space reduction. Principal component analysis and partial least square cardinal compo-

nents are two widely used techniques. However, when the significant input variables re-

sulting from these techniques are used in nonlinear models, very poor results are usually 

obtained [40]. Therefore, an adaptation of the methodology developed by [40], which ap-

plied fuzzy curves and fuzzy surfaces for the identification was used to find the significant 

input variables in an automatic way. A stacked LSTM (deepLSTM) model was then de-

signed and optimized by the NSGA-II genetic algorithm. 

2.4. LSTM Cell 

The LSTM network belongs to the Recurrent Neuronal Network class and it was spe-

cially designed for sequence problems. The recurrent connection of these kind of neural 

networks adds state or memory to the model and allows it to learn and harness the or-

dered nature of the sensor measurements with the input sequence. Figure 2 shows the 

architecture of a LSTM cell, which is the elemental unit for stacked or deep LSTM models. 

An LSTM cell consists of a set of recurrently connected blocks, known as memory blocks. 

These blocks can be thought of as a differentiable version of the memory chips in a digital 

computer. Each of these blocks contains one or more recurrently connected memory cells 

and three multiplicative units (the input, output and forget gates) that provide continuous 

analogues of write, read, and reset operations for the cells. 

x +

x x

σ σ σtanh

tanh

Ct-1

ht-1

xt

ft it ot

ht

Ct

ht

𝐶𝑡  

forget gate

cell state

Input gate
Output gate

LSTM cell

 

Figure 2. Structure of a LSTM cell. 

In all RNNs, there is feedback that considers output from the previous time steps (ht-

1). Unlike other ANN architectures, RNNs have a feedback loop at every node, which al-

lows information to move in both directions and so learning temporal patters of widely 

separated events. In addition to this feedback loop, the LSTM cell has some extra gates, 

namely the input, forget, cell and output gate that are used to decide which information 

are going to be forwarded to another node. Consequently, the input gate (it) can be defined 

according to Equation 2. 

𝑖𝑡 =  𝜎(𝑥𝑡𝑈
𝑖 + ℎ𝑡−1𝑊

𝑖) 
(2) 

where σ represent the sigmoid function; xt is the input vector of the model at time step 

t; Ui is the weight matrix that connects the inputs to the hidden layer; ht−1 is the hidden 

state from previous time step t−1 and Wi is the recurrent connection between the previ-

ous hidden layer and current hidden layer. 

Similarly, ft defines the forget gate Equation (3), which decides what to forget by 

a mechanism of sigmoid function. 

𝑓𝑡 =  𝜎(𝑥𝑡𝑈
𝑓 + ℎ𝑡−1𝑊

𝑓) (3) 

where Uf is the weight matrix that connects the inputs to the forget layer and Wf is the 

recurrent connection between the previous forget layer and the current forget layer. 

Figure 2. Structure of a LSTM cell.

In all RNNs, there is feedback that considers output from the previous time steps
(ht−1). Unlike other ANN architectures, RNNs have a feedback loop at every node, which
allows information to move in both directions and so learning temporal patters of widely
separated events. In addition to this feedback loop, the LSTM cell has some extra gates,
namely the input, forget, cell and output gate that are used to decide which information
are going to be forwarded to another node. Consequently, the input gate (it) can be defined
according to Equation (2).

it = σ
(

xtUi + ht−1Wi
)

(2)

where σ represent the sigmoid function; xt is the input vector of the model at time step
t; Ui is the weight matrix that connects the inputs to the hidden layer; ht−1 is the hidden
state from previous time step t−1 and Wi is the recurrent connection between the previous
hidden layer and current hidden layer.

Similarly, ft defines the forget gate Equation (3), which decides what to forget by a
mechanism of sigmoid function.

ft = σ
(

xtU f + ht−1W f
)

(3)

where Uf is the weight matrix that connects the inputs to the forget layer and Wf is the
recurrent connection between the previous forget layer and the current forget layer.

The cell state (Ct) represents the “memory” of the LSTM Equation (4) networks and
information from the earlier time steps can travel to later time steps, reducing the effect of
short-term memory.

Ct = σ
(

ftCt−1 + iC̃t

)
(4)

where C̃t is the candidate hidden state that is computed based on the current input and the
previous hidden state Equation (5) and Ct−1 represents the internal memory at the time
step t−1.



Agronomy 2022, 12, 693 6 of 16

C̃t = tanh(xtUg + ht−1Wg) (5)

where tanh represents tanh function; Ug is the weight matrix that connects the inputs to the
candidate hidden layer and Wf is the recurrent connection between the previous candidate
hidden layer and the current candidate hidden layer.

Finally, the output gate (ot), which defines the new cell state (Ct) and the hidden state
at time step t, is computed according to Equations (6) and (7).

ot = σ(xtUo + ht−1Wo) (6)

where Uo is the weight matrix that connects the inputs to the output gate and Wo is
the recurrent connection between the previous candidate hidden layer and the current
candidate hidden layer at output gate.

ht = tanh(Ct)·ot (7)

After a training process in this kind of ANNs, the weight matrixes (U) and the recurrent
connexions (W) are optimized to minimize the forecasting errors. Thus, at the end of this
step, the forget gate decides what is relevant to keep from the prior steps. The input gate
decides what information is relevant to add from the current step, and the output gate
determines what the next hidden state should be.

2.5. Building and Optimizing the DeepLSTM Model

The deep or stacked LSTM is a model that has multiple hidden LSTM layers where each
layer contains multiple LSTM cells. Stacking LSTM hidden layers makes the model deeper,
more accurately earning the description as a deep learning technique [41]. The multilayers
can recombine the learned representation from prior layers and create new representations
at high levels of abstraction, e.g., some groups of layers were specialised in cloudy days,
while others in clear days (all of them under the same model). However, the right or
optimal architecture of deepLSTM models is hard to find, and it is frequently adjusted
by trial and error leading to not skilful models, or unstable models. Consequently, the
architecture of PREPOSOL (based on deepLSTM) model has been automatically optimized
by the multi-objective genetic algorithm known as NSGA-II [34]. Figure 3 shows the
flowchart of the PREPOSOL development and optimization.

In the first step, an initial population of nPop chromosomes was randomly generated.
Every chromosome or individual (chr) was made up of nDec decision variables, or genes,
that represent each hyperparameter of the PREPOSOL model (deepLSTM model) to be
optimized. Thus, every individual of the genetic algorithm defined one deepLSTM model
to be trained.

Table 1 shows the five decision variables (genes) considered in this work, as well as
the value range that everyone takes during the optimization process. The two first decision
variables, or genes, (nDec1 and nDec2) define the dimensions of the inner gates and the cell
state activation function of the LSTM cell, respectively. Consequently, these two first genes
define the architecture of the LSTM cell. The third gene (nDec3) establishes the depth of the
deepLSTM model and so its capacity to be adapted to the problem addressed. The gene
nDec4 was designed to find the best way to train the deepLSTM model for this problem,
i.e., the best training function. Finally, gene nDec5 was responsible to find the best way to
measure the difference between the forecasted and the actual values of the available power
at the pumping station.
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Table 1. Decision variables (genes) of the optimization process.

ID Name Value Range

nDec1 LSTM cell dimension Integer value between 10 and 600

nDec2 Activation function of the LSTM cell
Integer value between 1 and 11 [42]:

(1) elu; (2) softmax; (3) selu; (4) softplus; (5) softsign; (6) relu;
(7) tanh; (8) sigmoid; (9) hard_sigmoid; (10) exponential; (11) linear

nDec3 Number of stacked LSTM cells Integer value between 1 and 10

nDec4 Training function
Integer value between 1 and 7:

(1) SGD [43]; (2) RMSprop [42]; (3) Adagrad [44]; (4) Adadelta [45];
(5) Adam [46]; (6) Adamax [46]; (7) Nadam [47]

nDec5 Loss function Integer value between 1 and 6:
(1) MAE; (2) MSE; (3) MAPE; (4) MSLE; (5) Huber; (6) LogCosh;
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Once the initial population was created, each deepLSTM model created by each
chromosome was trained and tested with two different datasets (train and test datasets).
After that, it was necessary to sort this initial population according to its aptitude, i.e., its
forecast capacity. However, to ensure good generalization of the PREPOSOL model, the
aptitude of every individual was measured, not over the training set but over the testing set.
Thus, the initial population was sorted by the aptitude of the testing set, which was defined
by two objective functions, F1 and F2. In this work, F1 (Equation (8)) is the coefficient of
determination (R2) of the testing dataset, while F2 (Equation (9)) measures the standard
error prediction (SEP) [48] of this dataset.

F1 =


∑nt

i=1

(
ÂPoweri − ÂPower

)
·
(

APoweri − APower
)

√
∑nt

i=1

(
ÂPoweri − ÂPower

)2
·∑nt

i=1
(

APoweri − APower
)2

 (8)

where nt is the total number of samples of the testing dataset; ÂPower is the estimated

available power at pumping station, kW; ÂPower is the average of APower of the testing
dataset, kW; APower is the observed available power at pumping station, kW; and APower
is the average of the observed APower of the testing dataset.

F2 =
1

APower

√
1
nt

·∑nt
i=1

(
ÂPoweri − APoweri

)2
(9)

Thus, the NSGA-II algorithm optimizes the decision variables by maximizing the
F1 values and minimizing the F2 values simultaneously. In the remaining stages, the
individuals were modified (crossover and mutation), and the top nPop were selected based
on their objective function values. The process was repeated for several generations (nGEN).
Finally, the set of nPop optimal individuals (optimal deepLSTM models) obtained in the
last generation defines the Pareto front.

3. Results

The input variables used in the generated model PREPOSOL are representative for
this case study “Peruelos” and are represented in Figure 4. The solar irradiance on the
horizontal surface (W·m−2), measured by the pyranometer, shows the normal evolution
according to the time of year, which is reflected on the power achieved. The mean wind
speed (m·s−1) was of 2.78 and the main cloudiness values were recorded in winter months.
However, there were many cases of cloudiness, below of 10% because of location in a highly
irregular topography, that could be related to fog, turbidity of the atmosphere and the
airborne dust, that mainly occurred in the early morning and late afternoon.
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3.1. Evolution of the PREPOSOL Optimization

The population corresponding with the last generation in the evolutional optimization
process was composed of five genes, which represented a different characteristic of the
ANN, with 100 individuals for each of them.

During the optimization process, the number of initial training steps in the ANN was
done with a limitation time. Later, the best individuals initially trained were retrained,
this time with no limitation time on the number of steps. The function time in the training
process was essential because it allowed to get more or less dense ANNs, which implied a
slow or fast training process respectively, and whose effect was reflected in the function
costs with more or less approximation. Consequently, Figure 5 represents the Pareto front
for the last generation and the evolution of the best individual with and without limitation
time. The individuals are not separated into different groups in the graph and, except for
some, in general terms there are linear relationships because as F1 value increase, so F2
values do too.
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In this case, the best individual was obtained without limitation of time (I2) with a
very small change in the R2 value with respect of the optimization process with limitation
time, but a clear improvement of the SEP value which results in an increase in the accuracy
of the model.

3.2. Optimal PREPOSOL Model

To analyse the precision of the PREPOSOL model, a statistical analysis was performed
based on the calculation of the root mean square error (RMSE), relative error (RE), and
coefficient of determination (R2). The statistical values of R2, RMSE and RE were 0.9157,
1.61 and 8.10, respectively (Figure 6a). Figure 6b shows the comparison between the
measured values and the predicted values with differences between 13–18 kW, which are
produced mainly in autumn-winter, and were slightly higher in predicted values compared
to the measured values. However, for high power between 22–28 kW, approximately, the
predicted values were below the measured values, mainly in summer, when this high level
of energy is more frequent.

Despite that, a good accuracy was observed in the power range of 19–22 kW without
many differences. Before the development of the generated model, a good filtering was
done of the initial values to obtain quality values. However, due the large number of inlet
parameters for calculations, these results could be influenced by the lack of representative
values in all periods of time (summer, autumn, winter, spring). Thus, according to the
previous reasoning, this model will be able to learn better with more and better-quality
representative data for all periods of time. Although the differences between the measured
and predicted values suffered temporal variations, the statistical analysis reveals a good
approach in values of the main statistical indicators.

The generated model can be applied in any system that uses photovoltaic solar energy
to feed their equipment. However, its application in irrigation pumping systems is a
great advantage, especially when the crop irrigation requirements are high and irrigation
with this type of system is the only solution. For that, it is essential to have an accurate
knowledge of the irrigation area to allow to collect quality parameters of complex irrigation
systems [37]. In this case, the hydraulic information was calibrated and validated in the
same real farm, which allowed to make an irrigation planning for the system.
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Figure 6. (a) Statistical analysis of the PREPOSOL model and (b) Comparative between the measured
values and the predicted values.

For a demonstration, two irrigation strategies were used. Table 2 shows the strategy
with an individual subunit and Table 3 shows the strategy with several simultaneous
subunits. The subunits analysed were 3 and 11 of 20 that make up the farm, which
depending on the selected strategy, allowed to obtain quality irrigation parameters an
accordingly the inlet power of the pump [37].

Table 2. Individual irrigation strategy.

Individual Irrigation Strategy

Subunit Power at Pump Inlet (kW) EU (%) CVq (%)

3

10 * *
11 * *
12 79.8 14.5
13 83.0 12.1
14 85.0 10.6
15 86.3 9.5
16 87.2 8.8
17 87.9 7.9
18 88.7 7.0
19 90.9 5.0
20 96.7 1.9
21 98.5 0.0
22 98.5 0.0
23 98.5 0.0
24 98.5 0.0
25 98.5 0.0
26 98.5 0.0
27 98.5 0.0

* Insufficient power to irrigate; EU: Emission Uniformity; CVq: Flow rate variation.
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Table 3. Simultaneous irrigation strategy with several subunits.

Simultaneous Irrigation Strategy

Subunit Power at Pump Inlet
(kW) EU (%) CVq (%) Subunit Power at Pump Inlet

(kW) EU (%) CVq (%)

3

10 * *

11

10 * *
11 * * 11 * *
12 * * 12 * *
13 * * 13 * *
14 * * 14 * *
15 * * 15 * *
16 79.3 15.0 16 77.6 13.9
17 82.0 12.9 17 81.5 11.4
18 83.7 11.6 18 85.2 9.2
19 85.0 10.6 19 89.0 7.1
20 85.9 9.8 20 92.4 5.3
21 86.6 9.3 21 94.9 3.6
22 87.2 8.7 22 96.7 2.3
23 87.7 8.2 23 97.7 1.3
24 88.3 7.4 24 98.4 0.3
25 89.1 6.6 25 98.5 0.0
26 91.0 4.9 26 98.5 0.0
27 95.0 2.9 27 98.5 0.0

* Insufficient power to irrigate; EU: Emission Uniformity; CVq: Flow rate variation.

Moreover, Table 4 shows a short example for the 6 July 2018 with different hours
of the day and their predicted power obtained with the PREPOSOL model. Thus, for
quality irrigation of subunit 3, (Emission Uniformity (EU) = 85%) 14 kW was necessary
at the inlet of the pump, whereby, according to Table 4, the farmer could irrigate subunit
3 individually at any hour. However, for a simultaneous quality irrigation of the subunits
3 and 11 (EU = 85%) 19 kW are necessary at the inlet of the pump whereby, according to
Table 4, the farmer could only irrigate subunits 3 and 11 from 13:20:00 to 15:20:00 hours.

Table 4. Predicted power obtained with the PREPOSOL model.

Date Hour Predicted
Power (kW)

Individual
Subunit (3)

Simultaneous
Subunits (3–11)

6 July 2018 13:20:00 23.11 X X

6 July 2018 13:30:00 21.34 X X

6 July 2018 14:50:00 21.27 X X

6 July 2018 15:00:00 20.69 X X

6 July 2018 15:10:00 19.95 X X

6 July 2018 15:20:00 19.47 X X

6 July 2018 15:30:00 18.99 X -

6 July 2018 15:40:00 18.15 X -

6 July 2018 15:50:00 17.25 X -

6 July 2018 16:00:00 16.45 X -

6 July 2018 16:10:00 15.74 X -

6 July 2018 16:20:00 14.60 X -

This was a small demonstration about the possibilities offered by the generated model
for irrigation scheduling.
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4. Discussion

The monitoring of power generation installations is not always considered [49]. One
of the essential and important factors, among others, in getting accurate predictions in PV
installations, is the cloudiness that is produced by the variability of weather conditions and
has a direct effect in the level of irradiance reached. Some researchers have published on
this issue, e.g., [50,51]. The implementation of the cloudiness parameter in the PREPOSOL
model has allowed to demonstrate their good performance. Moreover, in this case, the
cloudiness parameter was calculated with irradiance values obtained with a pyranometer
located in the same study place, but it could be calculated by the users through official
sources of information that are easier to use. Moreover, the current low-cost monitoring
systems of photovoltaic installations can be a useful technology [52]. Thus, a high efficiency
was demonstrated for predicting available photovoltaic power with the PREPOSOL model
using a small number of input variables that are commonly monitored.

A data acquisition system is very important to get information in real time, but it is
especially important in solar pumping systems as it allows to describe their behaviour in
variable weather conditions [53]. There has been much research to get photovoltaic power
predictions using artificial neural networks [49,54]. However, it is remarkable that the
PREPOSOL model has an associative and adaptative memory, which indicates that as the
data becomes better, its memory will be able it to adapt better to the conditions in which is
working. Thus, the methodology implemented could be applied in any other farm, with
adjustments of the model for each specific case.

The PREPOSOL model considers the temporal influence of the input variables and the
degradation of the PV systems over time; both aspects have not been considered previously,
which can result in significant lack of precision because the PV-module manufacturers
guarantee a power drop of less than 20% within the warranty period [55,56]. Moreover,
the most important and easily manageable operating variable for the managers of these
irrigation networks, is the power available at the outlet of the pumping station, i.e., the
power available to the irrigation system. None of the previous models have considered this
essential aspect in the management of the PV systems in irrigation.

The adequate management of a solar pumping system is a key objective so that farmers
can obtain quality and quantity food, have water and energy savings, be competitive in the
agriculture sector and generate benefits in their farms. The high variability of weather condi-
tions involves an efficient management of the energy resources to be applied appropriately
in the irrigation system, especially in farms with water scarcity. In this work, the power
prediction to 3 h in advance, represents enough time for the decision-making process and
allows easy management of the pumping station, or to do modifications in the irrigation
scheduling, as was demonstrated in the example presented for the irrigation system.

5. Conclusions

The utility of the PREPOSOL model to predict available power in photovoltaic installa-
tions up to 3 h in advance was demonstrated. Thus, it will be possible to adapt the energetic
production as the system demands with the aim of making a rational use of the resources,
increase the competitivity and productivity of the developed activity, planification and
programming of specific situations and other benefits that can be done according to the
developed activity. Although the generated model can be applied in any system that use
photovoltaic solar energy to feed their equipment, in this work was applied in a solar
pumping system.

Thus, the generated model enabled predictions of photovoltaic power with a high level
of precision (RE = 8.10%) with respect to the measured photovoltaic power, using a reduced
number of inlet variables which could be a great advantage in saving monitoring systems
of the photovoltaic installations. Moreover, the temporal influence of the input variables
and the degradation of the PV systems over time was considered, both fundamental aspects
that have not been considered in other works.
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Another aspect, and the most important and easily manageable operating variable
for the managers of these irrigation networks, is the power available at the outlet of the
pumping station, i.e., the power available to the irrigation system, was considered in
this work.

The need to have sufficient quantity and quality data is essential for accurate approx-
imations. Although, the statistical analysis obtained shows good results, and due at the
implemented algorithms in the generated model which present associative and adaptative
memory, the accuracy could be further improved if the data were better.

Thus, the PREPOSOL model allowed to optimize the generated energy with accurate
predictions of photovoltaic power and, in this case, could optimize the use of water for
quality irrigation with high emission uniformity (85%), which is a key resource in the
viability of many farms especially in farms with water scarcity.

The PREPOSOL model could be used to generate alarms for malfunctioning equipment
in the system, because if the monitoring photovoltaic power values are below the predicted
values of the model it will indicate technical problems and the need for immediate checking.
Thus, the efficiency of the installation is guaranteed, and there is the possibility to save
costs and avoid more expensive repairs.

Although, the generated model can be applied in other types of systems fed by solar
energy, in this case, it was applied to photovoltaic pumping systems where the high
variability of solar irradiation and the high irrigation requirements of the crops for food
production demand an accurate management of the system. The small representative
example showed the possibilities that the farmer has in the irrigation decision-making
process for a better use of the available resources, as well as a better use of the investment.
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