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Abstract: Fruit juices are one of the most adulterated beverages, usually because of the addition
of water, sugars, or less expensive fruit juices. This study presents a method based on Fourier
transform infrared spectroscopy (FT-IR), in combination with machine learning methods, for the
correct identification and quantification of adulterants in juices. Thus, three types of 100% squeezed
juices (pineapple, orange, and apple) were evaluated and adulterated with grape juice at different
percentages (5%, 10%, 15%, 20%, 30%, 40%, and 50%). The results of the exploratory data analysis
revealed a clear clustering trend of the samples according to the type of juice analyzed. The supervised
learning analysis, based on the development of models for the detection of adulteration, obtained
significant results for all tested methods (i.e., support-vector machines or SVM), random forest or
RF, and linear discriminant analysis or LDA) with an accuracy above 97% on the test set. Regarding
quantification, the best results are obtained with the support vector regression and with partial least
square regression showing an R2 greater than 0.99 and a root mean square error (RMSE) less than 1.4
for the test set.

Keywords: FT-IR; fruit juices; food control; machine learning; spectroscopy; regression; authentication;
classification

1. Introduction

One of the largest sectors in the beverage industry is the production of fruit juices. In
fact, 9067 million liters were consumed in Europe during 2018 according to the Association
of the Juice and Nectar Industry of the European Union (AIJN) [1]. Additionally, the interest
in fruit juices is increasing, as these drinks provide nutritional and dietary benefits, being
an excellent source of vitamin and key nutrients such as potassium, folate, magnesium,
among others [2,3].

In Europe, there is strict regulation to guarantee the quality and origin in the manufac-
ture of juices established by the 2012/12 EU directive [4]. Moreover, this directive describes
that fruit juices must be 100% squeezed from healthy and ripe fruits where the addition of
sugars is not allowed. Despite the regulations, these products have always been subjected
to adulteration in the market, being reported as one of the seven most common foods for
adulteration between 1980 and 2010 [5]. Among the most frequent adulterations is the
dilution with water, the addition of artificial sweeteners, or less expensive fruit juices [6].
The latter is very popular due to its greater difficulty to be detected [7]. It is important to be
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aware that adding other fruit juices and not informing the consumer entails an additional
risk of allergic reactions [8]. Therefore, it is food fraud for economic benefits, which could
also affect the health of the consumer [9].

Currently, analytical separation techniques, including both liquid and gas chromatog-
raphy, are the most widely used methodologies for the detection of adulterants in
juices [6,8,10–13]. However, other techniques such as isotope-based techniques and elemen-
tal techniques [14–16], physicochemical analysis [17,18], DNA-based techniques [19,20], and
spectroscopic techniques [6,8,12,13,21] have been employed. Among them, spectroscopic
techniques are becoming more and more important due to their numerous advantages such
as low analysis time and costs, ease of use, high reproducibility, and greater portability,
allowing in situ analysis. In this context, Fourier transform infrared spectroscopy (FT-IR)
has been one of the most extensive techniques to successfully detect adulterations in juices.
It has been employed for the detection of sugar addition in apple [22–24], mango [25], and
orange [12] juices, the authentication of different commercial juices [26], the detection of
grape juice in pomegranate juice [27], the discrimination of lime juice adulterated with
isocitric and/or citric acid [21], as well as the authentication of Concord grape juice in
grape blends [10].

Most of these FT-IR methods are based on the identification of one or a few individual
compounds that are used as biomarkers to detect the adulterant or the authenticity of
the juice. Therefore, these methods have some limitations, as they are easy to elude and,
consequently, less and less successful. An alternative to developing more robust methods
could be focusing on the whole or a wide spectral range that can be used as a pattern, or
using spectralprint techniques characteristic of each type of sample [28]. In that manner, FT-
IR spectroscopy, used as a global profiling or screening technique, generates a large amount
of information in a few seconds. With the aim of handling and extracting useful information
from these data matrices, the application of data analysis methods (including machine
learning methods) is crucial. Thus, both the transformation of data into interpretable
information and the fitting of predictive models with interactive applications to automate
quality control processes are possible by employing languages of coding, so these global
profiling methods are becoming increasingly popular [9] and have been used in various
fields such as forensic chemistry [29,30], agri-food [31,32], pharmacological industry [33,34],
among others. It is worth it since juices are complex matrices and the differences between
spectra are sometimes very substantial, thus identifying a small number of markers can
be difficult and unsuccessful. However, holistic methods consider small differences that
may be important in many cases and consequently offer better results than individual
identification. In addition, the process can be automated which requires less time for the
correct characterization of the sample.

Multivariate parametric analysis methods such as principal component analysis (PCA)
for dimensionality reduction, linear discriminant analysis (LDA) for classification, and
partial least squares regression (PLS) for adulterant quantification stand out among the
most commonly employed machine learning methods in juice characterization studies.
However, non-parametric methods such as random forests (RF) or support-vector machines
(SVM) have been less widely used, even though they have reported better results for similar
purposes [35,36]. Both SVM and RF have been used in combination with NIRS spectroscopy
data for the purity assessment of lime juice, with optimal results [37]. Additionally, another
study assessed the quality change of tomato juice using near-infrared spectroscopy coupled
to global profiling methods, obtaining better results with support vector machines than
with partial least squares [38]. This highlights the superiority of non-parametric techniques
in some situations, especially when the matrices analyzed are complex and the relationship
between the spectrum and the response variable is not linear.

This research study focuses on the development of a novel method based on machine
learning models (parametric and non-parametric) for the detection and quantification
of juices-to-juices adulterations in several fruit juices through the spectral information
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generated by FT-IR spectroscopy as an objective, robust, fast, and automatic method for the
detection of this illegal practice.

2. Materials and Methods
2.1. Samples

Four types of 100% fruit juices (apple, pineapple, orange, and grape) from different
suppliers in Spain were selected. A minimum of three different brands were chosen and,
from each of them, several batches to increase heterogeneity within each type of juice. In
that manner, the samples were labeled according to the following character code: “A_BB_C”
where “A” stands for the type of juice, i.e., A (apple), P (pineapple), O (orange), and G
(grape). “BB” indicates the brand and “C” the lot number (1, 2, or 3). Additionally, each
of them was analyzed twice, being labeled “R1” or “R2”. Thus, the label corresponding
to the second batch of an “HC” brand apple juice would be “A_HC_2_R1” for the first
replica and “A_HC_2_R2” for the second one. The overall number of unadulterated juice
samples reaches up to 76 with a minimum of 18 samples for each type of juice, which were
subsequently analyzed by FT-IR.

2.2. Adulteration

Grape juice was selected as an adulterant since this juice is commonly used for its
low cost compared to other types of juices [15]. Thus, two samples of each type of juice
were created by mixing the different brands of juice, i.e., the 4 brands for orange juice and
3 brands for all other juices from a randomly selected batch were proportionally mixed in
order to cover the widest heterogeneity. Those two samples of each type of juice (orange,
pineapple, and apple) were those adulterated with grape juice at the following ratios: 5%,
10%, 15%, 20%, 30%, 40%, and 50%. Non-adulterated fruit juices samples (0%) and grape
juices (100%) were also analyzed. In addition, the grape juice was diluted with the sugar
concentration of the juice (orange, pineapple, or apple) for the adulteration process. This
step was necessary because it is well known that FT-IR is sensitive to the number of sugars,
allowing even the quantification of sugars in juices [39–41]. Therefore, the dilution of
the juices was necessary to prevent the fraud from being easily eluted and to get a more
robust model, independent of the sugar content. A final set of 108 adulterated samples was
obtained: 3 types of juices × 2 different samples × 9 adulteration ratios (from 0 to 50% and
100%) × 2 replicates. The samples were labeled according to the following character code:
“AB_C” where “A” stands for the type of juice, “B” indicates the sample used (1 or 2), and
“C” the ratio of adulteration (0, 5, 10, 15, 20, 30, 40, 50, and 100). In addition, each of them
was analyzed twice, being labeled “R1” or “R2”.

2.3. Fourier Transform Infrared Spectroscopy (FT-IR)

Infrared spectra were measured by Fourier transform for all samples using a MultiSpec
(TDI, Barcelona, Spain). Previously, the samples had to be centrifuged and filtered with
0.45 µm filters to reduce turbidity and eliminate impurities. The sample volume analyzed
was 7 mL (standard setting) and was pumped through the system. Spectra were recorded
in the range of 952–3070 cm−1 with a resolution of 3.86 cm−1 and an optical path length of
20 µm. The region from 1610 to 1670 cm−1 was eliminated for presenting a high variability
since it is the characteristic signal of water. The working temperature was set at 25 ◦C and
the total analysis time per sample was 1 min.

2.4. Data Analysis

The raw spectral data were acquired for the region previously described and were
placed into Dn×p matrix where n denotes the number of samples and p denotes the num-
ber of variables. Thus, the complete total matrix (D184×540) consisted of 540 variables
(wavenumbers) and 184 samples. The entire computer analysis necessary to carry out
this study was performed with the statistical software RStudio v.4.0.2 (Rstudio Team 2021,
Boston, MA, USA). All visualizations were performed with the ggplot2 package [42]. The
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unsupervised learning analysis, including principal component analysis (PCA) and hier-
archical cluster analysis (HCA), was performed with the stats package [43]. In the HCA
analysis, the Manhattan distance was used and the linkage method was chosen based
on the highest value of the correlation coefficient between the cophenetic distance of the
dendrogram and the original distance matrix. The methods tested were: single, average,
complete, ward, and centroid, obtaining the best result for the average method.

The supervised learning analysis, which includes regression models: partial least
squares and shrinkage methods (lasso, ridge, and elastic net), and classification models:
linear discriminant analysis, support-vector machine, and random forest, was performed
with the caret package [44]. The performance metrics for the classification models measured
the accuracy and for the regression models, the root mean square error (RMSE) and the
coefficient of determination (R2). Finally, the development of the application was carried
out using the shiny package [45].

3. Results and Discussion
3.1. Exploratory Data Analysis (EDA)

Initially, the goal was to observe whether there is a spectral difference between the
different types of fruit juices. For this purpose, we used the 76 unadulterated juice samples
and the resulting 540 spectral variables (wavenumbers). Therefore, a data matrix D76×540
was subjected to HCA, which was performed using both the Manhattan distance and
the average method. It should be noted that the choice of method was based on the
correlation coefficient between the cophenetic distance of the dendrogram (height of the
nodes) and the original distance matrix. Therefore, different common methods were
assessed: single, complete, average, ward, and centroid, which values are shown in Table 1.
In general, high values are obtained for all of them, but the best result is obtained through
the average method (0.9848), which indicates that the resulting dendrogram (depicted in
Figure 1) reflects very well the true similarity between the observations. This dendrogram is
represented circularly and the samples are colored according to the type of juice to facilitate
the interpretation of the dendrogram.

Table 1. Correlation between the cophenetic distance and the distance matrix for the different
clustering methods using the FT-IR (Fourier transform infrared spectroscopy) spectrum of all the
pure juice samples (D76×540).

Method Cophenetic Distance

Single 0.9835

Complete 0.9835

Average 0.9848

Ward 0.9836

Centroid 0.9791

The dendrogram shows that there are four perfectly differentiated groups and each
of them corresponds to a type of juice. Furthermore, the grape juice is the one that seems
to differentiate itself the most from the rest. Moreover, all the pineapple samples (colored
yellow) fall into an independent cluster, which is joined to the cluster containing all the
orange samples (colored orange). Finally, this cluster merges with the one containing all
the apple samples (colored red). In this case, it seems that there is a perfect clustering of the
samples according to the brand within each type of juice, i.e., all the samples fall into the
same subcluster. Therefore, the FT-IR spectra are clearly influenced firstly by the type of
juice and secondly by the brand used. In general, HCA allowed perfect distinction of the
type of juice analyzed regardless of the brand or sample used. However, it is important to
ensure that this differentiation is not exclusively due to the sugar content present in the
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sample (Average values of the sugar content of each type of fruit juice can be found in Table
S1 of Supplementary Materials).

Figure 1. Dendrogram from HCA (hierarchical cluster analysis) using the Manhattan distance and
average method for all FT-IR spectra of pure juices (D76×540). Samples are colored according to juice
type: P for pineapple (yellow), G for grape (dark green), A for apple (red), and O for orange (orange).

We perform a PCA to identify regions and, consequently, to determine the most
influential functional groups in the juice classification. Figure 2A shows the scores obtained
by the samples for the first two principal components (PC1 & PC2) and Figure 2B shows
the loadings of these components. As can be seen in Figure 2A, PC1 explains 87.8% of the
variability of the data, which allows to distinguish between the grape juice samples and the
other juices. Thus, positive loadings of PC1 are associated with grape juices while negative
loadings correspond to apple, pineapple, and orange juices. This is quite relevant because
grape juice is the one used as an adulterant and, therefore, the greater the separation, the
easier it will be to detect it. Besides, PC2 explains 6.1% of the total variability and allows
to distinguish mainly pineapple from apple. In this case, positive loadings are associated
with apple, more negative loadings represent pineapple, and loadings around 0 would be
most associated with orange. It can also be observed that juices of the same brand and type
tend to appear closer together, indicating a tendency for grouping according to brand.



Agronomy 2022, 12, 683 6 of 14

Figure 2. (A) Representation of the scores obtained using the FT-IR spectrum of all the pure juice sam-
ples (D76×540) as a function of the first two principal components (PC1 and PC2). (B) Representation
of the loadings of the first two PCs.

As can be seen in Figure 2B, some regions are influential in the separation of the
samples. In general, weights greater than |0.07| can be seen approximately in the region
930–1170 cm−1 and around |0.03| in the region 1199–1400 cm−1. According to previous
studies in the analysis of fruit juices by infrared spectroscopy [39], the 900–1400 cm−1 region
is related to the sugars present in these beverages. These include glucose, sucrose, and
fructose, which present characteristic and intense bands in this region. Thus, the region of
900–1153 cm−1 is related to the stretching vibrations produced by the C–O and CC bonds,
which is exactly where the highest weights are acquired. The 1199–1400 cm−1 region,
which acquires moderately high weights, is related to the bending vibrations of the O–C–H,
C–CH, and C–O–H bonds. In addition, previous studies have identified these regions as
important for the detection of adulterations in different types of fruit juices [12,24]. The last
region of the spectrum, approximately from 2700 to 3030 cm−1, also acquired high values
in the loadings. According to the existing literature, the region from 2500 to 3300 cm−1

is related to the stretching vibrational motions produced by the O–H bonds of carboxylic
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acids [46]. These higher weights may be due to the multitude of acids naturally present in
fruit such as malic acid, which is found in high concentration in apples, citric acid, which is
scarce in grapes and abundant in pineapple and orange, and tartaric acid, which is very
characteristic of grapes, among others [47–49].

To sum up, this classification trend could be due to the difference in the number of
initial sugars since, according to the data provided by the manufacturer and checked by
densimeter, grape juice is the one with the highest amount (≈15.8 g/100 mL). For this
reason, to prevent the applied supervised learning models from discriminating between
the different types of juice based on sugars, the samples of the adulteration process were
diluted according to the sugar concentration. Additionally, PCA allowed a good separation
of the juices according to their type as well as the selection of the wavenumbers responsible
for this separation.

3.2. Classification Methods for Adulterant Detection

Once the ability of FT-IR to group juices according to the type of fruit has been checked,
an evaluation of the feasibility of the technique to identify and quantify adulteration in the
different fruit juices was carried out. For this purpose, the whole data matrix was used,
which is composed by the 184 samples from the different types of juices (orange, pineapple,
apple, and grape) and the unadulterated and adulterated samples at different ratios (5%,
10%, 15%, 20%, 30%, 40%, and 50%). Therefore, the resulting matrix has 540 wavenumbers
and 184 samples (D184×540).

For the supervised learning methods, a total of four groups were established a priori
according to the type of juice used (“Pineapple”, “Apple”, and “Orange”) and the presence
of adulteration (“Adulterated”). The latter includes adulterated samples of all juices at
different percentages with the grape juice, and also samples of pure grape juice. The
complete data set was randomly split up on 75% of the samples for the training set and
the remaining 25% for the test set. Additionally, it was ensured that they were balanced,
and the test contained at least one sample of each type of juice at each of its percentages of
adulteration. Thus, the test set contains 46 independent samples that are never part of the
model and is used as external validation of all trained models, leading to an unbiased error.
It is important to remark that both the undiluted grape samples used in the exploratory
analysis and the diluted ones used in the adulterations are adjusted on the models. Thus,
the models do not depend on sugar content as seen in the applied PCA and, therefore, a
greater robustness of the models is achieved. The classification models evaluated were
SVM with Gaussian kernel function, RF, and, LDA. A summary of the accuracy obtained
by the fitting of the different models is shown in Table 2.

Table 2. Summary of the accuracy obtained by the classification models tested.

Model Hyperparameter Training Set Accuracy Test Set Accuracy

lda - 100% 100%

SVm
C = 2.83

100% 100%Y = 0.022

RF
mtry = 23

100% 97.67%ntree = 500

3.2.1. Support Vector Machines (SVM) with Gaussian Kernel Function

Gaussian kernel SVM models contain two hyperparameters (γ and C) that must be
selected by the analyst. Thus, γ controls the behavior of the kernel and therefore, increasing
its value increases the flexibility of the model. C controls the penalty, i.e., the bias-variance
trade-off [50]. Optimization was performed by five-fold cross-validation with a grid search
method with exponentially growing C and γ sequences [51]. Specifically, the values of γ
and C ranged from log2γ, log2C in the range of [−10, 10] taking values every 0.5. The result
of this optimization is represented in Figure S1 of the Supplementary Materials, showing
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the best accuracy values for γ = 0.022 and C = 2.83. Note that the five-fold validation
process has been performed on the training set to avoid overfitting. In this way, the test set
does not participate in the optimization process and gives rise to an unbiased error. The
model fitted with the previous values resulted in an accuracy of 100% in both the training
and test sets.

3.2.2. Random Forest (RF)

There are two hyperparameters to be determined in random forest (RF). One of them
is the value of mtry which, for classification problems, is recommended to use as the root
of the number of predictors [52]. Therefore, this was set to 23 (540 variables). Such value
represents the number of predictors evaluated before setting the cutoff for each individual
decision tree. The other hyperparameter is the number of trees, which was set at 500 since it
is a large size to achieve the stabilization of the error. The result led to 100% accuracy in the
training set and 97.67% accuracy in the test set, in which a 5% adulterated orange sample
was incorrectly classified as pure orange juice. Finally, the resulting kappa was 0.9669.

3.2.3. Linear Discriminant Analysis (LDA)

The fit of LDA provided 100% accuracy in both the training and test sets. In addi-
tion, the probabilities of group belonging for each sample were very high, with all the
probabilities being above 0.99 except for one sample of grape juice.

To sum up, the best performing models in our framework are from LDA and SVM
with Gaussian kernel. None of them reach any errors neither in the training set nor in the
test. Previous studies in juice analysis report better results in detecting adulteration when
using SVM models, rather than LDA [53], while others report similar results [54]. In this
case, either of the two may be applicable for the detection of the adulterant (grape juice) in
the rest of the juices studied. In this case, it seems that there are no differences between the
performances of the non-parametric and parametric multivariate methods. However, the
SVM with a Gaussian kernel could also be used since the complexity of the model is not a
prerequisite for the purpose of this research.

3.3. Regression Methods for Global Adulterant Quantification

After the algorithms for the identification of adulteration were trained, the next step
was to identify the percentage of adulteration based on the FT-IR data. For this purpose,
a global regression was performed using all the samples generated in the adulteration
process. The sample was 96 (3 types of juices × 8 percentages × 4 points) and this was
randomly split into a training set of 72 samples, i.e., three points for each percentage of
adulteration and type of juice. In that manner, the test set consists of 24 independent
samples, selected in a balanced manner and represents the entire data set. In this way, the
test set was used as an external validation, since these samples were never used for the
development and optimization of the models. The regression models evaluated were both
parametric, such as partial least square (PLS) and shrinkage methods (lasso, ridge, and
elastic net), and non-parametric, such as support vector regression (SVR) with Gaussian
kernel function and RF regression. Additionally, a summary table of the results obtained
for each model can be found in Table 3.

3.3.1. Partial Least Square Regression (PLS)

The optimal number of components for PLS was determined by leave-one-out cross-
validation (LOOCV) on the training set data. Following the criterion of lower root-mean-
square error (RMSE), the final model is formed by 10 components, with an RMSE of 1.366
and an R2 of 0.9927 for the LOOCV. Figure S2 in the Supplementary Materials depicts its
evolution graphically. Regarding the training set, the RMSE was 0.814 and the R2 was 0.998,
while the RMSE was 1.357 and the R2 was 0.993 in the test. Therefore, a high correlation
between the real values and the estimated ones exists.
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Table 3. Results obtained for each regression method applied in the quantification of the global
adulterant by using the FT-IR spectra of all adulterated juice samples (D96×540).

Model Hyperparameter LOOCV Performance Training Set Perfomance Test Set Performance

PLS
10 principal
components

RMSE = 1.366 RMSE = 0.814 RMSE = 1.357
R2 = 0.993 R2 = 0.998 R2 = 0.993

SVR
C = 11.31 RMSE = 2.775 RMSE = 1.446 RMSE = 1.243

Y = 9.77×10−4 R2 = 0.977 R2 = 0.994 R2 = 0.995

RF mtry = 139 RMSE = 5.742 RMSE = 2.298 RMSE = 3.873
R2 = 0.926 R2 = 0.991 R2 = 0.973

Lasso λ = 0.0756
RMSE = 1.732 RMSE = 1.009 RMSE = 1.707

R2 =0.989 R2 = 0.996 R2 = 0.991

Ridge λ = 10
RMSE = 6.416 RMSE = 5.579 RMSE = 5.189

R2 = 0.941 R2 = 0.960 R2 = 0.942

Elastic net
λ = 0.196 RMSE = 1.644 RMSE = 1.009 RMSE = 1.808
α = 0.436 R2 = 0.991 R2 = 0.997 R2 = 0.989

3.3.2. Support Vector Regression (SVR)

Analogous to SVM classification, the SVR requires the optimization of the previously
discussed hyperparameters (C and γ). Those hyperparameters were again optimized with
a grid search method with exponentially growing C and γ sequences, taking values from
log2γ, log2C in the range of [−10, 10] every 0.5. The learning rate controlled by the epsilon
(ε) hyperparameter was kept constant at 0.1. Thus, the best result was obtained for a γ of
9.77 × 10−4 and a C of 11.31, which provided an RMSE of 2.775 and an R2 of 0.977. For the
training set, the RMSE was 1.446 and the R2 of 0.994, while the RMSE was 1.243 and the R2

0.995 for the test set. The result obtained is similar to the PLS, however, the interpretability
of this type of algorithm is lower.

3.3.3. Random Forest Regression

The number of trees was kept at 500 and the mtry value was optimized by a random
search of values testing 30 of them. The model with the lowest RMSE presented a mtry
of 139, which resulted in an R2 of 0.926 and an RMSE of 5.742 for LOOCV. In the training
and test set, an RMSE of 2.298 and 3.873, as well as an R2 of 0.991 and 0.973, respectively,
were obtained.

3.3.4. Lasso Regression

In this type of linear regression that uses shrinkage, the coefficients of the predictors
that do not contribute to the model are penalized, forcing them to be 0, which excludes
them from the analysis and makes the model more parsimonious. In this way, a new
hyperparameter to optimize called lambda (λ) appears, which controls the degree of
penalty. The λ value obtained as optimal was 0.0756, with an RMSE of 1.732 and an R2

of 0.989. In the training and test sets, the RMSE obtained was 1.009 and 1.707 with an R2

of 0.996 and 0.991, respectively. The fitting of lasso regression is very useful as it allows
the selection of the important predictors, facilitating the understanding of the result. This
method selected only 34 variables out of 540, depicted in Figure 3, where most of them,
and particularly the most important ones, were in the vibrational region of sugars and
carboxylic acids. These most important variables are, on the one hand, the wavenumber
1276.71 cm−1 which acquires a coefficient lower than −1250 and, on the other hand, the
wavenumber 2240.99 cm−1, which acquires a coefficient greater than 1250. The first one is
related to the bending vibrations of the O–C–H, C–C–H, and C–O–H bonds presented in
sugars and differences in polysaccharides in fruit juices already reported in this region [12].
The second one is related to C = C stretching vibrations groups and a previous study
on the detection of adulterations in apple juice observed absorption bands important for
discrimination in this region [55].
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Figure 3. Coefficients selected by the lasso method for the quantification of the adulterant using the
FT-IR spectrum of the adulterated juice samples.

3.3.5. Ridge Regression

Similarly to the previous analysis, the coefficients of variables that are not important
are penalized so their values are reduced but without reaching 0 and, therefore, predictors
are not excluded. In this shrinkage regression, the value of the lambda hyperparameter
had to be specified using the same search method as the one employed in lasso regression.
The value of λ selected as optimal was 10, achieving an RMSE of 6.416 and an R2 of 0.941
for LOOCV. For the training and test sets, the RMSE values were 5.579 and 5.189 with an R2

of 0.960 and 0.972, respectively. These results are considerably lower than the equivalents
obtained with the other methods.

3.3.6. Elastic Net

In elastic net, a balance is sought between the exclusion of predictors (lasso) and the
reduction of coefficients (ridge). Therefore, there are two hyperparameters to optimize:
lambda, which controls the degree of penalty, and a new hyperparameter called alpha
(α), which controls the degree of influence of each of the penalties (ridge and lasso). Their
optimization was performed by testing 60 random combinations of values, and the best
model will be decided based on the one that achieves a lower RMSE. In this case, the
combination taken as optimal is a value of λ of 0.196 and an α of 0.436, which indicates
that it is more similar to the ridge regression. For that combination, an RMSE of 1.644 and
an R2 of 0.991 were achieved for LOOCV while in the training set an RMSE of 1.009 and
R2 of 0.997 were obtained. Finally, for the test set, an R2 of 0.989 and an RMSE of 1.808
were obtained.

For the global quantification of the adulterant, the results were more than satisfactory
for all the methods applied (Table 3). The result obtained indicates a slightly higher
potential for the use of the non-parametric method (SVR) in the test set (RMSE = 1.243),
although, the second-best result (RMSE = 1.357) is obtained with a parametric approach
(PLS). These results suggest that in the FT-IR spectroscopic data of juice samples none of the
strategies is superior to the other. It should be noted that there are studies based on infrared
spectroscopy data where better results are obtained with PLS than with SVR [56,57], while
in other cases practically identical performance is reported [58] or even better with SVR [59].
Based on the previous literature and the results obtained in this study, the use of one or
other methods may be of interest depending on the objective.
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As a last remark, due to the high performance obtained and with the aim of sharing
the models created and facilitating the detection and quantification of the adulterant for
other users, a web application has been created (link and a short description of use available
in the Supplementary Materials).

4. Conclusions

FT-IR spectroscopy, combined with suitable machine learning methods, has been
empirically proven to be a reliable analytical technique for the detection and quantification
of grape juice used as an adulterant in other juices. It has been observed that the FT-IR
spectra of the juices are mainly influenced by the type of fruit and, to a lesser extent, by the
brand used. Additionally, both the regression and classification models obtained perform
more than satisfactorily. In the case of the classification problem, the best results were
obtained with both LDA and with the non-parametric SVM (100% accuracy in the test
and training set). Regarding the regression problem, the best results were obtained with
the non-parametric method SVR and with the parametric PLS (both with R2 greater than
0.99 and RMSE less than 1.4 in the test set). In that manner, the use of global profile meth-
ods, compared to individual identification, allows to eliminate subjectivity and automate
the process. Thus, an application has been developed to share the models created with
researchers and practitioners, and to ease the detection of adulterations in juices. Those
models can learn as more samples are analyzed and a common, open database can be
created in order to increasingly cover the needs of the beverage industry. Additionally,
the proposed methodology is faster, cleaner, more objective, easy to use, and cheaper than
traditional chromatographic-based methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12030683/s1, Table S1: Theoretical (provided by the
manufacturer) and experimental (measured by densimeter) average sugar values of fruit juices;
Figure S1: Search for the best combination of hyperparameters (C and γ) for the Gaussian SVM model
obtained by CV of 5 folds using the FT-IR spectrum of all training set samples (D540×138); Figure S2:
Evolution of the root mean square error (RMSE), as a function of the number of components used
in PLS analysis. The LOOCV error has been used for the FT-IR spectrum of the adulterated and
unadulterated juice samples from the training set.
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