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Abstract: Precise forecasting of reference evapotranspiration (ET0) is one of the critical initial steps in
determining crop water requirements, which contributes to the reliable management and long-term
planning of the world’s scarce water sources. This study provides daily prediction and multi-step
forward forecasting of ET0 utilizing a long short-term memory network (LSTM) and a bi-directional
LSTM (Bi-LSTM) model. For daily predictions, the LSTM model’s accuracy was compared to that
of other artificial intelligence-based models commonly used in ET0 forecasting, including support
vector regression (SVR), M5 model tree (M5Tree), multivariate adaptive regression spline (MARS),
probabilistic linear regression (PLR), adaptive neuro-fuzzy inference system (ANFIS), and Gaussian
process regression (GPR). The LSTM model outperformed the other models in a comparison based
on Shannon’s entropy-based decision theory, while the M5 tree and PLR models proved to be the
lowest performers. Prior to performing a multi-step-ahead forecasting, ANFIS, sequence-to-sequence
regression LSTM network (SSR-LSTM), LSTM, and Bi-LSTM approaches were used for one-step-
ahead forecasting utilizing the past values of the ET0 time series. The results showed that the Bi-LSTM
model outperformed other models and that the sequence of models in ascending order in terms of
accuracies was Bi-LSTM > SSR-LSTM > ANFIS > LSTM. The Bi-LSTM model provided multi-step
(5 day)-ahead ET0 forecasting in the next step. According to the results, the Bi-LSTM provided
reasonably accurate and acceptable forecasting of multi-step-forward ET0 with relatively lower levels
of forecasting errors. In the final step, the generalization capability of the proposed best models
(LSTM for daily predictions and Bi-LSTM for multi-step-ahead forecasting) was evaluated on new
unseen data obtained from a test station, Ishurdi. The model’s performance was assessed on three
distinct datasets (the entire dataset and the first and the second halves of the entire dataset) derived
from the test dataset between 1 January 2015 and 31 December 2020. The results indicated that the
deep learning techniques (LSTM and Bi-LSTM) achieved equally good performances as the training
station dataset, for which the models were developed. The research outcomes demonstrated the
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ability of the developed deep learning models to generalize the prediction capabilities outside the
training station.

Keywords: deep learning; recurrent neural networks; machine learning algorithms; reference
evapotranspiration

1. Introduction

Water conservation in irrigated agriculture has been a significant concern, as agricul-
ture consumes the majority of the world’s freshwater reserves. A considerable amount
of water can be saved through accurate quantification of crop water requirements, which
depends on the precise estimation of evapotranspiration (ET), one of the vital elements
in computational frameworks of water balance equations. Being an essential element
of the surface energy balances and water budgets, ET plays a central role in controlling
interactions among soil, vegetation, and the atmosphere [1]. As such, proper design and
efficient management of irrigation techniques and reliable planning for the allocation of
scarce water resources largely depend on the accurate estimation of the ET [2]. The val-
ues of ET can be obtained through direct measurement techniques, including lysimeter
methods, eddy covariance techniques, and the Bowen ratio–energy balance approach [3–5],
which are expensive and deemed unavailable in many countries [6,7]. Alternatively, ET can
be estimated indirectly utilizing a set of accessible climatological variables to determine
reference evapotranspiration (ET0). This indirect approach has been extensively used
in many parts around the globe in which either unavailability or budgetary constraints
prohibit direct estimation of ET. One of the most stable and well-established techniques
of ET0 computation is the FAO-56 Penman–Monteith (FAO-56 PM) equation [6]. It is also
utilized to validate alternative ET0 computation methods, as the equation was validated
using lysimeter methods in different climates [8]. ET0 computation using the FAO-56 PM
equation requires a few climatological variables, including maximum and minimum air
temperatures, wind speed, relative humidity, and solar radiation. Upon estimation of
ET0, crop evapotranspiration can be obtained by utilizing estimated ET0 values and crop
coefficient values for a particular crop.

Machine learning algorithms have recently been recognized as reliable tools in the
prediction and future forecasting of ET0. They have been used extensively in providing a
reasonably accurate forecast of ET0 in various hydrologic and climatic settings. The first
implementation of ET0 prediction modeling was based on the usage of artificial neural
networks (ANN) [9–13]. Later, different variants of ANN and other machine learning
algorithms have attained the researchers’ interests. These include the usage of general-
ized regression neural networks [14,15], neural network with optimum time lags [16],
adaptive neuro-fuzzy inference system (ANFIS) [17–23], random forests (RF) [14,24,25],
CatBoost [26], hybrid extreme gradient boosting grey wolf optimizer (GWO) [27], extreme
learning machine (ELM) [15,17,28–31], support vector regression (SVR) [23–25,31–33], mul-
tivariate relevance vector regression [34], genetic programming (GP) [35], Gaussian process
regression (GPR) [36], multivariate adaptive regression splines (MARS) [2,9], M5 model tree
(M5Tree) [2], radial basis M5Tree [37], gene-expression programming (GEP) [12,18,38–45],
hierarchical fuzzy systems (HFS) [46], coupled extreme gradient boosting-whale opti-
mization algorithm [47], coupled natural-extreme gradient boosting [48], hybrid model
based on variational mode decomposition-GWO-SVM [49], and inter-model ensemble
approaches [50]. Apart from machine learning approaches, there are other approaches of
ET estimation, including the application of Sentinel-2 spectral information [51], comparison
of different empirical methods [52], utilizing NASA POWER Reanalysis Products [53], and
using lysimeter data [54]. Recently, Bellido-Jiménez et al. [55] examined several machine
learning approaches to improve ET0 estimations, considering only the temperature-based
data (EnergyT and Hourmin) as inputs, and they determined that ELM outperformed the
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others. In another study, Vásquez et al. [56] proposed several methods based on maximum
and minimum temperatures to enhance ET0 computation under scarce data situations in
the high tropical Andes. Nourani et al. [57] proposed one-, two-, and three-step-ahead
predictions of ET0 using ensembles of ANFIS, ANN, and MLR models in various climatic
stations. This study evaluates deep learning algorithms’ daily prediction and multi-step
(5 steps)-ahead forecasting abilities.

The deep machine learning (DL) technique has attained substantial attention in recent
years, being considered an advanced version of machine learning techniques. The DL
technique has been successfully utilized in various research domains, including time
series prediction [58–60], computer vision [61], classification of images [62], recognition
of speech [63], language processing [64], forecasting of groundwater levels [65,66], and
prediction of water quality parameters [67]. The DL techniques are primarily based on the
recurrent neural networks (RNN), which, for their ability to preserve and utilize memory
from the previous network states, are superior candidates for predicting and forecasting
time series data [68–70]. Nevertheless, despite the ability to capture the trends of the
time series data, the standard RNN model structures face difficulties in retaining the
longer-term dependence among the variables and suffer from vanishing and exploding
gradients-related issues [71]. Due to these two inherent problems of the standard RNN,
network training becomes unrealistic as the network weights may either become zero or
unnecessarily large during network training. The two most important criteria that ensure
better network training are retaining necessary information and eluding redundant or
unnecessary information among various network states. A long short-term memory (LSTM)
network possesses these characteristics to overcome the training shortfall of RNNs. The
LSTMs are the variants of standard RNNs and have widely been used in various research
domains such as financial time series and language processing [72], traffic congestion, and
traveling [73], including the application in the hydrologic time series prediction [74–77].

The application of DL-based models in predicting pan evaporation, reference evap-
otranspiration, and crop evapotranspiration in different climatic conditions have been
found in recent literature. These include daily pan evaporation prediction using deep
LSTM model [78], evapotranspiration computation estimation using deep neural net-
work [79], daily reference evapotranspiration prediction using convolutional neural net-
work (CNN) [80], one-step-ahead forecasting of reference evapotranspiration using LSTM [81],
multi-step-ahead forecasting of daily reference evapotranspiration using LSTM and CNN-
LSTM [82], multi-week-ahead forecasting of ET0 using CNN-gated recurrent unit optimized
with ant colony optimization [83], ET0 estimation using deep learning-multilayer percep-
trons [84], and short-term actual ET prediction using LSTM and NARX [85]. Despite the
ET0 prediction and forecasting application, the DL-based models, especially LSTM models,
need to be evaluated for different combinations of input variables that provide better
prediction accuracy. Recently, Zhang et al. [26] used only eight input combinations of
different meteorological variables to estimate reference crop evapotranspiration using the
CatBoost model. Another study by Maroufpoor et al. [86] used optimal input combina-
tions to estimate reference evapotranspiration using a hybridized ANN model. Another
study [87] used 29 different combinations of input variables from various meteorological
variables to forecast daily reference evapotranspiration using ANN, SVR, and ELM. To the
best of our knowledge, none of the previous studies evaluated all possible combinations
of available input climatological variables to provide daily and multi-step forward ET0
estimation using DL-based LSTM models. This is the first effort that has used various
possible combinations of input variables using a deep learning model to predict daily and
forecast multi-step-ahead reference evapotranspiration.

Another critical aspect of predictive modeling with the machine or deep learning
approaches is evaluating the established models’ ability to anticipate and forecast data from
other meteorological stations. However, the generalization capabilities of the developed
models for predicting and forecasting ET0 in other meteorological stations have been given
relatively little attention. For daily prediction of ET0, Wang et al. [44] investigated the
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generalization capability of RF- and GEP-based machine learning tools, while Roy et al. [46]
evaluated the potential of HFS models in generalizing the outputs using data from another
meteorological station. For one-step-ahead forecasting of ET0, Roy [81] utilized LSTM
models; however, the study did not evaluate the generalization capability of the developed
LSTM models for a new unseen test dataset. Nevertheless, model generalization has not
been used for multi-step-ahead ET0 forecasting using different combinations of input
variables as well as using various machine and deep learning algorithms. To the best
of our understanding, this study was the first attempt at providing daily prediction and
multi-step-forward forecasting of ET0 using LSTM and Bi-LSTM models.

Therefore, the prime objective and focus of this research were to (1) explore the ca-
pability of DL-based techniques, LSTM, and Bi-LSTM in predicting daily and forecasting
multi-step (5 day)-ahead ET0 estimates in the selected study areas in Bangladesh; (2) com-
pare the prediction and forecasting skill of the proposed LSTM and Bi-LSTM models with
that of the commonly used machine learning algorithms; and (3) assess the generalization
capability of the proposed LSTM and Bi-LSTM models to predict and forecast ET0 at a
nearby station, at which the models were neither trained nor validated.

2. Material and Methods
2.1. Study Area and the Data

The study area consists of two upazillas (administrative units) in Gazipur and Pabna
districts: Gazipur Sadar Upazilla and Ishurdi Upazilla (Figure 1). Meteorological data,
including minimum and maximum daily temperatures, relative humidity, wind speed,
and duration of sunshine, were acquired from two weather stations (Gazipur Sadar and
Ishurdi). The climatic variables were gathered from different weather stations, as illustrated
in Figure 1. A silicon photodiode type global solar radiation recorder (Licor-200SZ, LI-COR
Biosciences, USA; accuracy = ±5%; range = 0.3–4 µm; measurement height = 2 m) was
used to measure the amount of sunshine along with length of the day. The maximum
and minimum temperatures were measured employing the maximum and minimum
thermometers (Zeal P1000, G. H. Zeal Ltd., London SW19 3UU, UK; accuracy = ±0.2 ◦C;
range and resolution =−50 to +70 ◦C, 0.1 ◦C; measurement height = 2 m). Relative humidity
was measured using a capacitive-type hygrometer (R. M. Young Company, Traverse City,
MI 49686, USA; accuracy = ±3%; range and resolution = 0–100%, 1%; measurement
height = 2 m). The measurement of wind speed was performed using a rotating cup
anemometer (Cup Anemometer 4.3018.10.000, Adolf Thies GmbH and Co. KG, Hauptstraße
76, 37083 Göttingen, Germany; accuracy = 1.2 m/s; range and resolution = 0.5–60 m/s,
0.1 m/s; measurement height = 10 m). It is noted that performing a thorough quality
assurance procedure is often desirable to ensure the quality of climatic datasets, which
enhances the reliability of ET0 estimations using machine learning tools [88]. Although
a detailed quality assurance procedure was not performed, the quality of the obtained
climatic data was checked thoroughly for its correctness and completeness. The missing
entries (less than 1%) were imputed using the ‘movmedian’ (Matlab MATLAB 2021a)
approach of data imputation. Nevertheless, a few adjustments were performed to obtain
the FAO-56 PM equation appropriate for local conditions following the recommendations
provided in [89]. For instance, the wind speeds obtained at 10 m height (from the weather
stations) were converted to wind speeds at the height of 2 m (keeping a lower limit of
0.5 m/s).
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Figure 1. Weather station locations.

The weather station in Gazipur Sadar Upazilla was utilized as the training station for
developing the proposed models, whereas data from the weather station in Ishurdi were
used to evaluate the produced models’ performance (testing station). The position of the
weather station at Gazipur Sadar Upazilla is at 24.00◦ N latitude and 90.43◦ E longitude,
being located 8.4 m above mean sea level (MSL). On the other hand, the test station is
placed between 24.12◦ N latitude and 89.08◦ E longitude with an altitude of 18 m from the
MSL. The weather data for the training station were obtained for a duration of 15.5 years
(from 1 January 2004 to 30 June 2019). Descriptive statistics of the acquired weather data
for the training station are presented in Table 1.

Table 1. Descriptive statistics of the weather data for the training station (Gazipur Sadar Upazilla).

Climatic Variables Min Max Mean Standard Deviation Skewness Kurtosis

Data Range: 1 January 2004 to 30 June 2019 (5660 Daily Entries)

Minimum temperature, ◦C 4.40 34.50 21.17 5.64 −0.63 −0.88
Maximum temperature, ◦C 12.00 53.00 30.93 3.92 −1.10 2.11

Relative humidity, % 38.00 89.00 80.22 8.20 −0.63 0.75
Wind speed, m/s 0.68 5.06 2.79 1.05 −0.06 −1.32

Sunshine duration, h 0.00 11.40 5.54 3.09 −0.40 −1.04

The weather data for the test station were obtained for a duration of around 5.5 years
(from 1 June 2015 to 31 December 2020). Descriptive statistics of the acquired weather data
for the test station are presented in Table 2.
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Table 2. Descriptive statistics of the entire, first half, and the second half of the weather data for the
test station (Ishurdi Upazilla).

Climatic Variables Mean Standard Deviation Skewness Kurtosis

Entire dataset (1 June 2015 to 31 December 2020: 2041 daily entries)

Minimum temperature, ◦C 21.37 5.98 −0.73 −0.76
Maximum temperature, ◦C 31.46 4.16 −0.83 0.28

Relative humidity, % 78.89 12.18 −1.23 1.93
Wind speed, m/s 1.43 0.23 0.07 0.22

Sunshine duration, h 5.90 3.19 −0.41 −0.71

First half data (1 June 2015 to 3 October 2018: 1221 daily entries)

Minimum temperature, ◦C 21.06 6.08 −0.65 −0.92
Maximum temperature, ◦C 31.27 4.21 −0.71 0.26

Relative humidity, % 80.06 11.30 −1.24 2.25
Wind speed, m/s 1.43 0.23 0.06 0.35

Sunshine duration, h 5.75 3.18 −0.42 −0.98

Second half data (4 October 2018 to 31 December 2020: 820 daily entries)

Minimum temperature, ◦C 21.69 5.87 −0.83 −0.56
Maximum temperature, ◦C 31.66 4.11 −0.95 0.35

Relative humidity, % 77.71 12.89 −1.18 1.54
Wind speed, m/s 1.44 0.23 0.09 0.08

Sunshine duration, h 6.05 3.19 −0.39 −0.44

Weather data acquired from the two weather stations for the specified duration were
used to calculate the daily ET0 values employing the FAO-56 PM equation (Equation (1)).
The climatological variables (acquired weather data) and corresponding ET0 values (com-
puted using FAO-56 PM equation) were used as inputs and outputs from the proposed
LSTM, Bi-LSTM, and other machine learning-based models. This approach of estimating
ET0 indirectly using the climatological variables has been a widely accepted method in
situations where obtaining ET0 directly becomes infeasible due to technical and budgetary
constraints [6,15,90]. The FAO-56 PM equation is represented by

ET0 =
0.408∆(Rn −G) + γ 900

Tmean+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 denotes reference evapotranspiration, mm/d; Rn represents the net radiation at
the crop surface, MJ/m2/d; G indicates heat flux density of soil, MJ/m2/d; ∆ represents
the slope of the saturation vapor pressure curve, kPa/◦C; γ denotes psychometric constant,
kPa/◦C; es represents the saturation vapor pressure, kPa; ea indicates the actual vapor
pressure, kPa; u2 is the wind speed at the height of 2 m, m/s; and Tmean is the mean air
temperature at 2.0 m height, ◦C.

The computed ET0 values at the training station (Gazipur Sadar Upazilla) ranged
between 0.92 and 8.02 mm/d, with the mean, standard deviation, skewness, and kurtosis
values of 3.80 mm/d, 1.32 mm/d, 0.30, and −0.67, respectively. For the test station
(Ishurdi), the computed ET0 time series was divided into three sub-time series to test the
generalization capability of the proposed modeling approach at different regions of the time
series. The first time series considered was the entire dataset for which the ET0 values had
the mean, standard deviation, skewness, and kurtosis values of 3.67 mm/d, 1.24 mm/d,
0.28, and −0.62, respectively. The values of the mean, standard deviation, skewness, and
kurtosis of the calculated ET0 for the first half of the dataset were 3.57 mm/d, 1.25 mm/d,
0.35, and −0.62, respectively. The second half of the ET0 time series contained the mean,
standard deviation, skewness, and kurtosis values of 3.76 mm/d, 1.23 mm/d, 0.22, and
−0.59, respectively.
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For daily ET0 prediction, meteorological variables and calculated ET0 values using
the FAO-56 PM equation were used as inputs and outputs. On the other hand, calculated
ET0 time series were used to develop the proposed models for one- and multi-step-ahead
predictions by obtaining time-lagged characteristics from the time series data. For training
the models, the entire dataset was divided into three parts: training data (40% of the entire
dataset: 2264 daily entries—from 1 January 2004 to 13 March 2010), validation data (40% of
the entire dataset: 2264 daily entries—from 14 March 2010 to 24 May 2016), and test data
(remaining 20% of the total dataset: 1132 daily entries—from 25 May 2016 to 30 June 2019).
To test the generalization capability of the proposed models, we partitioned the data from
the test station as follows: entire dataset (2021 ET0 values and associated meteorological
variables ranging from 1 June 2015 to 31 December 2020), the first half of the entire dataset
(1221 ET0 values and associated meteorological variables ranging from 1 June 2015 to
3 October 2018), and the first half of the entire dataset (820 ET0 values and associated
meteorological variables ranging from 4 October 2018 to 31 December 2020).

2.2. Prediction Models
2.2.1. Long Short-Term Memory (LSTM) Networks

An LSTM is a variant of the neural network-based modeling approach, an upgraded
version of RNNs capable of learning long-term dependence that exists at various steps in the
sequential time series data. LSTMs safeguard against the vanishing and exploding gradient
issues commonly observed in a standard RNN architecture, making an LSTM an ideal
modeling tool to predict and forecast sequential time series data. To eliminate vanishing and
exploding gradient problems, an LSTM integrates two important parameters called ‘state
dynamics’ and ‘gating functions’ [91]. An LSTM network architecture is made up of several
interconnected memory blocks that are connected to each other in a number of layers,
each of which consists of many recurrently connected memory cells. The memory cells of
LSTM architectures are comprised of three gates [92]: (a) input, (b) forget, and (c) output.
For performing a regression task, an LSTM model employs four layers: a sequence input
layer, an LSTM layer, a fully connected layer, and a regression layer. The input and fully
connected layers correspond to the number of input and output variables, respectively.
The LSTM layer accommodates the number of hidden units, whereas the regression layer
performs the regression task. The sequence input and LSTM layers are the most important
components of a fundamental LSTM network. The input layer is responsible for inputting
the sequence data, e.g., time-series data to the network, whereas the LSTM layer facilitates
learning long-term dependence among various time-steps of a sequential time series data.
A comprehensive explanation of the LSTM model architecture is presented by Roy [81]
and is not repeated in this effort. A bidirectional LSTM network (Bi-LSTM) architecture is
similar to an LSTM network except that a Bi-LSTM network is associated with bidirectional
long-term dependence among various time-steps of a sequential time series data.

In this study, both networks (LSTM and Bi-LSTM) have three hidden layers, each of
which is followed by a dropout layer that is employed to prevent model overfitting. Each
of the three hidden layers has a large number of hidden neurons. The first, second, and
third hidden layers each had 100, 50, and 20 hidden neurons, respectively. In contrast,
the dropout rates assigned for the associated dropout layers were chosen as 0.4, 0.3, and
0.2, respectively. The optimum numbers of hidden layers, hidden neurons, and dropout
rates are determined by conducting a series of trials. Numerous combinations of varying
numbers of these parameters are tested until a stable network is obtained. In addition,
the best training options are selected upon conducting several trials, and similar training
options are used for training both the LSTM and Bi-LSTM models for consistency. The
training options used for training the LSTM and Bi-LSTM networks are provided in Table 3.
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Table 3. Training options and the associated parameter values.

Training Options Corresponding Parameter Values

Solver for optimization ‘adam’
Maximum number of epochs 1000

Gradient threshold value 1
Preliminary learning rate 0.01

Minimum size of the batch 150
Length of sequence 1000

2.2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS, a variant of fuzzy inference systems (FIS), is adaptive in nature, incorporating
fuzziness and ambiguity of input variables in developing input–output relationships of
nonlinear systems [93]. An ANFIS grab holds the advantageous features of both the artificial
neural networks and fuzzy set theory into an adaptive framework to model nonlinear and
complex systems quite efficiently and effectively [94,95]. Due to less complexity and better
learning ability [93], a Sugeno-type FIS is used to develop the ANFIS model utilizing a fuzzy
c-means clustering (FCM) [96] algorithm to reduce the dimensionality of input variables.
Detailed descriptions of ANFIS model structures are provided in Jang et al. [93] and are
not repeated in this effort. Figure 2 presents an ANFIS model structure derived from a
Sugeno-type FIS. The ANFIS models were developed in a MATLAB [97] environment.
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2.2.3. Gaussian Process Regression (GPR)

A GPR is a nonparametric modeling algorithm that is derived from the theories of
probability and Gaussian process [99]. Following a Gaussian distribution, a GPR model
provides the output, Y from the input variables, and X(i) through developing a functional
relationship, which can be mathematically represented as [100]

Y = f(X(i)) + ε (2)

where ε is a Gaussian noise, the variance of which is denoted by σ2
n.

The mean, m(xi), and covariance, k
(
xi, xj

)
, functions are the two important functional

components of a typical GPR model. They can be mathematically expressed as [99]

m(xi) = E[f(xi)] (3)

k
(
xi, xj

)
= E

[
(f(xi)−m(xi))

(
f
(
xj
)
−m

(
xj
))]

(4)

On the basis of these two key functions, the functional relationship using Gaussian
process theory is established by the following equation:

f(x) ∼ gp
(
m(xi), k

(
xi, xj

))
(5)
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The prediction probability distribution of a GPR model is governed by the free param-
eters or hyperparameters, which are in essence the parameters of the mean and covariance
functions. The values of free parameters or hyperparameters depend on the training
dataset’s log-likelihood function values. The GPR models were developed by utilizing the
commands and functions of MATLAB [97].

2.2.4. M5 Model Trees (M5 Tree)

The development of the M5 tree is derived from the philosophies associated with the
M5 technique [101,102] in building standalone trees. The prediction capabilities of M5
trees were demonstrated and well documented in various research domains [103,104]. In
the M5 tree modeling approach, a complex modeling task is sub-divided into numerous
sub-tasks via the divide-and-conquer technique, and the final result is the integration of
solutions from all the sub-tasks [103]. This splitting technique results in a hierarchy of
model trees in which non-terminal nodes are associated with splitting rules, whereas expert
models are represented by the tree leaves [104]. Model development using the M5 tree
technique is performed using three stepwise procedures: (1) development of an initial tree,
(2) pruning of the tree, and (3) smoothing of the tree [105]. In the MATLAB environment, a
toolbox “M5PrimeLab” [106] was used to develop M5 trees for predicting daily reference
ET0 values.

2.2.5. Multivariate Adaptive Regression Spline (MARS)

MARS [107] is a nonparametric modeling technique that is adaptive in nature and
is believed to be a flexible and rapid approach to developing regression models. The
MARS approach partitions the entire decision space into several input parameters on
which standalone basis functions or splines are fitted to obtain the final MARS model [108].
Both a forward procedure and a backward procedure are utilized, i.e., MARS initially
builds a comparatively complex model using the user-specified maximum number of basis
functions in the forward step. In contrast, in the backward step, MARS parsimoniously
selects the most significant input variables in predicting the output variable [109]. The
backward step eliminates redundant input variables and assists in simplifying the final
model while avoiding over-or under-fitting. The relationship between the input and output
variables can be represented by the following equation [110]:

BFi(x) = max
(
0, xj − α

)
OR BFi(x) = max

(
0,α− xj

)
(6)

y = f(x) = β± γk × BFi(x) (7)

where i represents the index of Basis functions, j denotes the index of input variables, BFi
symbolizes the ith Basis function, xj is the jth input variable, α is a threshold value used
by the MARS model during model building, β is a constant, γk indicates the respective
coefficient of BFi(x), and y denotes the model prediction (output variable).

A MATLAB toolbox ‘ARESLab’ [106] was employed to build MARS-based ET0 pre-
diction models. This study used both piecewise-linear and piecewise-cubic modeling
approaches to predict daily ET0 values.

2.2.6. Probabilistic Linear Regression (PLR)

PLR utilizes Bayesian inference techniques to develop prediction models through
probabilistically performing linear regression. The PLR approach is often referred to
as empirical Bayesian linear regression, using either an expectation-maximization (EM)
algorithm [111] or a Mackay fixpoint iteration method [112]. The EM algorithm is generally
utilized to formulate the PLR models. As such, the present study used the EM algorithm
in developing PLR-based ET0 prediction models. Mo Chen [113] developed a MATLAB
toolbox in this research to develop PLR models.
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2.2.7. Support Vector Regression (SVR)

SVRs are derived from the principles of the support vector machine (SVM) algo-
rithm [114], which has been attaining significant attention in recent years for its capability
to solve a diversified range of regression and classification problems [115]. SVRs are devel-
oped via a nonlinear mapping technique that utilizes required data from the input space
to a high-dimensional feature space on which linear regressions are executed [116]. An
elaborated explanation of the theory of the SVR approach has been provided in Chevalier
et al. [117], and only a brief account of the SVR theorem is presented in this effort. The
following equation symbolizes the training dataset in developing a linear SVR model:

{(x1, y1), (x2, y2), . . . , (xl, yl)} (8)

xi ∈ Rd, yi ∈ R, and l = number of data entries

In this case, the solution function can be expressed as

f(x) =
l

∑
i=1

(αi − α∗i ) < xi, x > +b (9)

where < ., . > denotes dot product, and αi, α∗i , and b represent coefficients computed by
the SVR model.

A data transformation step is performed to build nonlinear SVR models, including a
nonlinear mapping function ∅ [118] that transforms low-dimensional input space into a
high-dimensional feature space. The computation ∅ becomes challenging during progres-
sive mapping of the input–output data into higher dimensions. This limitation is handled
using the Mercers theorem, which can be represented by the following equation:

< ∅(u),∅(v) >= k(u, v) (10)

For a particular mapping ∅, the Mercers theorem introduces the concept of using
a kernel function k, which is used to calculate the dot product of any two points (u, v),
and the computation of dot products in this approach bypasses the explicit calculation of
high-dimensional and nonlinear mapping. The prediction performance of nonlinear SVR
models depends on the kernel function, which is regarded as one of the most important
parameters in SVR modeling.

2.3. Ranking of the ET0 Prediction Models: Shannon’s Entropy

ET0 prediction models were ranked using performance-based weights assigned to
standalone models using Shannon’s entropy principle. For this, a decision matrix of predic-
tion models (m) and performance indices (PI) is formulated, which can be represented in
the form of the following equation [119]:

ETij =


ET11
ET12

...
ET1PI

ET21
ET22

...
ET2PI

· · ·
· · ·

...
· · ·

ETm1
ETm2

...
ETmPI

 (11)

To reduce the adverse impacts of index dimensionality, we standardized the per-
formance index values between 0 and 1

{
Sij ∈ [0, 1], i = 1, 2, . . . , m; j = 1, 2, . . . , PI

}
. The

standardization component Sij was performed using the following equation [119]:

Sij =


ETij

max(ETi1,ETi2,...,ETiPI)
, for benefit indexes

Xij
min(ETi1,ETi2,...,ETiPI)

, for cos t indexes
(12)
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Shannon’s entropy-based ranking was performed using a five-step stepwise procedure
described in Roy et al. [21], which was not repeated here.

2.4. Selection of Input Variables for Daily Predictions

All possible combinations of the five input variables (minimum temperatures, maxi-
mum temperatures, relative humidity, wind speed, and sunshine hours) were used. A total
of 31 models were developed on the basis of the 31 combinations (single, two-input combi-
nations, three-input combinations, four-input combinations, and all five inputs) of input
variables. Two-, three-, and four-input combinations are presented in Table 4.

Table 4. Different combinations of two-, three-, and four-input combinations.

Two-Input Combinations Three-Input Combinations Four-Input Combinations

Min temp, max temp Min temp, max temp, humidity Min temp, max temp, humidity, wind speed
Min temp, humidity Min temp, max temp, wind speed Min temp, max temp, humidity, sunshine hours

Min temp, wind speed Min temp, max temp, sunshine hours Min temp, max temp, wind speed, sunshine hours
Min temp, sunshine hours Min temp, humidity, wind speed Min temp, humidity, wind speed, sunshine hours

Max temp, humidity Min temp, humidity, sunshine hours Max temp, humidity, wind speed, sunshine hours
Max temp, wind speed Min temp, wind speed, sunshine hours

Max temp, sunshine hours Max temp, humidity, wind speed
Humidity, wind speed Max temp, humidity, sunshine hours

Humidity, sunshine hours Max temp, wind speed, sunshine hours
Wind speed, sunshine hours Humidity, wind speed, sunshine hours

These combinations of input variables were evaluated for two deep learning algo-
rithms (LSTM and Bi-LSTM). The 62 models (31 LSTM + 31 Bi-LSTM) developed were
ranked on the basis of their prediction accuracies using Shannon’s entropy by incorpo-
rating a number of benefit (correlation coefficient, Nash–Sutcliffe efficiency coefficient,
Willmott’s index of agreement) and cost (normalized or relative root mean squared error,
maximum absolute error, median absolute deviation) performance evaluation indices. The
best-input combinations thus obtained were used to develop the other shallow machine
learning algorithms.

2.5. Model Performance Evaluation

The performances of the proposed models were evaluated using various statistical
evaluation indices as follows:

- Correlation coefficient, R

R =
∑n

i=1
(
ETi,a − ETa

)(
ETi,a − ETp

)√
∑n

i=1
(
ETi,a − ETa

)2
√

∑n
i=1
(
ETi,p − ETp

)2
(13)

- Nash–Sutcliffe efficiency coefficient, NS [120]

NS = 1− ∑n
i=1
(
ETi,a − ETi,p

)2

∑n
i=1
(
ETi,a − ETa

)2 (14)

- Index of agreement, IOA [121]

IOA = 1− ∑n
i=1
(
ETi,a − ETi,p

)2

∑n
i=1
(∣∣ETi,p − ETa

∣∣+ ∣∣ETi,a − ETa
∣∣)2 (15)

- Root mean square error, RMSE [122]
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RMSE =

√
1
n

n

∑
i=1

(
ETi,a − ETi,p

)2 (16)

- Normalized RMSE, NRMSE

NRMSE =
RMSE

ETa
(17)

- Maximum absolute error, MAE

MAE = max
[∣∣ETi,a − ETi,p

∣∣] (18)

- Median absolute deviation, MAD

MAD
(
ETa, ETp

)
= median

(∣∣ET1,a − ET1,p
∣∣, ∣∣ET2,a − ET2,p

∣∣, . . . ,
∣∣ETn,a − ETn,p

∣∣)
for i = 1, 2, . . . , n

(19)

where ETi,a and ETi,p are ET0 quantities at the ith data points acquired from the FAO-56 PM
computed and model predicted values, respectively; ETa represents the arithmetic mean of
the FAO-56 PM computed ET0 values; and n is the amount of input–output data.

3. Results and Discussion
3.1. Daily Prediction of ET0 Using Various Machine Learning Algorithms at the Training Station
(Gazipur Sadar)

To determine the optimum numbers of input variables combinations, we used 31
possible combinations of five input variables to develop 31 LSTM and 31 Bi-LSTM models.
Learning (training) and testing of the ET0 models were performed simultaneously. Pre-
diction errors on the test dataset in terms of RMSE criterion for the 31 developed models
are presented in Table 5. As evidenced by the numerical values presented in Table 5, the
LSTM model predictions were slightly better than those of the Bi-LSTM models when
the RMSE criterion was used as a deciding factor. It was also observed that both the
LSTM- and Bi-LSTM-based ET0 prediction models produced the lowest RMSE values
(best daily ET0 predictions) when all five variables were used. The performance of LSTM
(RMSE = 0.081 mm/d) was slightly better than that of the Bi-LSTM (RMSE = 0.087 mm/d)
model. However, in situations where adequate data are not available, the use of fewer
input variables may be employed to achieve a realistically precise prediction of ET0 val-
ues. For instance, four climatological variables (a combination of maximum temperature,
relative humidity, wind speed, and sunshine hours) could be used to obtain sufficiently
accurate daily ET0 predictions using LSTM (test error in terms of RMSE value equals
0.107 mm/d) and Bi-LSTM (test error in terms of RMSE value equals 0.116 mm/d) mod-
els. Other combinations of four meteorological variables, e.g., (minimum temperature,
maximum temperature, relative humidity, sunshine hours) and (minimum temperature,
relative humidity, wind speed, sunshine hours) provided reasonably accurate daily ET0
predictions (Table 5). In addition, combinations of three meteorological variables (relative
humidity, wind speed, sunshine hours) and (minimum temperature, relative humidity,
sunshine hours) produced reasonable accurate predictions, with test RMSE values ranging
between 0.333 and 0.377 mm/d.
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Table 5. Prediction errors of deep learning-based ET0 models (LSTM and Bi-LSTM) with different
input combinations on the test dataset.

Model No. Different Input Combinations
Test RMSE, mm/d

LSTM Bi-LSTM

Single Input Combinations
M1 Min temp 0.880 0.964
M2 Max temp 0.775 0.781
M3 Humidity 1.124 1.211
M4 Wind speed 1.177 1.105
M5 Sunshine hours 0.732 0.807

Two Inputs combinations
M6 Min temp, max temp 0.765 0.779
M7 Min temp, humidity 0.729 0.751
M8 Min temp, wind speed 1.004 1.049
M9 Min temp, sunshine hours 0.527 0.514

M10 Max temp, humidity 0.634 0.602
M11 Max temp, wind speed 0.734 0.743
M12 Max temp, sunshine hours 0.501 0.430
M13 Humidity, wind speed 0.727 0.760
M14 Humidity, sunshine hours 0.531 0.983
M15 Wind speed, sunshine hours 0.527 0.627

Three Inputs Combinations
M16 Min temp, max temp, humidity 0.570 0.574
M17 Min temp, max temp, wind speed 0.729 0.722
M18 Min temp, max temp, sunshine hours 0.512 0.447
M19 Min temp, humidity, wind speed 0.726 0.723
M20 Min temp, humidity, sunshine hours 0.337 0.377
M21 Min temp, wind speed, sunshine hours 0.470 0.501
M22 Max temp, humidity, wind speed 0.567 0.566
M23 Max temp, humidity, sunshine hours 0.300 0.239
M24 Max temp, wind speed, sunshine hours 0.409 0.394
M25 Humidity, wind speed, sunshine hours 0.337 0.333

Four Inputs Combinations
M26 Min temp, max temp, humidity, wind speed 0.577 0.561
M27 Min temp, max temp, humidity, sunshine hours 0.262 0.229
M28 Min temp, max temp, wind speed, sunshine hours 0.382 0.404
M29 Min temp, humidity, wind speed, sunshine hours 0.271 0.238
M30 Max temp, humidity, wind speed, sunshine hours 0.107 0.116

All Inputs
M31 Min temp, max temp, humidity, wind speed, sunshine hours 0.081 0.087

RMSE = root mean squared error, LSTM = long short-term memory networks, Bi-LSTM = bi-directional long-short
term memory networks. The numbers in boldface indicate the best performance, whereas the numbers in boldface
and italicized represent the worst performance.

Nonetheless, decision making in such situations is challenging, as the RMSE criterion
alone is insufficient as a decision-making tool. To assist in the decision-making process,
we used three benefit (the higher numeric values indicate better model performances: R,
NS, IOA) and three cost (the lower the numeric values, the better the model performance:
NRMSE, MAE, MAD) performance evaluation indices in the decision-making process with
the aid of Shannon’s entropy. On the testing dataset, we computed the R, NS, IOA, NRMSE,
MAE, and MAD criteria for all 31 LSTM and 31 Bi-LSTM models. These evaluation indices
were used to rank proposed models using Shannon’s entropy-based decision theory. Table 6
shows the ranking results together with the corresponding ranking values.
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Table 6. Ranking of the LSTM and Bi-LSTM models using Shannon’s entropy.

Sl. No.
LSTM Bi-LSTM

Model Ranking Value Model Ranking Value

1 M31 0.996 M31 0.966
2 M30 0.906 M30 0.913
3 M27 0.702 M27 0.704
4 M23 0.687 M23 0.696
5 M20 0.657 M29 0.688
6 M29 0.652 M25 0.642
7 M25 0.640 M20 0.621
8 M28 0.604 M24 0.600
9 M24 0.600 M28 0.594
10 M21 0.584 M12 0.581
11 M12 0.563 M18 0.576
12 M18 0.561 M21 0.563
13 M14 0.560 M26 0.557
14 M22 0.558 M9 0.555
15 M26 0.556 M22 0.551
16 M15 0.555 M16 0.551
17 M9 0.555 M10 0.535
18 M16 0.554 M15 0.522
19 M10 0.535 M17 0.488
20 M11 0.496 M19 0.485
21 M17 0.493 M11 0.482
22 M19 0.491 M7 0.478
23 M13 0.491 M13 0.475
24 M7 0.483 M6 0.462
25 M5 0.482 M2 0.460
26 M6 0.470 M5 0.451
27 M2 0.470 M14 0.384
28 M1 0.415 M1 0.376
29 M8 0.364 M8 0.336
30 M3 0.306 M4 0.311
31 M4 0.209 M3 0.256

It is perceived from the results presented in Table 6 that models that used all five
input variables (M31) were the top-ranked predictors, followed by M30, M27, and M23
for both LSTM and Bi-LSTM algorithms. Models M3 and M4 appeared to be the worst
performers when using LSTM or Bi-LSTM algorithms for model development. The findings
are in accordance with the work of Kisi et al. [37], who indicated that considering all input
variables greatly increased the accuracy of the prediction model (radial basis M5Tree) for
the data acquired from the three weather stations. Therefore, the results suggest that all
input variables would be employed to better predict the daily ET0 for the meteorological
data and the corresponding ET0 values presented in this study. Consequently, to arrange
for an impartial comparison, we developed other prediction modeling algorithms (ANFIS,
GPR, M5Tree, MARS, PLR, and SVR) using all five input variables available for the study
area. Similar evaluation indices were computed for all the other prediction modeling
algorithms proposed in this research. The prediction results are presented in Table 7.

The prediction results in Table 7 indicated that all ET0 prediction models are reasonably
accurate at predicting daily ET0 values, as evidenced by the different performance indices
computed on the testing dataset. While no standalone model exhibited the best performance
for all evaluation indices, the individual prediction models provided the estimates of daily
ET0 values superior to others. All ET0 models had satisfactory prediction accuracy as
all models had better (higher) values R, NS, and IOA and lower NRMSE, MAE, and
MAD values. LSTM and Bi-LSTM models had superior performance in comparison with
others according to all performance evaluation indices. PLR was found to be the worst-
performing model.
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Table 7. Performance indices of the developed ET0 prediction models for the testing dataset.

Model
Performance Evaluation Indices

R NS IOA NRMSE MAE, mm/d MAD, mm/d

LSTM 0.998 0.995 0.999 0.021 0.666 0.025
Bi-LSTM 0.998 0.995 0.999 0.023 0.582 0.027
ANFIS 0.991 0.981 0.995 0.043 0.706 0.061
GPR 0.993 0.985 0.996 0.038 0.650 0.052

M5 Tree 0.985 0.970 0.993 0.054 1.153 0.062
MARS_C 0.992 0.983 0.996 0.041 0.869 0.054
MARS_L 0.992 0.983 0.996 0.040 0.760 0.054

PLR 0.973 0.943 0.985 0.075 1.489 0.114
SVR 0.993 0.985 0.996 0.038 0.676 0.050

MARS_C = piecewise cubic, MARS_L = piecewise linear.

To provide an additional evaluation regarding the prediction capabilities of the pro-
posed machine learning algorithms (ET0 prediction models), we presented and compared
the absolute error boxplots. Figure 3 illustrates the absolute error boxplots for all the
developed models. Absolute error boxplots represent a relative assessment of the statistical
distributions of the absolute errors between the FAO-56 PM-computed and model-predicted
ET0 values and supports the evaluation of the degree of general distributions of the inac-
curacies provided by the models. The horizontal lines inside the boxplots represent the
median values of the absolute errors, whereas the black circles mark the mean (average) of
the absolute errors. Absolute error boxplots also demonstrated the superior performance
of the LSTM- and Bi-LSTM-based models.
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Figure 3. Absolute error boxplots. M1–M9 represent LSTM, Bi-LSTM, ANFIS, GPR, M5 tree, MARS_C,
MARS_L, PLR, and SVR models, respectively.

As far as the two best models are considered, the LSTM model performed better than
Bi-LSTM when NRMSE and MAD criteria were considered. In contrast, Bi-LSTM outper-
formed the LSTM model according to the MAE criterion. On the other hand, both LSTM
and Bi-LSTM performed equally well with respect to R, NS, and IOA criteria. Therefore, it is
concluded that ET0 prediction models showed differing precisions depending on the model
evaluation indices calculated on the FAO-56 PM and model predicted ET0 values, which
indicated an inconsistency in the model performance when divergent or non-identical
evaluation indices were employed. Decision making in this situation is extremely arduous
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and can be smoothed by employing a decision theory that integrates a number of different
model evaluation indices in decision making. This study employed Shannon’s entropy as a
decision-making tool.

The ranking of the proposed ET0 models computed using Shannon’s entropy is pre-
sented in Table 8. The greater the values of Shannon’s entropy, the better the model’s per-
formance. Table 8 suggests that LSTM was the top-performing model followed by Bi-LSTM,
although the difference between the ranking values of these two models was negligible.

Table 8. Shannon’s entropy values for different models and their corresponding ranks.

Model Shannon’s Entropy Value Rank

LSTM 0.979 1
Bi-LSTM 0.978 2
ANFIS 0.807 6
GPR 0.839 3

M5 tree 0.734 8
MARS_C 0.794 7
MARS_L 0.810 5

PLR 0.665 9
SVR 0.836 4

The performance index values for the best model (LSTM) are as follows (Table 7):
R = 0.998, NS = 0.995, IOA = 0.999, NRMSE = 0.021, MAE = 0.666 mm/d, and
MAD = 0.025 mm/d. Although an explicit comparison between the findings of this re-
search and other studies is not possible due to variations in study conditions (modeling
tools and geographical locations), the numeric values of various performance indices were
observed as being comparable to or even better than those found in the recent literature on
ET0 modeling. For instance, the present study’s findings are superior to those obtained by
Tao et al. [123], who obtained NRMSE and R2 values of 0.043 and 0.97, respectively, using an
optimization algorithm-tuned ANFIS model to predict ET0 in the Bur Dedougou, Burkina
Faso. The LSTM model proposed in this study also shows better performance than the
optimization algorithm tuned SVR model developed in Ahmadi et al. [32], who obtained
the following performance indices at various stations: RMSE = 0.540 mm/d and R = 0.983 at
Mashhad station; RMSE = 0.404 mm/d and R = 0.980 at Arak station; RMSE = 0.299 mm/d
and R = 0.989 at Shiraz station; RMSE = 0.559 mm/d and R = 0.978 at Tehran station;
RMSE = 0.457 mm/d and R = 0.962 at Bandar Abbas station; and RMSE = 0.399 mm/d
and R = 0.986 at Yazd station. The present study’s findings are also in good agreement
with the findings presented in Chia et al. [124], who obtained RMSE and R2 values of
0.001–0.197 mm/d and 1.000–0.949, respectively, at three stations using an optimization
algorithm-tuned ELM model. The findings are also compared with those presented in
Mohammadi and Mehdizadeh [125] that are based on RMSE and R2 criteria. Our proposed
LSTM model shows superior performance over the best models developed with the daily
data in Ferreira and da Cunha [80], who reported NS values of 0.69 to 0.84 and R2 values of
0.79 to 0.88. The present study’s findings are superior to the optimization algorithm-tuned
ELM model developed by Wu et al. [30] that reported R2 and NRMSE values of 0.993 and
0.0554, respectively. Elbeltagi et al. [126] reported R values of 0.94, 0.95, and 0.95 at the Ad
Daqahliyah, Kafr ash Shaykh, and Ash Sharqiyah regions, respectively, using the DNN
model. These R values were lower than the R-value obtained using the proposed LSTM
model in the present study (R = 0.998). The NS value of the present study (NS = 0.995) is
also superior to the NS value (NS = 0.959) presented in Gao et al. [127], indicating the better
performance of the proposed LSTM model. The findings of our study are also comparable
to those presented in Chia et al. [50], who reported minimum MAE and RMSE values of
0.444 mm/d and 0.543 mm/d, respectively.

Nevertheless, an apple-to-apple comparison can be performed between the findings
obtained from the LSTM model presented in this effort with the models investigated in
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Roy et al. [21] (an ensemble of ANFIS models) and in Roy et al. [20] (optimization algo-
rithm tuned ANFIS model). With the optimization algorithm-tuned ANFIS model for the
same study area, Roy et al. [20] obtained the following performance indices: R = 0.993,
NS = 0.986, IOA = 0.996, MAD = 0.054 mm/d, NRMSE = 0.038. Our proposed LSTM model
performed better than the ANFIS model presented by Roy et al. [20] with respect to all
of these performance indices (R = 0.998, NS = 0.995, IOA = 0.999, NRMSE = 0.021, and
MAD = 0.025 mm/d in the present study). Statistical indices provided by the LSTM model
(R = 0.998, NS = 0.995, IOA = 0.999, and MAD = 0.025 mm/d) proposed in this research
also appeared to be superior than those presented by Roy et al. [21] using ensemble of
ANFIS models (R = 0.993, NS = 0.985, IOA = 0.996, and MAD = 0.054 mm/d). Furthermore,
the proposed LSTM model’s performance is superior to the performance of the optimiza-
tion algorithm tune hierarchical fuzzy systems (HFS) presented by Roy et al. [46] with
respect to R (LSTM = 0.998, HFS = 0.987), NRMSE (LSTM = 0.021, HFS = 0.052), and MAD
(LSTM = 0.025 mm/d, HFS = 0.068 mm/d) criteria.

3.2. One-Step-Ahead Prediction of ET0 Using Different Modeling Approaches at the Training
Station (Gazipur Sadar)
3.2.1. One-Step-Ahead Forecast Using Sequence to Sequence Regression LSTM
(SSR-LSTM) Network

An SSR-LSTM network-based model was trained by employing the historical ET0
dataset (time series) computed using the FAO-56 PM equation from the meteorological
variables. In an SSR-LSTM model, the outputs from the model correspond to the training
sequences (ET0 time series) with ET0 values moved to a one-time step ahead. At every
time step of the ET0 sequence, an SSR-LSTM network learns how to predict ET0 values
for the next time step. For training the proposed SSR-LSTM model, the historical ET0
time series was partitioned into training and test sets (90% of the entire data was used for
training, whereas the remaining 10% was used for testing the model). Model parameters
including the number of hidden layers and neurons were decided upon by conducting
several trials. An SSR-LSTM model with one hidden layer having 200 hidden neurons in the
hidden layer provided the best results for both the model training and testing phases. The
optimal values of other model parameters were solver = ‘adam’, number of epochs = 250,
gradient threshold = 1, initial learning rate = 0.005, and multiplying factor for the learn rate
dropping = 0.2. Model performance is presented in Figure 4.
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Figure 4. SSR-LSTM performance: (a) estimated (FAO-56 PM-computed) and SSR-LSTM-forecasted
ET0 values for the test dataset; (b) future projections beyond the observed ET0 values.
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It is observed from Figure 4 that even though the SSR-LSTM model adequately ap-
prehended the trends of the ET0 time series for the test set of the data (Figure 4b), the
SSR-LSTM forecasts were comparatively flat compared to the original ET0 time-series
data (Figure 4a). This necessitates the improvement in the forecasting performance of the
initial SSR-LSTM model. One way of improving performance is to update the SSR-LSTM
network state using the observed ET0 values instead of the predicted ET0 values. Resetting
the network’s state is used in this study to prevent previous predictions from impacting
the results.

This was performed by resetting the network state in order to prevent previous
predictions from affecting the predictions on the new dataset. The forecasting results
obtained from the updated network state of the SSR-LSTM model are presented in Figure 5.
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Figure 5. SSR-LSTM performance after network updating: (a) estimated (FAO-56 PM-computed)
and SSR-LSTM-forecasted ET0 values for the test dataset; (b) future projections beyond the observed
ET0 values.

3.2.2. One-Step-Ahead Forecast Using ANFIS, LSTM, and Bi-LSTM Models

For developing ANFIS, LSTM, and Bi-LSTM models to provide one-step-ahead fore-
casts, we computed PACF functions to obtain time-lagged information from the daily ET0
time series. This information obtained from the PACF functions was employed to assess the
time-based dependences between ET0 for a present day (ETt) and the ET0 values at a par-
ticular day in a prior period (e.g., at a lag time of ETt−1, ETt−2, ETt−3, ETt−4, and ETt−5).
These time-based dependences in the ET0 time series were assessed for 50 time lags (e.g.,
ETt−1 to ETt−50), as shown in Figure 6. In Figure 6, the blue lines indicate the 95% con-
fidence band, whereas the red vertical lines represent the corresponding values of ACF
and PACF. Time-lagged ET0 values serve as the inputs to the ANFIS, LSTM, and Bi-LSTM
models to forecast one-day-ahead ET0 values (outputs from the models). The optimal sets
of time-lagged ET0 inputs for model development were selected carefully after observing
the PACF functions.
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Figure 6. ACF (a) and PACF (b) plots of the ET0 time series for 50 lags at Gazipur station.

A careful observation of the PACF plot shown in Figure 6 determines the following
time-lagged ET0 values as inputs to the developed models:

ETt, ETt−1, ETt−2, ETt−3, ETt−4, ETt−5, ETt−6, ETt−7, ETt−8, ETt−9, ETt−10, ETt−11

The outputs from the developed models were ETt+1(one-day-ahead ET0 values).
ANFIS outputs: The results of the one-step-ahead forecast using the ANFIS model

are presented in Figure 7 and Table 9. Figure 7 presents ANFIS forecasts through scatter
plots and hydrographs, whereas Table 8 shows model prediction capabilities based on
several statistical performance evaluation indices. Hydrographs and scatterplots presented
in Figure 7 demonstrate the reasonable precision of the one-day-ahead ET0 forecasts by
the ANFIS model. It is observed from Figure 7 that the training and test RMSE (0.759 and
0.789 mm/d, respectively, for the training and testing phases) did not vary considerably,
which indicates a better model fit without model over- or under-fitting. Figure 7 also indi-
cates acceptable values of training and test R-values (0.825 and 0.755, respectively, for the
training and testing phases). As far as other performance evaluation indices are considered,
the ANFIS model produced the following values of performance measures computed on
the test dataset: NS = 0.567, IOA = 0.858, NRMSE = 0.207 mm/d, MAE = 2.710 mm/d, and
MAD = 0.308 mm/d.

LSTM and Bi-LSTM outputs: Comparison of FAO-56 PM-calculated and model-
predicted ET0 values, error plots, and projected (one-step-ahead) ET0 values produced
by the LSTM and Bi-LSTM models are presented in Figures 8 and 9, respectively. It is
noticed from Figures 8 and 9 that both LSTM and Bi-LSTM models captured the trend of
the ET0 time series precisely and that Bi-LSTM model forecasts were superior to those of the
LSTM model. The performance evaluation results based on several statistical performance
evaluation indices are presented in Table 9. The LSTM model produced the following
values of performance measures computed on the test dataset: R = 0.698, NS = 0.698,
IOA = 0.429, NRMSE = 0.237 mm/d, MAE = 3.047 mm/d, and MAD = 0.334 mm/d. On the
other hand, the Bi-LSTM model produced the following values of performance measures
computed on the test dataset: R = 0.999, NS = 0.998, IOA = 0.999, NRMSE = 0.014 mm/d,
MAE = 0.491 mm/d, and MAD = 0.017 mm/d.
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Figure 7. Scatter plots and regression plots for the values of FAO-56 PM-calculated ET0 and ANFIS-
forecasted ET0 for the training (a) and testing (b) phases.

Table 9. Performance indices of the one-day-ahead ET0 prediction models for the testing dataset.

Model
Performance Evaluation Indices

R NS IOA NRMSE MAE, mm/d MAD, mm/d

ANFIS 0.755 0.567 0.858 0.207 2.710 0.308
Bi-LSTM 0.999 0.998 0.999 0.014 0.491 0.017

LSTM 0.698 0.429 0.833 0.237 3.047 0.334
SSR-LSTM 0.818 0.666 0.898 0.184 2.687 0.279
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Figure 8. FAO-56 PM-calculated and LSTM-projected ET0 values with error plots computed on the
test dataset.
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Figure 9. FAO-56 PM-calculated and Bi-LSTM-projected ET0 values with error plots computed on
the test dataset.

It is observed from Table 9 that the Bi-LSTM model provided a superior performance
compared to the other models (SSR-LSTM, ANFIS, and LSTM) according to the statistical
indices computed on the test dataset. It is noted that the prediction results with respect
to the calculated performance indices did not demonstrate a considerable inconsistency.
However, to reach a solid conclusion regarding the best-performing model, we applied the
concept of Shannon’s entropy to provide a performance ranking (Table 10). It is observed
from Table 10 that Bi-LSTM appeared to be the best performer, while SSR-LSTM, ANFIS,
and LSTM held the second, third, and fourth positions, respectively. Therefore, according
to the performance results for one-step-ahead forecasting, the best-performing Bi-LSTM
model was employed to provide multi-step (5 day)-ahead forecasting.

Table 10. Shannon’s entropy-based model ranking for one-day-ahead ET0 forecasts.

Model Shannon’s Entropy Value Rank

Bi-LSTM 1.00 1
SSR-LSTM 0.30 2

ANFIS 0.27 3
LSTM 0.24 4
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3.3. Multi-Step (5 Day-Ahead) Forecasting Using the Bi-LSTM Model

The forecasting performance of the developed ET0 prediction model using the Bi-LSTM
algorithm was evaluated using several statistical performance indices on the test dataset.
However, to ascertain that no model over- or under-fitting occurred, we quantitatively
evaluated the results obtained from both the training and validation phases. Five Bi-LSTM
models were developed to forecast 1, 2, 3, 4, and 5 day-ahead ET0 values. For all models,
the selected time-lagged variables were served as inputs to the Bi-LSTM models. Table 11
presents the performances of the developed Bi-LSTM models on the training and validation
datasets. It is evident from Table 11 that the absolute variances between the training and
validation performances increased with the increase in the forecasting horizon. Overall, the
training performances were satisfactory for all forecasting horizons.

Table 11. Training and validation performances of the developed Bi-LSTM models at Gazipur station.

Forecasting Horizon Training RMSE, mm/d Validation RMSE, mm/d

1 day 0.08 0.11
2 days 0.12 0.17
3 days 0.09 0.18
4 days 0.10 0.22
5 days 0.10 0.28

The trained and validated Bi-LSTM models were then used to forecast ET0 values
on the test dataset, which were selected from the entire dataset. Testing performances
were assessed using several evaluation indices, as shown in Table 12. It is perceived from
Table 12 that the forecasting horizon greatly influenced the forecasting accuracies. The
accuracy decreased with the increase in the forecasting horizon as in the case of the training
and validation performances. However, the overall performances of the Bi-LSTM model
for all forecasting horizons showed particularly good performance, as indicated by the
computed statistical performance evaluation indices. The performance of the developed
models was also assessed using line graphs and error plots as shown in Figure 10.

Table 12. Multi-day-ahead forecasting performance of the Bi-LSTM model on the test dataset at
Gazipur station.

Indices
Forecasting Horizon

1 Day 2 Days 3 Days 4 Days 5 Days

RMSE, mm/d 0.11 0.17 0.18 0.22 0.28
NRMSE 0.03 0.04 0.05 0.06 0.07

R 1.00 0.99 0.99 0.98 0.97
MAD, mm/d 0.03 0.04 0.04 0.06 0.08
MAE, mm/d 0.07 0.08 0.10 0.13 0.17

NS 0.99 0.98 0.98 0.97 0.95
IOA 1.00 0.99 0.99 0.99 0.99
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Figure 10. Line graph and error plots for 1, 2, 3, 4, and 5 day-ahead forecasting at Gazipur station.

It is observed from Table 12 that the Bi-LSTM model showed reasonably good per-
formance, as evidenced by the computed performance indices. It produced lower values
of cost indices (RMSE, NRMSE, MAD, and MAE) as well as higher values of benefit in-
dices (R, NS, IOA). However, it is noted that the forecasting accuracy largely depended
on the forecasting horizon, i.e., the sequence of forecasting accuracies are as follows:
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1 day > 2 days > 3 days > 4 days > 5 days. This finding is in good agreement with the
work of Yin et al. [128], who also stated that forecasting accuracy decreased with the
increased forecasting horizon. Nevertheless, the forecasting accuracy of the Bi-LSTM
model at 5 days ahead was also found acceptable for deep learning-based modeling of ET0.
Ferreira and da Cunha [82] also reported better deep learning model performance (CNN-
LSTM) on the first and second forecasting days. Our findings using the Bi-LSTM model
(RMSE = 0.11–0.28 mm/d) outperformed the CNN-LSTM model proposed by Ferreira and
da Cunha [82] (mean RMSE values of 0.87 to 0.88 mm/d) with respect to RMSE criterion.
Our proposed Bi-LSTM model performed better than the Bi-LSTM model proposed by
Yin et al. [128] with respect to RMSE, R, and NS criteria. For instance, for 1 day-ahead
forecasting, Yin et al. [128] obtained RMSE, R, and NS values of 0.159 mm/d, 0.992, and
0.988, respectively, whereas the values of RMSE, R, and NS in our study were found to be
0.11 mm/d, 1.00, and 0.99, respectively. Similarly, our proposed Bi-LSTM model outper-
formed the Bi-LSTM model presented by Yin et al. [128] for 4 day-ahead ET0 forecasting.
Moreover, our results also showed superior performance than the Bi-LSTM model results
presented by Roy [81] in terms of R and IOA criteria for 1 day-ahead ET0 forecasting.
Roy [81] reported R and IOA values of 0.698 to 0.999 and 0.833 to 0.999, respectively, while
the present study provided R and IOA values of 1.00 and 1.00, respectively. Therefore, it can
be inferred that our proposed Bi-LSTM model is suitable for forecasting multi-step-ahead
ET0 values quite efficiently and precisely. It is noted that the Bi-LSTM model produced a
slightly higher forecast error, especially at the end of the ET0 time series. This comparatively
big error at the end of the dataset may have arisen from higher values of ET0 (outliers),
which was not smoothed in order to evaluate the performance of the proposed modeling
approaches for datasets containing outliers. Nevertheless, these values are still acceptable
in the context of modeling ET0 using machine learning approaches.

3.4. Generalization Capability of the Proposed Best ET0 Prediction Models

The validation of the proposed best models (LSTM for daily predictions and Bi-LSTM
for multi-step-ahead forecasts) was performed using data obtained from a new test station
at which the models were not developed. The entire dataset of the test station (Ishurdi
station) was split into three separate sets, each of which was employed to validate the
models developed at the training station (Gazipur Sadar station). These three standalone
datasets were fed into the LSTM and Bi-LSTM models to predict daily ET0 values and
forecast multi-day-ahead ET0, respectively. The outputs from the models were weighed
against the FAO-56 PM-computed ET0 values using numerous statistical performance
evaluation indices.

3.4.1. Generalization Capability of Proposed Best LSTM Model: Daily Prediction of ET0

Table 13 summarizes the evaluation results for a variety of performance indices. The
LSTM model exhibited a reasonably good performance at the test station data’s three
different sets (entire, first half, and second half). The computed performance indices
indicated a satisfactory performance of the proposed LSTM model. It produced reasonably
higher values of benefit indices (R, NS, and IOA) and lower values of the cost indices
(RMSE, NRMSE, MAD, and MAE) for the entire, the first half, and the second half of the
test station data. It is also observed that the first half of the dataset produced relatively better
performance when compared to that of the second half and the entire dataset. Overall, the
performance is satisfactory. On this basis, it is arguably concluded that the proposed LSTM
model at Gazipur Sadar station can predict daily ET0 values at Ishurdi station without
developing a model at Ishurdi station. Additionally, performance data were presented
using scatter and error plots, as illustrated in Figure 11, which depict the distribution of
errors at individual data points.
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Table 13. Performance of the LSTM model for predicting daily ET0 values on the Ishurdi dataset.

Performance Indices Entire Dataset First Half Data Second Half Data

RMSE, mm/d 0.65 0.49 0.84
NRMSE 0.18 0.13 0.23

R 0.87 0.92 0.83
MAD, mm/d 0.18 0.18 0.20
MAE, mm/d 0.44 0.39 0.52

NS 0.72 0.84 0.57
IOA 0.97 0.98 0.96
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Figure 11. Line graph and error plots of FAO-56 PM-computed and LSTM-predicted daily ET0 at
Ishurdi station: (a) entire dataset, (b) first half of the dataset, and (c) second half of the dataset.

3.4.2. Generalization Capability of Proposed Best Bi-LSTM Model: Multi-Step
(Multi-Day)-Ahead ET0 Forecasting

For multi-step (multi-day)-ahead ET0 forecasting, new Bi-LSTM models were devel-
oped because the nature of data was different. However, a similar model structure and
parameters as in the case of Gazipur station were used. As a Bi-LSTM model performed
better for one-step-ahead prediction at Gazipur station, the Bi-LSTM model was used to
develop models for forecasting 1, 2, 3, and 5 day-ahead ET0 values at the Ishurdi station.
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For this, time-lagged information from the ET0 time series was collected for 50 lags. The
most significant input variables were determined by observing partial autocorrelation
functions of the lagged time series, as shown in Figure 12.

Agronomy 2022, 12, 594 26 of 34 
 

 

3.4.2. Generalization Capability of Proposed Best Bi-LSTM Model: Multi-Step (Multi-
Day)-ahead ET0 Forecasting 

For multi-step (multi-day)-ahead ET0 forecasting, new Bi-LSTM models were devel-
oped because the nature of data was different. However, a similar model structure and 
parameters as in the case of Gazipur station were used. As a Bi-LSTM model performed 
better for one-step-ahead prediction at Gazipur station, the Bi-LSTM model was used to 
develop models for forecasting 1, 2, 3, and 5 day-ahead ET0 values at the Ishurdi station. 
For this, time-lagged information from the ET0 time series was collected for 50 lags. The 
most significant input variables were determined by observing partial autocorrelation 
functions of the lagged time series, as shown in Figure 12. 

 
Figure 12. Sample partial autocorrelation functions of the lagged ET0 time series at Ishurdi station. 

Five Bi-LSTM models were developed to forecast 1, 2, 3, 4, and 5 day-ahead ET0 fore-
casting. For all models, the selected time-lagged variables were served as inputs to the Bi-
LSTM models. Table 14 presents the performances of the proposed Bi-LSTM models at 
the training and validation datasets. The absolute variances between the training and val-
idation performances increased with the increase in the forecasting horizon. Overall, the 
training performances were satisfactory for all forecasting horizons. 

–0.2

0

0.2

0.4

0.6

0.8

1

Sa
m

pl
e 

Pa
rt

ia
l A

ut
oc

or
re

la
tio

n

Sample Partial Autocorrelation Function

0 10 20 30 40 50
Lag

-0.2

0

0.2

0.4

0.6

0.8

1

Sa
m

pl
e 

Pa
rt

ia
l A

ut
oc

or
re

la
tio

n

Sample Partial Autocorrelation Function

0 10 20 30 40 50
Lag

Figure 12. Sample partial autocorrelation functions of the lagged ET0 time series at Ishurdi station.

Five Bi-LSTM models were developed to forecast 1, 2, 3, 4, and 5 day-ahead ET0
forecasting. For all models, the selected time-lagged variables were served as inputs to the
Bi-LSTM models. Table 14 presents the performances of the proposed Bi-LSTM models
at the training and validation datasets. The absolute variances between the training and
validation performances increased with the increase in the forecasting horizon. Overall, the
training performances were satisfactory for all forecasting horizons.

Table 14. Training and validation performances of the developed Bi-LSTM models at Ishurdi station.

Forecasting Horizon Training RMSE, mm/d Validation RMSE, mm/d

1 day 0.09 0.12
2 days 0.10 0.17
3 days 0.11 0.29
4 days 0.12 0.56
5 days 0.10 0.73
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The trained and validated Bi-LSTM models were then used to forecast ET0 values
on the test dataset, which were selected from the entire dataset. Testing performances
were assessed using several statistical index values, as shown in Table 15. The forecasting
horizon greatly influenced the forecasting accuracies. The accuracy decreased with the
increase in the forecasting horizon, as in the case of the training and validation perfor-
mances. However, the overall performances of the Bi-LSTM model for all forecasting
horizons showed particularly good performance, as indicated by the computed statistical
performance evaluation indices. Performance evaluation results of the developed models
were also assessed with the aid of line graphs and error plots, as shown in Figure 13. The
performance results illustrated in Figure 13 were in good agreement with the statistical
index values presented in Table 15. As observed in the line graphs and error plots, forecast-
ing accuracy largely depended on the forecasting horizon: forecasting accuracy decreased
with increases in the forecasting horizon.

Table 15. Multi-day-ahead forecasting performance of the Bi-LSTM model on the test dataset at
Ishurdi station.

Indices
Forecasting Horizon

1 Day 2 Days 3 Days 4 Days 5 Days

RMSE, mm/d 0.12 0.17 0.29 0.56 0.73
NRMSE 0.03 0.05 0.08 0.16 0.20

R 1.00 0.99 0.98 0.90 0.86
MAD, mm/d 0.04 0.05 0.08 0.14 0.24
MAE, mm/d 0.09 0.12 0.19 0.37 0.56

NS 0.99 0.98 0.95 0.81 0.69
IOA 1.00 1.00 0.99 0.95 0.91

It is observed from Figure that 1 day- and 2 day-ahead forecasting results were
relatively better when compared to the results produced in three, four, and five day-ahead
forecasts with respect to the RMSE criterion. A closer look at the line graphs also revealed
the superiority of one day- and two day-ahead forecasts over the other three forecasting
horizons and that Bi-LSTM models captured the lower values of the ET0 time series quite
accurately in comparison with the higher values for one day-, two day-, and three day-
ahead forecasts. While producing acceptable results, the Bi-LSTM models followed similar
trends for both the lower and higher values in the ET0 time series in the case of the four
day- and five day-ahead forecasts. It is also perceived from the line graphs that errors
were relatively smaller at the end of the time series for the one day- and two day-ahead
forecasts, while the Bi-LSTM models produced relatively higher errors at the end of the
dataset for the three, four, and five day-ahead forecasts. Although performed differently at
different forecast horizons, the Bi-LSTM model forecasts were quite accurate and closer to
the FAO-56 PM-estimated ET0 values. This is also evident from the statistical performance
evaluation indices presented in Table 15. In particular, the NRMSE values of 0.03, 0.05,
0.08, 0.16, and 0.20 for the one, two, three, four, and five day-ahead forecasts, respectively,
revealed the reasonable accurate forecasts of the proposed Bi-LSTM model. A model’s
performance is said to be excellent when the NRMSE value is lower than 0.1, good when
the NRMSE value is between 0.1 and 0.2, fair when the NRMSE value is between 0.2 and
0.3, poor when the NRMSE is greater than 0.3 [129,130].
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Figure 13. Line graph and error plots for 1, 2, 3, 4, and 5 day-ahead forecasting at Ishurdi station.
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4. Conclusions

Precise prediction and forecasting of ET0 have been a critical and emerging first step
for developing a justifiable and effective irrigation scheduling plan. This research provided
a selection of the best machine and deep learning algorithms to develop robust prediction
and forecasting tools for daily and multi-step (5 day)-ahead ET0 prediction and forecasting,
respectively. The selection results indicated the superiority of the LSTM model for daily
ET0 predictions, whereas for multi-step-ahead forecasting, the Bi-LSTM model provided
superior performance. For daily ET0 prediction, a number of meteorological variables were
used as inputs to the model, whereas the computed ET0 values were used as outputs from
the model. For multi-step (5 day)-ahead forecasting, the appropriate daily time-lagged
ET0 values were used as inputs to the Bi-LSTM model, and the outputs from the Bi-LSTM
model were the one, two, three, four, and five step-ahead ET0 values. On the basis of
the results of the one-step-ahead prediction performed previously for model selection,
we found that the Bi-LSTM model was further employed to provide multi-step (5 day)-
ahead forecasting. Results revealed the suitability of the Bi-LSTM model in predicting
multi-step-ahead ET0 values.

In a further step, best models for daily prediction (LSTM) and multi-step-ahead
forecasting (Bi-LSTM) were used to generalize the ET0 values for the data obtained from a
different weather station, for which the models were neither trained nor validated. More
specifically, the LSTM network was used to generalize the daily ET0 predictions in a nearby
meteorological station without developing a model for that station. On the other hand, the
Bi-LSTM model was developed for the Ishurdi station to forecast 1, 2, 3, 4, and 5 day-ahead
ET0 forecasting. The relatively low errors obtained by the LSTM and Bi-LSTM approaches
led to a good fit of the models in predicting daily ET0 values and forecasting multi-step-
ahead ET0 values. This can be expected to be very useful in the practice of irrigation water
management, for which ET0 is an important parameter.
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90. Shiri, J.; Nazemi, A.H.; Sadraddini, A.A.; Landeras, G.; Kişi, O.; Fakheri Fard, A.; Marti, P. Comparison of heuristic and empirical
approaches for estimating reference evapotranspiration from limited inputs in Iran. Comput. Electron. Agric. 2014, 108, 230–241.
[CrossRef]

91. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
92. Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Muhammad Adnan, R. Monthly runoff forecasting based on LSTM–ALO model. Stoch.

Environ. Res. Risk Assess. 2018, 32, 2199–2212. [CrossRef]
93. Jang, J.-S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence;

Prentice Hall: Upper Saddle River, NJ, USA, 1997.
94. Sugeno, M.; Yasukawa, T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1993, 1, 7. [CrossRef]
95. Takagi, T.; Sugeno, M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man. Cybern.

1985, SMC-15, 116–132. [CrossRef]
96. Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [CrossRef]
97. MATLAB Version R2019b; The MathWorks, Inc.: Natick, MA, USA, 2019.
98. Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 1993, 23, 665–685. [CrossRef]
99. Rasmussen, C.E.; Williams, C.K. Gaussian Process for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006.
100. Bishop, C. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
101. Quinlan, J.R. Learning with continuous classes. In Proceedings of the Australian Joint Conference on Artificial Intelligence,

Hobart, Australia, 16–18 November 1992; pp. 343–348.
102. Wang, Y.; Witten, I. Induction of model trees for predicting continuous classes. Work. Pap. 1996, 96, 23.
103. Bhattacharya, B.; Solomatine, D.P. Neural networks and M5 model trees in modelling water level–discharge relationship.

Neurocomputing 2005, 63, 381–396. [CrossRef]
104. Solomatine, D.P.; Dulal, K. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol. Sci. J. 2003,

48, 399–411. [CrossRef]
105. Solomatine, D.P.; Yunpeng, X. M5 model trees and neural networks: Application to flood forecasting in the upper reach of the

Huai River in China. J. Hydrol. Eng. 2004, 9, 491–501. [CrossRef]
106. Jekabsons, G. M5PrimeLab: M5’ Regression Tree, Model Tree, and Tree Ensemble Toolbox for Matlab/Octave; The MathWorks, Inc.:

Natick, MA, USA, 2020. Available online: http://www.cs.rtu.lv/jekabsons/regression.html (accessed on 23 December 2021).
107. Friedman, J.H. Multivariate adaptive regression splines (with discussion). Ann. Stat. 1991, 19, 1–67.
108. Bera, P.; Prasher, S.O.; Patel, R.M.; Madani, A.; Lacroix, R.; Gaynor, J.D.; Tan, C.S.; Kim, S.H. Application of MARS in simulating

pesticide concentrations in soil. Trans. Asabe 2006, 49, 297–307.
109. Salford-Systems. SPM Users Guide: Introducing MARS; Minitab, LLC.: State College, PA, USA, 2019. Available online:

https://www.minitab.com/content/dam/www/en/uploadedfiles/content/products/spm/IntroMARS.pdf (accessed on 23
December 2021).

110. Roy, D.K.; Datta, B. Multivariate adaptive regression spline ensembles for management of multilayered coastal aquifers. J. Hydrol.
Eng. 2017, 22, 4017031. [CrossRef]

111. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser.
1977, 39, 763–768.

112. MacKay, D.J.C. The evidence framework applied to classification networks. Neural Comput. 1992, 4, 720–736. [CrossRef]
113. Chen, M. Probabilistic Linear Regression. 2021. Available online: https://www.mathworks.com/matlabcentral/fileexchange/55

832-probabilistic-linear-regression (accessed on 23 December 2021).
114. Yu, P.-S.; Chen, S.-T.; Chang, I.-F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006, 328, 704–716.

[CrossRef]
115. Yoon, H.; Jun, S.-C.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. A comparative study of artificial neural networks and support vector

machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [CrossRef]
116. Basak, D.; Pal, S.; Patranabis, D.C. Support vector regression. Neural Inf. Process. 2007, 11, 203–224.
117. Chevalier, R.F.; Hoogenboom, G.; McClendon, R.W.; Paz, J.A. Support vector regression with reduced training sets for air

temperature prediction: A comparison with artificial neural networks. Neural Comput. Appl. 2011, 20, 151–159. [CrossRef]

http://doi.org/10.1016/j.agwat.2021.107040
http://doi.org/10.1016/j.jhydrol.2020.125060
http://doi.org/10.1016/j.compag.2020.105653
http://doi.org/10.1016/j.agwat.2016.04.019
http://doi.org/10.1016/j.compag.2014.08.007
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1007/s00477-018-1560-y
http://doi.org/10.1109/TFUZZ.1993.390281
http://doi.org/10.1109/TSMC.1985.6313399
http://doi.org/10.1016/0098-3004(84)90020-7
http://doi.org/10.1109/21.256541
http://doi.org/10.1016/j.neucom.2004.04.016
http://doi.org/10.1623/hysj.48.3.399.45291
http://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491)
http://www.cs.rtu.lv/jekabsons/regression.html
https://www.minitab.com/content/dam/www/en/uploadedfiles/content/products/spm/IntroMARS.pdf
http://doi.org/10.1061/(ASCE)HE.1943-5584.0001550
http://doi.org/10.1162/neco.1992.4.5.720
https://www.mathworks.com/matlabcentral/fileexchange/55832-probabilistic-linear-regression
https://www.mathworks.com/matlabcentral/fileexchange/55832-probabilistic-linear-regression
http://doi.org/10.1016/j.jhydrol.2006.01.021
http://doi.org/10.1016/j.jhydrol.2010.11.002
http://doi.org/10.1007/s00521-010-0363-y


Agronomy 2022, 12, 594 34 of 34

118. Zhang, G.; Ge, H. Prediction of xylanase optimal temperature by support vector regression. Electron. J. Biotechnol. 2012, 15, 7.
[CrossRef]

119. Wu, J.; Sun, J.; Liang, L.; Zha, Y. Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Syst. Appl.
2011, 38, 5162–5165. [CrossRef]

120. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970,
10, 282–290. [CrossRef]

121. Willmot, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]
122. Legates, D.R.; McCabe Jr, G.J. Evaluating the use of “goodness-of fit” measuresin hydrologic and hydroclimatic model validation.

Water Resour. Res. 1999, 35, 233–241. [CrossRef]
123. Tao, H.; Diop, L.; Bodian, A.; Djaman, K.; Ndiaye, P.M.; Yaseen, Z.M. Reference evapotranspiration prediction using hybridized

fuzzy model with firefly algorithm: Regional case study in Burkina Faso. Agric. Water Manag. 2018, 208, 140–151. [CrossRef]
124. Chia, M.Y.; Huang, Y.F.; Koo, C.H. Swarm-based optimization as stochastic training strategy for estimation of reference evapo-

transpiration using extreme learning machine. Agric. Water Manag. 2021, 243, 106447. [CrossRef]
125. Mohammadi, B.; Mehdizadeh, S. Modeling daily reference evapotranspiration via a novel approach based on support vector

regression coupled with whale optimization algorithm. Agric. Water Manag. 2020, 237, 106145. [CrossRef]
126. Elbeltagi, A.; Deng, J.; Wang, K.; Malik, A.; Maroufpoor, S. Modeling long-term dynamics of crop evapotranspiration using deep

learning in a semi-arid environment. Agric. Water Manag. 2020, 241, 106334. [CrossRef]
127. Gao, L.; Gong, D.; Cui, N.; Lv, M.; Feng, Y. Evaluation of bio-inspired optimization algorithms hybrid with artificial neural

network for reference crop evapotranspiration estimation. Comput. Electron. Agric. 2021, 190, 106466. [CrossRef]
128. Yin, J.; Deng, Z.; Ines, A.V.; Wu, J.; Rasu, E. Forecast of short-term daily reference evapotranspiration under limited meteorological

variables using a hybrid bi-directional long short-term memory model (Bi-LSTM). Agric. Water Manag. 2020, 242, 106386.
[CrossRef]

129. Heinemann, A.B.; Oort, P.A.V.; Fernandes, D.S.; Maia, A. Sensitivity of APSIM/ORYZA model due to estimation errors in solar
radiation. Bragantia 2012, 71, 572–582. [CrossRef]

130. Li, M.-F.; Tang, X.-P.; Wu, W.; Liu, H.-B. General models for estimating daily global solar radiation for different solar radiation
zones in mainland China. Energy Convers. Manag. 2013, 70, 139–148. [CrossRef]

http://doi.org/10.2225/vol15-issue1-fulltext-8
http://doi.org/10.1016/j.eswa.2010.10.046
http://doi.org/10.1016/0022-1694(70)90255-6
http://doi.org/10.1080/02723646.1981.10642213
http://doi.org/10.1029/1998WR900018
http://doi.org/10.1016/j.agwat.2018.06.018
http://doi.org/10.1016/j.agwat.2020.106447
http://doi.org/10.1016/j.agwat.2020.106145
http://doi.org/10.1016/j.agwat.2020.106334
http://doi.org/10.1016/j.compag.2021.106466
http://doi.org/10.1016/j.agwat.2020.106386
http://doi.org/10.1590/S0006-87052012000400016
http://doi.org/10.1016/j.enconman.2013.03.004

	Introduction 
	Material and Methods 
	Study Area and the Data 
	Prediction Models 
	Long Short-Term Memory (LSTM) Networks 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Gaussian Process Regression (GPR) 
	M5 Model Trees (M5 Tree) 
	Multivariate Adaptive Regression Spline (MARS) 
	Probabilistic Linear Regression (PLR) 
	Support Vector Regression (SVR) 

	Ranking of the ET0 Prediction Models: Shannon’s Entropy 
	Selection of Input Variables for Daily Predictions 
	Model Performance Evaluation 

	Results and Discussion 
	Daily Prediction of ET0 Using Various Machine Learning Algorithms at the Training Station (Gazipur Sadar) 
	One-Step-Ahead Prediction of ET0 Using Different Modeling Approaches at the Training Station (Gazipur Sadar) 
	One-Step-Ahead Forecast Using Sequence to Sequence Regression LSTM (SSR-LSTM) Network 
	One-Step-Ahead Forecast Using ANFIS, LSTM, and Bi-LSTM Models 

	Multi-Step (5 Day-Ahead) Forecasting Using the Bi-LSTM Model 
	Generalization Capability of the Proposed Best ET0 Prediction Models 
	Generalization Capability of Proposed Best LSTM Model: Daily Prediction of ET0 
	Generalization Capability of Proposed Best Bi-LSTM Model: Multi-Step (Multi-Day)-Ahead ET0 Forecasting 


	Conclusions 
	References

