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Abstract: Monitoring the soil quality (SQ) in agricultural ecosystems is necessary for using sustainable
soil and land resources. Therefore, to evaluate the SQ variation in an arid environment in the Bajestan
region, northeastern Iran, two soil quality indices (weighted additive soil quality index-SQIw and
nemoro soil quality index-SQIn) were applied. SQIs were assessed in two datasets (total data set-TDS
and minimum data set-MDS) by linear (L) and nonlinear (NL) scoring methods. Physicochemical
properties of 223 surface soil samples (0–30 cm depth) were determined. The random forest (RF)
model was used to predict the spatial variation of SQIs. The results showed the maximum values of
the SQIs in areas with saffron land covers, while the minimum values were acquired in the north of
the study area where pistachio orchards are located due to higher EC and SAR. The environmental
variables such as topographic attributes and groundwater quality parameters were the main driving
factors that control SQIs distribution. These findings are beneficial for identifying suitable locations
sites to plan agricultural management and sustainable usage of groundwater resources strategy to
avoid further increase of soil salinity.

Keywords: digital soil mapping; groundwater quality; indicator scoring system; soil degradation;
soil health; soil salinity

1. Introduction

Due to the limitation of arable land in the arid and semiarid area and the lack of water,
increasing production by adding the area under cultivation is impossible [1]. Therefore,
meeting the nutritional needs of this growing population requires optimal use of agri-
cultural land and water, where inappropriate land use and soil management cause land
degradation [2]. Soil is recognized as a critical component of ecosystem sustainability, which
is required for long-term development and the most efficient use of natural resources [3].
On the other hand, proper identification of different soil physicochemical properties has
a significant role in determining the erodibility, soil degradation, and management of
agricultural lands and protection of soils, especially in arid and semiarid regions [4–7].
Soil quality (SQ) assessment is a practical approach to identifying the primary effects of
management practices [8]. Understanding SQ is important for identifying problem areas
and evaluating sustainable agricultural management [1,4].

The SQ of the agricultural lands is affected by different environmental and man-
agement factors, including landform and topographic situation [2,6], land use/cover [5],
irrigation water quality [2,6,9,10], the amounts of inputs and outputs of soil organic carbon
(SOC) and chemical fertilizers [11–13]. Several scholars [6,7] stated that intensive tillage
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operations with the removal of crop residues, excessive land use, and failure to meet the
need for soil fertilizers, the use of poor quality irrigation water could lead to reduced
production and SQ in arid and semiarid regions. Some soil properties (e.g., SOC, available
phosphorous and potassium, soil salinity, and alkalinity) were commonly applied as an
appropriate indicator for identifying SQ in Iran [3,8,11,14–16].

So far, various methods have been used to collect data, and measure and evaluate SQ
from mostly qualitative to quite quantitative methods, including scorecards, visual soil
assessments, field kits, geostatistical methods and laboratory analysis [17]. Parameters
affecting soil quality indicators (SQI) in the form of soil processes and properties are defined
as being sensitive to changes in soil management. These properties can be a set of physical,
chemical, biological or a combination of these properties. Different sets of characteristics
were proposed to affect the SQ and determine the SQI [17,18]. Scholars have determined the
SQI based on the total data set (TDS) and minimum data set (MDS) of properties affecting
SQ [3,7,8,11,13–16].

Because it is complicated to interpret many variables and draw conclusions from them,
it is recommended that the set of variables be combined into one index. This is done by
combining the data and applying the appropriate weight to each variable. Currently, many
quantitative indicators such as weighted additive SQI (SQIw) and Nemro SQI (SQIn) have
been developed to calculate SQI [8,11,16].

Many studies of SQI assessment have been done in different parts of the world;
however, a few studies have been done to study the effect of different environmental
covariates (i.e., topographic attributes, groundwater quality parameters, remote sensing
indices) through agricultural lands on SQI using digital soil mapping (DSM, [2,11,16,19].
The “scorpan” model [20] was applied to predict the spatial variability of soil properties
based on the relationship between environmental covariates and soil properties for DSM
studies [21–23]; then, a significant number of linear and nonlinear techniques were applied
to predict object property.

Agricultural lands in eastern Iran on the playas margin suffer from soil salinity and
alkalinity, but, by improvement practices, the area under cultivation here has increased. In
recent years, the cultivation land of pistachio has increased in the Bajestan region, especially
in the playa margin, in which some parts of this area showed a reduction in fertile lands and
irrigation water quality [6]. Determining the quality of these lands to continue their use and
determining SQI for areas rehabilitated by cultivation can be important and influential for
managing long-term agricultural use of lands within playa margins without reduction SQ.
The objectives of the present study were to (i) explore the SQ variation through pistachio,
pomegranate, saffron, and barley in the cultivation lands; (ii) provide a framework to assess
SQ using different SQI scoring functions (i.e., linear and nonlinear) and DSM technique
for future land use planning; and (iii) spatially predict SQIs maps and determine the
importance environmental covariates affecting SQ for a better understanding of the land
potential and suitability.

2. Materials and Methods
2.1. Study Area

The study was conducted in the Bajestan region, southwest of Khorasan Razavi
(57◦57′56′′ to 58◦00′40′′ E, and 34◦17′91′′ to 34◦33′79′′ N, Figure 1) with an area of about
172,419 ha. It is characterized by an arid climate with mild winters and dry, hot summers.
The mean annual temperature and precipitation are 17.3 ◦C and 193 mm, respectively.
The elevation ranges from 786 to 2283 m above sea level (a.s.l.) in the studied area. This
region has Aridic moisture and Thermic temperature regimes [24]. Rainfed agriculture is
predominant in this region with major crops including pomegranate (Punica granatum L.),
pistachio (Pistacia vera L.), barley (Hordeum vulgare L.) and saffron (Crocus sativus L.) which
are located on different landforms, including pediments, alluvial fans, playa clay flats and
dune fields (Figure 1b). In general, pistachio orchards and barley cultivated lands are found
in the north part of the study areas located in playa margins, while pomegranate and saffron
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are located in the center and south of the area (Figure 1b). Overall, the area’s geologic
material through the mountain to flatlands consists of lower Cretaceous undifferentiated
rocks, partly massive and bedded limestone, and recent and old alluvial deposits [6].
According to previous studies in the study area, most soil orders in the study area are Typic
Haplocalcids (WRB: Haplic Calcisols (Loamic, Raptic) over Luvic Skeletic Calcisols (Arenic,
Raptic)), Typic Torrifluvents (WRB: Eutric Fluvisols (Loamic) over Luvic Skeletic Calcisols
(Arenic, Raptic)) and Typic Torripsamments (WRB: Calcaric, Eutric Arenosols (Aeolic)) [25].

Figure 1. (a) The location of the Bajestan area (green area) in Khorasan Razavi province, Iran; (b) the
spatial distribution of soil samples in cultivated lands draped over the Sentinel-2 image in the
study area. Pistachio and barley cultivated lands are located in the northern part of the study area,
pomegranate and saffron cultivated lands in the center and southern area.

2.2. Field Sampling and Soil Properties Analysis

A total of 223 soil samples were collected from the 0–30 cm depth. It should be noted
that each soil sample is a combination of 5 soil subsamples around the main locations. All
soil samples were passed through a 2 mm sieve after air-drying. The titration method
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was used to determine calcium carbonate equivalent (CCE) [26]. SOC was measured by
Walkley–Black method [27]. The soil pH and electrical conductivity (EC) were determined
in saturated soil paste and extracted of saturated soil paste using pH meter [28] and EC
meter [29], respectively. The saturation percentage (SP) was measured in soil paste [29].
The soil texture was determined based on the hydrometer method [30]. Total nitrogen
(TN) was measured by the Kjeldahl approach [31], and the available phosphorus (Pav) was
determined by the colorimetric method [32]. Available potassium (Kav) was extracted with
1 M NH4OAC (pH 7) and measured via flame photometer [33]. Soluble calcium (Caaq) and
magnesium (Mgaq) were measured by titration method with EDTA and soluble sodium
(Naaq) by flame photometry [34]. Sodium adsorption ratio (SAR) was calculated by the
following equation [35]:

SAR =
Naaq√

Caaq+Mgaq
2

(1)

2.3. Soil Quality Index (SQI) Assessment
2.3.1. Total Data Set (TDS) and Minimum Data Set (MDS)

The TDS and MDS were used to calculate the SQI. In TDS, all available soil properties
were generally used to provide a comprehensive overview of SQ in the study area. However,
the MDS was used to reduce the volume of soil property data, and the key indicators were
selected [11,16,17]. In this study, all accessible soil properties (i.e., EC, pH, SP, CCE, SOC,
TN, Pav, Kav, Caaq, Mgaq, Naaq, and SAR) were included in the TDS method. The selected
soil properties define soil health, productivity, fertility, soil degradation and soil and water
interaction. Principal component analysis (PCA) was applied to reduce dimensionality in
the data set and determine the most important properties to include in the MDS [18]. The
factors with eigenvalues ≥1 and soil properties with the highest loadings in each PC were
presumed as the best indicator of SQ. However, when more than one soil variable with the
highest loadings is retained within a PC, Pearson’s correlation coefficients among the soil
properties were used to detect any redundant variable. In the MDS, the feature with the
highest value is selected among the features that significantly correlate with each other. For
attributes selection in the MDS, between highly-correlated attributes (r > 0.7), the variables
with the highest factor loading were considered [18].

2.3.2. Indicator Scoring

Linear (L) and nonlinear (NL) methods were used to transform soil properties into
a dimensionless score (between 0.1 and 1) using the following functions: ‘more is better’
for soil properties such as SP, Caaq, Mgaq, SOC, TN, Pav, Kav; ‘less is better’ for SAR, Naaq,
CCE; and optimal range for pH and EC to the TDS and MDS [5,16] (Table S1). The optimal
values 0.2–2 dS m−1 and 7 were used for EC and pH, respectively [36,37].

2.3.3. Weight Assignment and SQIs

We used two SQI equations, including nemoro SQI (SQIn) and weighted additive SQI
(SQIw) [5,14,15] as following equations:

SQIn =

√
Pave

2 + Pmin
2

2
× n− 1

n
(2)

SQIw =
n

∑
i=1

Wi Ni (3)

where Ni, n, Pave, Pmin, and Wi are the indicator scores, the number of indicators, the
average value, the minimum value for the scores attained for each sampling point, and the
weight assigned to each indicator, respectively. The weights in the SQIw approach were
obtained according to the communality of PCA in both TDS and MDS. The weights of
every indicator were determined based on the ratio of the communality [38].
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2.3.4. Soil Quality (SQ) Grades and Comparison of Indices

In this study, eight different SQIs were calculated based on different data sets (TDS
and MDS), SQI approaches (SQIw and SQIn), and two scoring systems (L and NL). Based on
Johnson and Wichern’s [39] definition, each SQI was classified into five classes, including
very high (I), high (II), moderate (III), low (IV) and very low (V). The performance of
different SQIs was evaluated by match/mismatch analysis. Thus, for assessment of the
agreement level between the soil grades (e.g., very high, high, moderate, low and very
low), the Kappa statistic was applied [8,16]. Therefore, based on Nabiollahi et al. [8] and
Zeraatpisheh et al. [16], the Kappa statistic agreement levels were classified into six levels,
including none (<0), poor (0–0.19), weak (0.20–0.39), moderate (0.40–0.59), strong (0.60–0.79)
and excellent (0.80–1.00). Additionally, the correlation analysis was performed between the
indices to better understand the relationships among the SQIs. The relationship for indicator
methods was examined by regression analysis using the SAS software version 9.4 [40].

2.4. Spatial Prediction of SQIs

In order to predict and map the spatial distribution of SQIs in the study area, the
random forest (RF) model through DSM was used to assess the relationship between
SQIs and environmental covariates [8,16,20]. RF was considered one of the most accurate,
efficient, and popular machine learning algorithms [19,22,41]. A set of environmental
covariates explaining the “scorpan” factors [20] were used as predictors in the study area to
predict SQI distributions (Table S2). A total of 21 terrain attributes, including the first and
second digital elevation model (DEM) derivatives (28 m × 28 m), were extracted from an
SRTM 1 arc-second DEM (http://earthexplorer.usgs.gov, accessed on 15 July 2020). The
SAGA GIS software (System for Automated Geoscientific Analysis) version 2.2 was used
to obtain terrain covariates [42]. Moreover, the remotely sensed data and 52 RS indices
were obtained from Sentinel-2 (https://sentinel.esa.int/web/sentinel/missions, accessed
on 15 July 2020), including high-resolution spatial and temporal information with 13 bands
with spatial resolutions of 10 m, 20 m and 60 m [43]. Additionally, the groundwater quality
parameters (e.g., HCO3

−, Cl−, SO4
2−, Na+, Ca2+, Mg2+, EC, pH, SAR and TDS), geology,

geomorphology and land use maps were used as predictive variables (Table S2). A total
of 190 groundwater resources, including Qanat and wells, were selected and sampled
from those water for analysis of groundwater quality parameters according to standard
procedures [44].

Regarding many environmental covariates, the RF model provides variable importance
ranging from 0 to 100%. When the relative importance of the environmental covariates
was below 15%, they were considered unimportant covariates and were removed from the
models [45]. Finally, the models were trained by the rest of the environmental covariates.
Therefore, for modeling different SQIs, 25–36 environmental covariates were used in the
random forest model.

The spatial modeling of the SQI was done using the RF in the “caret” package in
R3.3.1 [46]. The accuracy of the SQ value maps was validated using three validation criteria:
the root mean square error (RMSE); the mean absolute error (MAE); and the coefficient of
determination (R2) using 10-times leave-one-out cross-validation [47]. The Kappa statistic
was used to examine the accuracy of the soil grade classification by the RF model compared
to the observed SQ grades [8,16].

2.5. Variable Importance for Soil Quality Indicators (SQIs) Maps

Variable importance helps select important factors in predicting and modeling soil
properties [48]. The “Out-of-Bag (OOB)” error (Equation (4)) is estimated randomly by
changing the values of the covariates, which is considered as variable importance. The
variable importance varied between 0–100%.

OOB error =
1
N

N

∑
i=1

I[YOOB(Xi) 6= Yi] (4)

http://earthexplorer.usgs.gov
https://sentinel.esa.int/web/sentinel/missions
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where I [YOOB(Xi) 6= Yi] is recognized as an indicator function equal to 0 when the predicted
and actual classes are the same and equal to 1 otherwise.

According to the previous studies, the participation rate of covariates and their im-
portance were determined using the RF model in the “caret” package in R3.2.5 [46], which
produces a reliable spatial prediction of soil properties [21,47]. However, the importance of
a variable depends on the applied method. All input environmental factors are introduced
as model random variables, representing their uncertainty. This test can be used to access
contributions by the factors (i.e., relative importance) to the model.

2.6. Statistical Analysis

The mean values of SQIs and individual soil properties were used to define the
significant differences (p < 0.05) among the land covers using the analysis of variance
(ANOVA) approach in SAS software [40].

3. Results and Discussion
3.1. Descriptive Statistics of Soil Properties

The summary descriptive statistics of soil properties used to assess SQIs in this study
are presented in Table 1. The results demonstrated that the range of soil properties were:
0.14 to 46.60 (dS m−1) for EC; 6.10 to 9.62 for pH; 18.0 to 54.23 (%) for SP; 2.0 to 45.0 (%)
for CCE; 0.02 to 3.06 (%) for SOC; 0 to 0.91 (%) for TN; 0.20 to 80.0 (mg kg−1) for Pav;
17.0 to 695.0 (mg kg−1) for Kav; 1.50 to 73.60 (meq L−1) for Caaq; 0.60 to 56.0 (meq L−1) for
Mgaq; 0.46 to 272.0 (meq L−1) for Naaq; and 0.46 to 41.0 for SAR (Table 1). The lowest and
highest coefficient of variation (CV) was also observed in pH and TN, respectively (Table 1).
According to the CV classification of Pahlavan-Rad and Akbarimoghaddam [48], pH and
SP indicated low and medium CV classes, respectively, while other soil properties had high
and very high variability (Table 1).

Table 1. Descriptive statistics of soil properties in the study area (n = 223).

Variable Unit Mean Minimum Median Maximum StDev CV% Skewness Kurtosis

EC (dS m−1) 7.19 0.14 5.58 46.60 6.11 84.94 2.31 9.39
pH - 7.85 6.10 7.85 9.62 0.51 6.44 −0.13 1.99
SP (%) 30.35 18.00 29.10 54.23 5.83 19.21 0.66 0.94

CCE (%) 17.55 2.00 17.25 45.00 7.59 43.26 1.10 3.06
SOC (%) 0.59 0.02 0.35 3.06 0.58 99.24 1.54 2.04
TN (%) 0.06 0.00 0.03 0.91 0.08 135.39 6.62 68.86
Pav (mg kg−1) 11.64 0.20 8.00 80.00 12.06 103.66 2.43 7.92
Kav (mg kg−1) 215.40 17.00 199.00 695.00 107.68 49.99 1.16 1.96
Caaq (meq L−1) 21.91 1.50 21.40 73.60 13.54 61.80 0.83 1.05
Mgaq (meq L−1) 10.54 0.60 8.00 56.00 7.94 75.31 2.50 9.16
Naaq (meq L−1) 41.65 0.46 26.80 272.00 43.03 103.33 1.68 4.00
SAR - 11.06 0.46 9.00 41.00 9.44 85.32 0.86 0.04

EC—electrical conductivity; pH—soil reaction; SP—saturation percentage; CCE—calcium carbonate equivalent;
SOC—soil organic carbon; TN—total nitrogen; Pav—available phosphorous; Kav—available potassium; Caaq—
soluble calcium; Mgaq—soluble manganese; Naaq—soluble sodium; SAR—sodium absorption ratio.

As shown in Figure 2, the highest positive correlations were observed between Naaq
and EC (r = 0.78), SAR and EC (r = 0.67), SAR and Naaq (r = 0.85), Mgaq and Caaq (r = 0.58),
Mgaq and Naaq (r = 0.47), TN and SOC (r = 0.63), Pav and SOC (r = 0.54) while the highest
significant negative correlations were found between pH and CCE (r = −0.28), SOC and
EC (r = −0.27), SOC and Naaq (r = −0.25), SOC and SAR (r = −0.26).
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Figure 2. Pearson’s correlation coefficients between soil properties (n = 223). Correlations with
p > 0.01 are considered insignificant.

3.2. Variation Changes of SQ through Different Cultivated Lands
3.2.1. TDS Indicator Method

Table 2 is presented the PCA results. The results of PCA illustrated which Naaq
(weight = 0.094) and Pav (weight = 0.070) had the highest and lowest weight among all
studied soil properties, respectively when the PCA was applied based on TDS (Table 2).

Table 2. Communality and weight of SQIs in the TDS and MDS methods.

Indicator
TDS MDS

COM a Weight COM Weight

EC (dS m−1) 0.785 0.079 - -
pH 0.893 0.090 0.676 0.128

SP (%) 0.773 0.078 - -
CCE (%) 0.857 0.086 0.875 0.166
SOC (%) 0.828 0.084 0.821 0.156
TN (%) 0.799 0.081 - -

Pav (mg kg−1) 0.691 0.070 - -
Kav (mg kg−1) 0.774 0.078 - -
Caaq (meq L−1) 0.859 0.087 0.990 0.188
Mgaq (meq L−1) 0.797 0.080 - -
Naaq (meq L−1) 0.929 0.094 0.940 0.179

SAR 0.921 0.093 0.959 0.182
a Communality. EC—electrical conductivity; pH—soil reaction; SP—saturation percentage; CCE—calcium
carbonate equivalent; SOC—soil organic carbon; TN—total nitrogen; Pav—available phosphorous; Kav—available
potassium; Caaq—soluble calcium; Mgaq—soluble manganese; Naaq—soluble sodium; SAR—sodium absorption
ratio; TDS—total data set; and MDS—minimum data set.

Tables 3 and 4 show the mean comparison of the soil properties and SQIs in different land
covers in the studied area. Among all soil properties studied, Mgaq did not show significant
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differences between different land covers (Table 3). The highest amount of EC (9.58 dS m−1),
Caaq (23.63 meq L−1), Mgaq (23.63 meq L−1), Naaq (23.63 meq L−1), and SAR (15.19) were found
under cultivated lands with pistachio orchards while soils under pomegranate orchards
includes of the highest values of pH (7.97), SP (32.60%), SOC (1.16%), TN (0.11%), Pav
(21.65 mg kg−1), and Kav (260.80 mg kg−1). These results are in line with Maleki et al. [6],
who reported the increasing values of base cations in soils under pistachio orchards through
14 years in Bajestan cultivated lands. The maximum value of CCE was found in soils under
barley cultivated lands (Table 3). However, there is no significant difference in importance
between different land covers. According to an earlier study in this area by Maleki et al. [6],
most cultivated lands are located on the low calcareous parent material.

Table 3. Comparison of the mean values of soil properties through different cultivated lands.

Land Cover Pistachio Barley Pomegranate Saffron Pr > F

N 99 29 50 45 -

EC (dS m−1) 9.58 a 9.44 a 4.13 b 3.88 b 0.0001 **
pH 7.74 b 7.87 ab 7.97 a 7.95 ab 0.0283 *

SP (%) 29.33 b 27.35 b 32.60 a 32.02 a 0.0001 **
CCE (%) 17.69 ab 20.04 a 15.82 b 17.54 ab 0.0237 *
SOC (%) 0.29 c 0.45 c 1.16 a 0.70 b 0.0001 **
TN (%) 0.03 c 0.04 bc 0.11 a 0.06 b 0.0001 **

Pav (mg kg−1) 7.16 c 5.97 c 21.65 a 14.00 b 0.0001 **
Kav (mg kg−1) 197.10 cb 165.00 c 260.80 a 237.70 ab 0.0001 **
Caaq (meq L−1) 23.63 a 22.59 a 16.14 b 24.10 a 0.007 **
Mgaq (meq L−1) 11.21 a 10.27 a 10.80 a 8.94 a 0.4577 ns
Naaq (meq L−1) 59.52 a 51.66 a 22.91 b 16.69 b 0.0001 **

SAR 15.19 a 13.42 a 6.72 b 5.27 b 0.0001 **
** and * denote significance at the 0.01 and 0.05 probability levels, respectively, while ns is insignificant. Means with
the same letter are not significantly different based on Duncan’s multiple range test. EC—electrical conductivity;
pH—soil reaction; SP—saturation percentage; CCE—calcium carbonate equivalent; SOC—soil organic carbon;
TN—total nitrogen; Pav—available phosphorous; Kav—available potassium; Caaq—soluble calcium; Mgaq—soluble
manganese; Naaq—soluble sodium; SAR—sodium absorption ratio.

Table 4. Comparison of the mean values of soil quality indices through different cultivated lands.

Land Cover Pistachio Barley Pomegranate Saffron

N 99 29 50 45

SQI-w-L-TDS 0.456 b 0.455 b 0.539 a 0.523 a

SQI-w-NL-TDS 0.369 b 0.370 b 0.562 a 0.539 a

SQI-n-L-TDS 0.300 c 0.300 c 0.361 a 0.345 b

SQI-n-NL-TDS 0.238 b 0.240 b 0.370 a 0.355 a

SQI-w-L-MDS 0.544 b 0.555 b 0.626 a 0.628 a

SQI-w-NL-MDS 0.374 b 0.386 b 0.529 a 0.564 a

SQI-n-L-MDS 0.333 b 0.374 b 0.391 a 0.392 a

SQI-n-NL-MDS 0.223 b 0.238 b 0.328 a 0.339 a

Means with the same letter are not significantly different based on Duncan’s multiple range test (significant at the
0.01 probability levels). SQIw—weighted additive soil quality index; SQIn—nemoro soil quality index; TDS—total
data set; MDS—minimum data set; L—linear; and NL—non-linear.

It should be noted that the mean value of all SQIs calculated based on L scoring had
better results than NL scoring (Table 4). The results show that pomegranate and saffron
cultivated lands have the highest amount of SQIw and SQIn in the TDS data set, which
directly results in higher values in Pav, Kav, SOC, TN, SP and lower values in EC, SAR,
Naaq in the mentioned land covers (Table 3). The pistachio and barley cultivated lands
have the lowest SQ in the TDS data set and significantly differ from the two land covers,
including pomegranate and saffron. The higher values of EC, SAR, and Naaq are indicated
under pistachio and barley cultivated lands that decrease SQ [3,17]. Nabiollahi et al. [8]
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and Castro et al. [12] also reported the importance of soluble salts concentration and soil
salinity on decreasing SQ in arid and semiarid regions.

One of the main soil properties that have a significant effect on increasing SQ is SOC
content [12,49], which affects most soil physicochemical (i.e., TN, soil stability, structure,
infiltration, and water retention) and biological properties [13,16,50]. Therefore, by taking
management measures to increase SOC, other properties can be optimized, increasing
the SQ in pistachio and barley cultivated lands. In pistachio orchards and barley lands,
low litter amounts and nonreturn of plant residuals to the soil, respectively, reduce the
amount of surface cover and the quality and quantity SOC, and consequently, SQ has
decreased [10,11,13,51]. In this regard, Nie et al. [51] showed that without adding organic
matter and in the control treatment, SQ was at the lowest level and was classified in class 4,
but with the addition of organic matter, SQ class was upgraded by one to two degrees.

In the comparison between the two methods, SQIw and SQIn, it can be seen that the
numerical value of SQIn in both TDS and MDS is less than the SQIw (Table 4). Because
SQIw for the studied soil properties and scoring also considers weight, while in the SQIn,
the score is calculated only based on the average values and the minimum score of the
properties. Many other researchers have concluded that the value of SQIn is lower than the
SQIw in all conditions [14,16].

3.2.2. MDS Indicator Method

Tables 2 and 5 showed that the soil properties with the highest factor loading in each
PC were selected for MDS. EC, SP, TN, Pav, Kav, and Mgaq were not used in MDS because
they had lower factor loading in each PC than other soil properties (Table 5). The remaining
soil properties are applied in the MDS (Table 2). According to Table 5, the first four PCs
demonstrated eigenvalues > 1, explaining 68.0% of the total variance, and the fifth PCs
around 76.10%. The CCE, SOC, Caaq, Naaq, and SAR showed communalities > 82% of MDS
variance (Table 2). Additionally, the communalities for pH in MDS described 67% of the
variance through five components. Overall, using the MDS approach could be a reliable
method to reduce the number of soil properties, consequently resulting in reduced time
consumption, workload, and related costs [8,11,16]. Comparing NL and L scoring system
results for MDS, the results showed higher values for the L scoring system (Table 4).

Table 5. Results of principal component analysis of eight soil properties in the studied area.

PCs a PC1 PC2 PC3 PC4 PC5

Eigenvalue 3.46 2.08 1.38 1.23 0.99
Percent 28.90 17.30 11.50 10.20 8.10

Cumulative percent 28.90 46.20 57.70 68.00 76.10
Eigenvectors
EC (dS m−1) 0.43 0.23 0.16 0.03 0.06

pH −0.14 0.03 0.43 −0.48 −0.06
SP (%) −0.15 0.31 0.19 0.40 −0.40

CCE (%) 0.15 0.07 −0.40 0.35 0.58
SOC (%) −0.31 0.40 −0.01 −0.28 0.21
TN (%) −0.27 0.35 −0.03 −0.27 0.31

Pav (mg kg−1) −0.28 0.38 −0.04 0.18 0.17
Kav (mg kg−1) −0.12 0.38 0.18 0.43 −0.21
Caaq (meq L−1) 0.25 0.24 −0.44 −0.18 −0.44
Mgaq (meq L−1) 0.26 0.37 −0.35 −0.28 −0.15
Naaq (meq L−1) 0.45 bc 0.25 0.22 −0.05 0.07

SAR 0.40 0.13 0.44 0.03 0.26
a Principal Component. b Bold factor loadings selected as MDS. c Underlined factor loadings are considered highly
weighted. EC—electrical conductivity; pH—soil reaction; SP—saturation percentage; CCE—calcium carbonate
equivalent; SOC—soil organic carbon; TN—total nitrogen; Pav—available phosphorous; Kav—available potassium;
Caaq—soluble calcium; Mgaq—soluble manganese; Naaq—soluble sodium; SAR—sodium absorption ratio.
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3.3. Assessment of SQ Grades through Different Cultivated Lands
3.3.1. TDS Method

Both SQIw and SQIn were classified into five categories using both scoring systems
(Table 6). The SQIw and SQIn maps were prepared based on the TDS and L and NL scoring
systems (Figure 3A,B), which indicates that the dominant parts of the region are in high (II)
and moderate-quality (III) classes. Soils under pomegranate and saffron cultivated lands
showed the highest grades in high (II) classes for SQIw in both L and NL scoring systems
(Figure 3A and Table 7). In contrast, barley and pistachio orchards are in the moderate
(III) to low (IV) grades (Table 7). Figure 3A,B also shows that most areas with very low
(V) SQ are located in the northeastern and northwestern regions, where the largest area of
pistachio and barley cultivation areas is recognized (Figure 1). The reason for the low SQ in
these areas can be attributed to the higher EC and SAR in areas under pistachio and barley
cultivation. High soil salinity and alkalinity values were attributed to primary salinity
factors such as proximity to the playa and secondary factors such as low irrigation water
quality (for more detailed information, see Maleki et al. [6].

Table 6. Soil quality grades classification for indices and indicator methods.

Index Indicator
Method

SSF
Soil Quality Grades

I (Very High) II (High) III (Moderate) IV (Low) V (Very Low)

SQIw

TDS Linear >0.568 0.506–0.568 0.444–0.506 0.382–0.444 <0.382
MDS Linear >0.691 0.608–0.691 0.525–0.608 0.442–0.525 <0.442
TDS Non-linear >0.639 0.529–0.639 0.418–0.529 0.307–0.418 <0.307
MDS Non-linear >0.718 0.575–0.718 0.432–0.575 0.289–0.432 <0.289

SQIn

TDS Linear >0.393 0.347–0.393 0.303–0.347 0.258–0.303 <0.258
MDS Linear >0.468 0.407–0.468 0.347–0.407 0.286–0.347 <0.286
TDS Non-linear >0.447 0.367–0.447 0.288–0.367 0.208–0.288 <0.208
MDS Non-linear >0.478 0.382–0.478 0.287–0.382 0.191–0.287 <0.191

SQIw—weighted additive soil quality index; SQIn—nemoro soil quality index; TDS—total data set; MDS—
minimum data set; SSF—standard scoring functions.

Table 7. Percentage of soil quality grades for different indices, data sets (TDS and MDS), and scoring
methods in the studied area.

Index Data
Set Land Cover

Very High (I) * High (II) Moderate (III) Low (IV) Very Low (V)

Linear ** Non-
Linear Linear Non-

Linear Linear Non-
Linear Linear Non-

Linear Linear Non-
Linear

SQIw

TDS

Total area 9.42 10.76 27.80 21.52 41.70 22.42 16.59 22.87 4.48 22.42
Pomegranate 4.93 5.38 11.66 10.76 5.83 4.48 0.00 1.79 0.00 0.00

Pistachio 0.00 0.45 6.28 2.69 23.32 10.76 11.21 14.35 3.59 16.14
Saffron 4.48 4.48 8.07 7.17 6.73 4.93 0.90 2.69 0.00 0.90
Barley 0.00 0.45 1.79 0.90 5.83 2.24 4.48 4.04 0.90 5.38

MDS

Total area 6.28 4.04 31.39 21.08 39.01 29.15 18.39 25.11 4.93 20.63
Pomegranate 1.35 0.45 13.00 7.17 8.07 10.76 0.00 4.04 0.00 0.00

Pistachio 0.90 0.90 7.17 2.24 18.83 12.11 13.45 13.45 4.04 15.70
Saffron 3.14 2.24 9.87 9.87 5.38 4.04 1.79 2.24 0.00 1.79
Barley 0.90 0.45 1.35 1.79 6.73 2.24 3.14 5.38 0.90 3.14

SQIn

TDS

Total area 5.38 4.93 23.32 21.08 37.67 20.18 27.35 29.60 6.28 24.22
Pomegranate 4.04 1.35 11.66 13.00 5.83 4.48 0.90 3.59 0.00 0.00

Pistachio 0.00 0.45 1.79 0.45 19.73 8.52 17.94 17.94 4.93 17.04
Saffron 1.35 3.14 8.52 6.28 8.52 5.38 1.79 4.48 0.00 0.90
Barley 0.00 0.00 1.35 1.35 3.59 1.79 6.73 3.59 1.35 6.28

MDS

Total area 3.59 4.04 16.14 8.97 35.87 30.04 35.87 28.70 8.52 28.25
Pomegranate 2.24 0.45 4.04 3.59 12.11 10.31 4.04 8.07 0.00 0.00

Pistachio 0.00 0.90 3.59 0.90 13.45 9.42 20.18 12.56 7.17 20.63
Saffron 0.90 2.24 6.73 3.59 7.62 8.52 4.93 4.04 0.00 1.79
Barley 0.45 0.45 1.79 0.90 2.69 1.79 6.73 4.04 1.35 5.83

* Grade; ** Scoring method. SQIw—weighted additive soil quality index; SQIn—nemoro soil quality index;
TDS—total data set; MDS—minimum data set.
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Figure 3. Soil quality grades distribution for different soil quality indices (SQIw—weighted additive
soil quality index SQIs; SQIn—nemoro soil quality index; TDS—total data set; MDS—minimum data
set) with (A) linear scoring and (B) nonlinear scoring methods.
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3.3.2. MDS Method

The SQIw and SQIn in both L and NL scoring systems showed lower SQ results for
MDS than TDS (Table 6). The results of Figure 3A,B, and Table 7 indicated that most of
the study areas using the SQIw (i.e., both L and NL scoring systems) had grades II and III.
However, the SQIn maps (i.e., both of L and NL scoring system) indicate that a large area
of the region’s north is in classes IV and V (Figure 3A,B). As previously discussed in TDS,
areas under pistachio and barley land covers had the most dominant soil grades III and IV
(Figure 3A,B, and Table 7).

3.4. Indices Comparison and Evaluations

The strong linear relationship of SQI between the two sets of TDS and MDS for all
soil samples in the study area is shown in Figure 4. As can be seen, R2 between MDS and
TDS of SQIw and SQIn for 0.79 and 0.75, respectively (Figure 4a), by linear scoring while R2

ranged from 0.83 to 0.80 for SQIw and SQIn in NL scoring (Figure 4b). On the other hand,
the results of R2 between SQIs using L and NL ranged from 0.77 to 0.84 (Figure 5a,b). These
findings illustrated and emphasized its reality and accuracy for SQ that it is possible to
confidently use MDS instead of the TDS in different regions as same as studied area. Several
studies have reported an excellent explanatory of R2 between these SQIs (e.g., [8,13,16].
Therefore, the various studies showed an established relationship between TDS and MDS.
While the TDS model is more accurate due to using soil properties, the MDS approach is
more economical as it used fewer soil properties.

The results of Pearson’s correlation coefficients among all of the different SQIs exhib-
ited a strong correlation (Figure 6) as ranging from 0.77 to 0.99. The lowest correlation was
identified between SQIw-NL-MDS vs. SQIn-L-TDS (r = 0.77) and SQIn-NL-MDS vs. SQIn-L-TDS
(r = 0.77).

Figure 4. Linear relationships between soil quality indices (SQIn—nemoro soil quality index; and
SQIw—weighted additive soil quality index) were calculated using the total data set (TDS) and
minimum data set (MDS) approaches by (a) linear scoring and (b) nonlinear scoring systems.
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Figure 5. Linear relationships between total data set (TDS) indicator methods and minimum data
set (MDS) indicator methods using (a) linear and (b) nonlinear scoring systems in the nemoro soil
quality index (SQIn) and weighted additive soil quality index (SQIw) models.

Figure 6. Pearson’s correlation coefficients for different data sets and scoring systems for soil quality
indices (SQIs) at the 0.01 probability level. (SQIw—weighted additive soil quality index; SQIn—
nemoro soil quality index; MDS—minimum data set; TDS—total data set; L—linear; and NL—non-
linear).

Based on the Kappa statistic agreement reported by Emami et al. [52], the Kappa
statistical analysis in TDS and MDS showed a weak to moderate satisfactory level of
agreement among the SQ grades (0.26–0.45). Moreover, the accuracy assessment values
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varied from 39–49% for TDS and MDS. Previous studies [11,16] showed that the RF model
accurately predicted SQ grades in semiarid and humid regions.

3.5. Prediction Map of SQ Grades

The different SQIs maps were prepared using the RF model based on the DSM frame-
work (Figure 3). As previously discussed, all SQIs are classified into five classes (Table 6).
According to the predicted maps, the dominant class of SQ is moderate (III) and high (II)
exception SQIn-L-MDS showed the dominant SQ grade of IV (low) (Figure 3A). Only a small
area is located on grades I (very high) and V (very low) SQ on predicted maps based on the
L scoring system (Figure 3A). Representing maps of all SQIs showed the lowest proportions
of very high and high SQ classes in the north of the area where pistachio and barley land
covers were located, while pomegranate and saffron have the lowest proportions of very
low SQ (grade V) (Table 7 and Figure 3). This is because higher soil fertility parameters
(i.e., SOC, TN, Pav, Kav, and SP) and lower salinity and alkalinity correspond to better SQ
availability through the pomegranate and saffron land uses. Previous studies [7,16,49,53,54]
have reported that areas with optimal soil properties are known as high and very high
SQ areas. The EC, Naaq, and SAR values point out the crucial effects on crop yields, and
also salinity and high Naaq contents can have an unfavorable impact on soil aeration and
physical properties, including soil structure and infiltration [49], as a consequence of land
degradation.

On the predicted maps based on the NL scoring system (Figure 3B) in SQIw and SQIn,
the areas are commonly categorized as grade I, II, and V. It should be noted that the very
low grades were located in the north of the area with the cultivation of pistachio and barley.
Thus, these findings confirmed the effects of landform (i.e., playa margins) environmental
covariates and farmer management on the SQ of the studied region.

The results of the evaluation of the RF model for predicted maps are represented
in Table 8. Predicted maps of SQIn-L-TDS and SQIn-NL-TDS had the best performance with
R2 = 0.39. In contrast, the lowest predicted model (R2 = 0.15) was found for SQIn-L-MDS
(Table 8). The important point is that predicted map SQIn-L-MDS is different from other
maps and mostly predicted as a low (IV) class due to the RF model’s low accuracy. Many
studies have used the RF model to predict soil properties and reported high prediction
performances of RF [2,16,21,23]. In addition, the results of this research demonstrated the
high capability of the RF model for the SQI prediction map. Geomorphological conditions
of the study area have affected many soil properties [6] and consequently SQI in the region.
The RF model had a relatively accurate estimate of the SQI. Therefore, it is suggested to
use machine learning techniques such as RF and auxiliary data such as geomorphological
maps, topographic attributes, and satellite images to map SQI.

Table 8. Validation criteria of SQIs maps and random forest (RF) model result for SQI predictions.

SQI RMSE R2 MAE RMSE + SD R2 + SD MAE + SD mtry

SQIw-L-TDS 0.049 0.373 0.038 0.005 0.099 0.004 24
SQIw-NL-TDS 0.111 0.373 0.092 0.013 0.131 0.011 54
SQIw-L-MDS 0.075 0.174 0.061 0.009 0.114 0.008 31

SQIw-NL-MDS 0.146 0.273 0.120 0.012 0.116 0.009 39

SQIn-L-TDS 0.033 0.391 0.026 0.003 0.114 0.002 31
SQIn-NL-TDS 0.074 0.393 0.062 0.008 0.111 0.007 31
SQIn-NL-MDS 0.088 0.254 0.072 0.007 0.102 0.006 9
SQIn-L-MDS 0.051 0.152 0.040 0.004 0.073 0.003 9

SQIw—weighted additive soil quality index; SQIn—nemoro soil quality index; TDS—total data set; MDS—
minimum data set; L—linear and NL—nonlinear.

3.6. Environmental Variable Importance

As shown in Figure 7, the most important environmental covariates were obtained
from the relative variable importance analysis of the RF model. The results showed
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that the covariates, including wind effect, multiresolution valley bottom flatness index
(MRVBF), valley depth, and groundwater quality parameters (i.e., pH, SAR, HCO3

−), were
considered as the most important factors to predict the spatial SQIs variability based on
TDS and MDS (Figure 7). Moreover, the results indicated that in the SQIn_L_TDS map,
groundwater quality parameters were the most important and made a higher contribution
in predicting SQI maps. However, in the SQIn_NL_MDS map, the topographic attributes
were the most important covariate and showed a higher contribution. In line with our
results, the previous studies showed that topography had an important role in the spatial
variation of soil properties and SQ in different regions of Iran [2,11,16,23]. These researchers
reported the role of topography attributes in soil erosional and depositional processes of
water and particles [55–57]. Moreover, the distribution of soil salinity and alkalinity is
mostly controlled by topography attributes. The lower grades of SQ were identified in the
lowest elevation (playa margins or northern of the study area, Figure 1) with the highest
soil salinity and alkalinity levels. Of particular importance is the wind effect in the study
area, which should be noted due to the high salinity and lack of fertile lands as half of the
study area lacks vegetation, meaning the area is prone to wind erosion.

Figure 7. Analysis of the relative importance of covariates studied for soil quality (SQ) modeling
using random forest (RF) for the best performance soil quality indicator (SQI) maps, including
SQIn-L-TDS and SQIn-NL-MDS. Symbols for covariates are given in Table S2.

On the other hand, this study identified the effects of irrigation water quality parame-
ters in SQI map predictions and consequently soil salinization and provided a scientific
basis for improving the Bajestan ecosystem maintaining the healthy development of agri-
culture. Several studies have assessed the driving factors of groundwater quality on soil
salinization, e.g., [2,10,58]. They reported that frequent use of inadequate irrigation water
could intensify soil salt aggregation in agricultural lands that increased soil salinity and
decreased SQ and shallow groundwater, seriously threatening the long-term sustainability
of irrigated agriculture. Thus, the Bajestan area requires considerable attention, especially
in the north area and pistachio orchards, as groundwater quality is reduced from south
to north [6]. Furthermore, saline groundwater used for irrigation in the cultivated lands
has increased salt concentration in the root zone, and because of low rainfall in the area,
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there is insufficient leaching, and long-term use of low-quality water in the area can lead to
increased salt concentration in soil and decreased SQ.

4. Conclusions

In this study, two SQIs with two scoring systems were used to assess SQ in an agroe-
cosystem. The results of this study illustrated that the lands under saffron and pomegranate
cultivations have higher SQ than pistachio and barley, as clearly showed the SQIs in TDS
and MDS. According to the results obtained between the two data sets for all SQIs, the MDS
performed as a reliable, fast, and economically appropriate solution to select the minimum
effective soil properties in the study area can be useful. The application of this method
reduces the reproducibility effect of similarly correlated properties and can display the
information in other parameters as a selected set. The RF model showed promising results
in the distribution of predicted SQ grades.

The SQ’s spatial distribution maps revealed that the study area’s SQ was mainly
moderate (III) and high (II). Moreover, the SQIn could provide a better estimation than
SQIw in the L and NL scoring system of TDS. The results showed that the topographic
attributes and groundwater quality parameters had the highest effect on SQI distribution
in the study area. Therefore, to plan for sustainable agriculture and cleaner production,
appropriate management and protection measures should be taken in the lands under
pistachio and barley cultivation due to the low SQ situation in the region’s northern areas.
Furthermore, proper irrigation is necessary for arid areas to leach the salts from the root
zone and increase water efficiency. The results proved that SQ assessment has good
efficiency for evaluating soil health status in different locations of areas for decision making
on cultivation patterns. Consequently, any management and crop that reduces the soil
surface vegetation and uses inadequate irrigation water could reduce the SQ and suitability.
Overall, sustainable soil management in the Bajestan area requires the development of
efficient management guidelines and the provision of appropriate management methods in
the field of fertilization, tillage, and land irrigation to farmers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12030578/s1, Table S1. Standard scoring functions and
indicators parameters in the study area (SSF Equations were adopt-ed from Zeraatpisheh et al. [16].
Table S2. Environmental covariates were used as predictors in the study area.
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