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Abstract: The rapid spread of clubroot disease caused by Plasmodiophora brassicae threatens radish
(Raphanus sativus) production in China because some cultivation types lack clubroot-resistant (CR)
genes. However, few molecular markers for clubroot resistance have been developed and used
in hybrid breeding programs. In this study, 27 immune and 6 highly resistant accessions were
identified among 95 radish inbred lines. The genes Rsa10003637 and Rsa10025569/Rsa10025571 were
respectively identified from an XYB36-2 reference genome as the homologs of Crr1 and CRa from
Brassica rapa by means of homology and synteny analysis. The association between the degree of
clubroot resistance and the genotype of these CR genes suggested that Rsa10025569-H3 can be used
as a clubroot-resistant haplotype. The sequence identity of Rsa10025569 in clubroot-resistant lines
(CR-60 and CR-88) and clubroot-susceptible lines (CR-10 and CR-35) was 92.47%, and there was a
699 bp insertion at the end of the fourth exon in the clubroot-susceptible line. Association analysis
of a BC1F1 population derived from the cross CR-88 (resistance) × CR-10 (susceptible) revealed
an apparent correlation between polymorphisms at the Rsa10025569 locus and degree of clubroot
resistance. On the basis of the results, molecular marker-assisted selection was used to transfer
disease resistance genes to susceptible varieties and a new CR germplasm of Xinlimei was obtained.

Keywords: radish germplasm; clubroot resistance; Plasmodiophora brassicae; CRa; marker-assisted
selection

1. Introduction

Clubroot disease caused by Plasmodiophora brassicae is a serious threat to crucifer-
ous crop production worldwide [1]. After infection of a susceptible host, root growth
is depressed, and the roots form large distorted swellings or clubs, and the quality and
commercial value of the crop products are reduced. Severely infected host plants exhibit
wilting or die as a result of reduced absorption of water and nutrients [2,3]. P. brassicae has
a complex life cycle consisting of three distinct stages: resting spores in the soil, primary
infection of root hairs, and secondary infection within root cortical cells [4]. Eventually, the
pathogen forms numerous resting spores in the infected tissues, which are released into the
soil when the tissues disintegrate. The spores remain viable in the soil for long periods and
the disease is difficult to control by means of cultural practices or fungicide application [5].

In China, clubroot disease was reported frequently in the 1950s and gradually spread
throughout the country [6]. Approximately 3.2–4.0 million ha of cruciferous crops are in-
fected annually, resulting in 20–30% yield loss [7,8]. Seven physiological races of P. brassicae
have been detected in the main cruciferous planting areas of China based on the Williams’
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differential system, of which pathotype 4 is widely distributed in the country [8–10]. More
recently, Pang et al. detected 16 pathotypes, designated Pb1 to Pb16, from 132 field isolates
using a Sinitic clubroot differential (SCD) set. Pathotype 4 of Williams’ set showed immense
diversity and was differentiated into 11 pathotypes (Pb1−Pb11) according to the SCD set.
Among these pathotypes, Pb1 and Pb4 were prevalent in various cruciferous crops in the
southern and northern regions of China [11].

Breeding clubroot-resistant (CR) varieties is the most effective strategy for prevention
and control of this disease. Before initiating a breeding program, it is important to evaluate
the resistance of germplasm. Subsequently, development of suitable molecular markers for
a CR gene, which improve the accuracy and efficiency of backcrossing, is required. Multiple
CR genes have been identified or cloned in Brassica crops, such as CRa [12,13], CRb [14],
Crr1, Crr2, and Crr4 [15–17], Crr3 [18,19], CRc and CRk [20], PbBa3.1 and PbBa3.3 [21],
QS_B3.1 [22], CRd [23], and PbBrA08 [24]. Most of these genes are race-specific and derived
from European fodder turnip (Brassica rapa subsp. rapa) [23]. Resistance to P. brassicae
has been introduced from turnip into Chinese cabbage (B. rapa subsp. pekinensis), oilseed
rape (B. napus), and cabbage (B. oleracea) to successfully generate new clubroot-resistant
cultivars [25,26]. Among these resistance genes, CRa and Crr1a have been cloned and
encode Toll/interleukin-1 receptor-like domain–nucleotide binding site–leucine-rich repeat
(TIR–NBS–LRR) proteins, and CRb is identical to CRa [14]. Two gene/quantitative trait
locus (QTL) clustering regions on chromosome A03, CRa/CRb/QS_B3.1 (about 25 M)
and Crr3/CRk/PbBa3.3 (about 16 M), are loci with potential for further utilization in
breeding [23]. Genome-wide analysis of single-nucleotide polymorphisms revealed the top
and bottom segments of chromosome A03 and the middle segment of chromosome A08 of
rutabaga (B. napus var. napobrassica) to be genomic hotspots associated with resistance to P.
brassicae pathotypes [27].

With regard to radish, there are few reports of clubroot-resistance evaluation, QTL
identification, and molecular marker development, and little information is available on the
molecular mechanisms of resistance to clubroot. Sixty-eight radish cultivars and breeding
lines were previously evaluated for clubroot resistance and most of the American radishes
tested were moderately to highly susceptible; all of the Japanese and many of the Dutch
cultivars were completely resistant [28]. Yang et al. identified 13 immune, 5 highly resistant,
and 21 resistant accessions from among 349 radish accessions [29]. A major clubroot-
resistance QTL (Crs1) has been identified, and synteny analysis suggests that this region in
radish and the Crr3 region in B. rapa originate from the same ancestral genomic region [30].
Gan et al. identified five QTLs (RsCrl, RsCr2, RsCr3, RsCr4, and RsCr5) associated with
radish clubroot resistance, among which RsCr4 showed synteny with the Crr1 region in B.
rapa [31]. Although information on QTL regions and linkage markers in radish has been
reported, no relevant information on the candidate resistance genes is available. In addition
to Crr1 and Crr3, the CRa gene deserves increased attention because it confers resistance to
pathotypes 2 and 4, which are the predominant P. brassicae races in China [8,23].

Compared with Brassica cultivars, a greater number of radish cultivars and lines are
highly resistant to the clubroot pathogen [25,32]. However, some Chinese radish cultivation
types, such as red-fleshed ‘Xinlimei’, lack CR genes. In this study, 95 radish inbred lines
were evaluated and screened for clubroot resistance. The crucial resistance genes were
identified using a homolog-based cloning method, and molecular markers were developed
to assist in the introduction of the resistance genes into clubroot-susceptible radish cultivars
by backcrossing. The results will be useful for marker-assisted breeding of clubroot-resistant
cultivars to reduce disease-related yield loss in radish.

2. Materials and Methods
2.1. Plant Materials and P. brassicae Inoculation

Chinese cabbage clubroots infected with P. brassicae were collected from a farm in
Changyang, Hubei province, China, and were stored at −20 ◦C for use as inoculum in
this study. The pathotype was identified as race 4 based on the Williams differential
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classification system [33,34]. The resting spore inoculum was extracted from the sampled
clubroots using the following protocol. The clubroots were homogenized with a 1.5-times
volume of sterile distilled water in a blender. The homogenate was filtered through four
layers of cheesecloth and the suspension was centrifuged at 500× g for 5 min. The resting
spore concentration in the supernatant was adjusted to approximately 2 × 108 spores/mL
with sterile water (modified from) [28]).

Ninety-five radish inbred lines originating from China, Japan, South Korea, and Eu-
rope were evaluated for clubroot resistance in a greenhouse during October and November
2018 (Supplementary Table S1). Disease-resistant lines were further tested in 2019 and 2020.
One pre-germinated seed was sown in a 7 cm × 7 cm × 10 cm plastic pot containing sterile
peat–vermiculite–soil (1:1:1, v/v/v) growing medium. The spore suspension (1 mL) was
injected uniformly over each seed using a transferpettor before the seed was covered with
growing medium. To ensure successful inoculation, after 1 week, the seedlings were inocu-
lated by injecting 1 mL spore suspension around the stem base. Plants were grown at an
average temperature of 18–25 ◦C under natural light in a greenhouse, and the germinated
seeds or seedlings were kept moist. At 60 days after sowing, each radish seedling was up-
rooted, and the roots were washed and examined for clubroot symptoms. Symptoms were
graded visually using the modified method of Kamei et al. [30] and Yang et al. [29]: grade
0, no symptoms; grade 1, a few small, separate, globular clubs on lateral roots; grade 2, a
few small clubs on the taproot; grade 3, obviously enlarged clubs on the taproot; and grade
4, severe clubs on the taproot (Figure 1). The treatments were arranged in a completely
randomized block design with three biological replicates and 10 seedlings for each replicate.
The mean grade for 10 seedlings was calculated as the disease index (DI) for each breeding
line. The resistance of each accession was evaluated according to the following criteria:
immune: DI = 0; highly resistant: 0 < DI ≤ 1; slightly susceptible: 1 < DI ≤ 2; moderately
susceptible: 2 < DI ≤ 3; highly susceptible: 3 < DI ≤ 4.
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Figure 1. Grades of clubroot symptoms in radish seedlings at 60 days after inoculation with P. brassicae.
Disease symptoms were assessed according to a five-point scale ranging from 0 (no symptoms) to 4
(severe clubroots). Scale bar = 2 cm. Arrows indicate a few small clubs on lateral roots.

2.2. DNA Extraction, Gene Cloning, and Sequencing Analysis

DNA was extracted from young leaves using a modified cetyltrimethylammonium
bromide method [35]. Primers for PCR amplification of the CRa, Crr1, and Crr3 QTLs
were designed based on sequences in the radish XYB36-2 reference genome [36]. Details
regarding the primers and the expected size of the amplified fragments are listed in Supple-
mentary Table S2. Each PCR was performed in a 50 µL volume containing 100 ng DNA,
5 µL of 10× PCR buffer (containing MgCl2), 1 µL each primer (10 µM), 4 µL dNTPs (10 mM),
2.0 U Taq DNA polymerase, and ddH2O (Biomedical Technology Co., Beijing, China). The
PCR amplification was conducted with a MyCycler system (Bio-Rad Laboratories, Hercules,
CA, USA) with the following program: 95 ◦C for 2 min; 35 cycles of 95 ◦C for 30 s, 58
◦C for 30 s, and 72 ◦C for 2 min; and 72 ◦C for 5 min. The amplified fragments were
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purified and ligated into the pMD18-T vector. The resulting recombinant plasmids were
inserted into Escherichia coli (strain DH5α) competent cells and then sequenced (Sangong,
Shanghai, China).

The sequences of PCR fragments were assembled with the DNAStar program. Mul-
tiple sequence alignment and phylogenetic analysis were conducted with CLUSTAL
X (version 1.83) and MEGA4.0 software, respectively. Homology and synteny analy-
sis of clubroot resistance genes CRa, Crr1, and Crr3 in B. rapa and R. sativus was per-
formed using the minimap2 program with a set of default parameters on 15 April 2021
(https://github.com/lh3/minimap2, [37]).

3. Results
3.1. Evaluation of Radish Inbred Lines for Resistance to P. brassicae Race 4

A total of 95 radish inbred lines were evaluated for resistance to P. brassicae race 4.
Twenty-seven lines were immune (DI = 0) and six lines were highly resistant (0 < DI < 1) to
the pathotype. Most of the resistant lines originated from Japan, and some disease-resistant
white radish lines were from South Korea and southeast China (CR-38, CR-42, CR-46, CR-49
and CR-51; Supplementary Table S1). The majority of the tested lines were susceptible
to P. brassicae: 21 lines were slightly susceptible (1 < DI ≤ 2), 21 lines showed moderate
susceptibility (2 < DI ≤ 3), and 20 lines were highly susceptible (3 < DI ≤ 4) (Table 1). The
susceptible lines mainly originated from China (33 accessions, 82.5%) and South Korea
(19 accessions, 57.56%). In particular, all lines of the green-skin, red-skin, and ‘Xinlimei’
types from China showed moderate to high susceptibility, whereas five Japanese lines
showed only slight susceptibility (Table 1, Supplementary Table S1).

Table 1. Summary of resistance to P. brassicae race 4 in radish lines of different countries.

Provenance Total Immune
DI = 0

Highly Resistant
0 < DI ≤ 1

Slightly Susceptible
1 < DI ≤ 2

Moderately Susceptible
2 < DI ≤ 3

Highly Susceptible
3 < DI ≤ 4

China 40 6 1 3 16 14
South Korea 33 11 3 8 5 6

Japan 16 10 1 5 0 0
Other 6 0 1 5 0 0
Total 95 27 6 21 21 20

3.2. Homology of Clubroot Resistance Genes and Co-Segregation Analysis of Haplotype and
Clubroot Resistance

Considering that radish is a close relative of Brassica, the QTL region of CR genes
showed collinearity and may exhibit a common ancestral relationship with CR genes of
Brassica species [30,31]. Therefore, based on the radish reference genome (XYB36-2), we
conducted a BLAST search and aligned the gene and flanking regions of Crr1 (AB605024),
CRa (AB751516), and Crr3 (marker interval: BrSTS-54–BrSTS-78) from Chinese cabbage.
The homolog of Crr1 was Rsa10003637 on chromosome R08 of radish, with 91.69% sequence
identity (Table 2). Interestingly, the aligned homologous region of CRa contained three
tandem disease-resistance genes (Rsa10025569, Rsa10025570, and Rsa10025571) on chromo-
some R04: 5204303–5232999. The sequence for Rsa10025570 was incomplete; the sequence
identities of CRa with Rsa10025569 and Rsa10025571 were 86.79% and 85.93%, respectively
(Table 2). The homolog of Crr3 was located on chromosome R05 of radish. In addition,
synteny analysis of the flanking nucleotide sequence (±20–30 kb) of the clubroot resistance
gene or QTL markers further confirmed the position of the homolog in the radish genome
(Supplementary Figures S1–S4).

https://github.com/lh3/minimap2
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Table 2. Homology and synteny analysis of the clubroot resistance genes Crr1, CRa, and Crr3 QTL in
B. rapa and R. sativus.

B. rapa R. sativus

Resistant Gene GenBank ID Gene/QTL
Location

Flanking
Regin

(±20~30 kb)

Homologous
Gene

(Marker)

Gene/QTL
Location Query Cov. Per. Ident. Synteny

Regin

Crr1 AB605024
A08:

12271628–
12276052

A08:
12241628–
12306052

Rsa10003637
R08:

27134943–
27138766

86% 91.69%
R08:

27084498–
27148246

Rsa10003639
R08:

27124803–
27128501

42% 83.38%

CRa AB751516
A03:

25523235–
25546244

A03:
25503710–
25565309

Rsa10025569
R04:

5211349–
5232999

74% 86.79%
R04:

5197160–
5238084

Rsa10025571
R04:

5204303–
5209454

81% 85.93%

Crr3
(markers)

BrSTS-54 STS AB265763
A03:

16156827–
16157418

A03:
16048124–
16156827

BrSTS-33
(QTL

marker) R05: 847681–
848363

- - R05: 798486–
891819

BrSTS-61 STS AB265769
A03:

16099477–
16098797

BrSTS-30
(QTL

marker)

BrSTS-78 SSR AB265777
A03:

16048124–
16048942

BrSTS-61
(QTL

marker)

Note: Gene location information origin from B. rapa genome (v3.0, [38]) and radish genome XYB36-2 [36].

To evaluate the relationship between the genotype of the resistance genes (Rsa10003637,
Rsa10025569/Rsa10025571, and Crr3 QTLs) and degree of clubroot resistance, we developed
nine functional markers for genotyping using six resistant lines and ten susceptible lines
(Figure 2, Supplementary Table S3). The Rsa10003637 gene comprised four haplotypes (H1
to H4) among the 16 test lines based on three functional markers. Except for haplotype H1,
the other haplotypes were present in both resistant and susceptible materials. Therefore, no
significant correlation between the Rsa10003637 genotype and degree of clubroot resistance
was observed among the test lines. Rsa10025569 comprised five haplotypes (H1 to H5)
among the 16 test lines. It is worth noting that haplotype H3 was present in only three
clubroot-resistant lines, which differed from the haplotypes of all ten clubroot-susceptible
test lines. The results suggested that H3 can be used as a clubroot-resistant haplotype, and
the percentage coincidence between resistance degree and genotype may attain 81.25%
(13/16 lines). The markers BrSTS-30 (AfaI CAPs), BrSTS-61 (Hinf I CAPs), and BrSTS-33
(Hinf I CAPs) for the major clubroot-resistance Crr3 QTL region in radish (Crs1; Kamei
et al. 2010) showed no polymorphism or did not co-segregate with the response of clubroot
pathogens among the 16 inbred lines. Interestingly, the resistant inbred line CR-79 was
indicated to be distinctive in that the Rsa10003637 and Rsa10025569 genotypes were unique
(Figure 2, Supplementary Table S3).
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Figure 2. Functional markers for genotyping using six clubroot-resistant lines and ten clubroot-
susceptible lines of radish. R and S indicate clubroot-resistant and clubroot-susceptible lines, respec-
tively. M: DNA marker. Bands indicate 2000 bp, 1000 bp, 750 bp, 500 bp, 300 bp, 200 bp, and 100 bp
from top to bottom. Codes 1–16: CR-79, CR-59, CR-60, CR-88, CR-75, CR-78, CR-4, CR-6, CR-35,
CR-34, CR-28, CR-10, CR-12, CR-19, CR-22, and CR-23.

3.3. Cloning of the RsCRa Allele in Clubroot-Susceptible and -Resistant Radish Inbred Lines

A series of primers (Supplementary Table S2) were designed based on the sequence in
the radish XYB36-2 reference genome for amplification of Rsa10025569 and Rsa10025571
as candidate genes for RsCRa. The lines CR-60 (YR-kurama) and CR-88 (Shirokubi-
Miyashige) were selected as clubroot-resistant genotypes, and CR-10 (Chunlihong) and
CR-35 (Yangzhou Yuanbai) were selected as clubroot-susceptible genotypes for allelic gene
cloning. First, we analyzed the sequence variation of Rsa10025569. For the resistant lines
CR-60 and CR-88, a 2801 bp fragment was amplified and spliced using the primer sets
Cra-7F/7R, Cra-8F/8R, and Cra-9F/9R, including part of the NBS and LRR domains. We
did not obtain a complete amplified fragment of the first exon and intron and speculated
that a large retrotransposon-like sequence may be present in the first intron, similar to
the Chinese cabbage lines Q5 and Chiifu-401-42 [13]. For the susceptible lines CR-10 and
CR-35, a 5739 bp fragment was amplified and spliced by PCR with six primer sets. The
sequence identities with the amplified region of the resistant lines were 92.47%, except for
a 699 bp insertion at the end of the fourth exon. The 699 bp insertion just broke the stop
condon and caused an extension of 29 amino acids. The sequence from clubroot-resistant
lines and clubroot-susceptible lines showed 87.32% and 87.4% similarity, respectively, to
the CRa gene of B. rapa (Figure 3, Supplementary Table S4).
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Figure 3. Phylogenetic relationships and amino acid sequence alignment of the Rsa10025569 and
Rsa10025571 genes of radish. (A) Phylogenetic tree for Rsa10025569 and Rsa10025571 of radish lines
CR-10, CR-60, and XYB36-2, and the CRa gene of Brassica rapa (GenBank: AB751516). Scale bar indi-
cates nucleotide substitutions per site. (B) Alignment of CRa, Rsa10025569, and Rsa10025571 protein
sequences in the CR-60, CR-10, and XYB36-2 reference genome. The CRa-cabbage sequences were
downloaded from GenBank (accession no. BAN04700). Blue boxes indicate TIR–NBS–LRR domains.

And then, Rsa10025571 was cloned, which was a tandem disease-resistance gene in
the RsCRa locus. The sequence of the PCR product (4767 bp) amplified from the clubroot-
susceptible lines CR-10 and CR-35 showed 100% similarity to that of XYB36-2. The simi-
larity between the amplified sequences from the clubroot-resistant lines CR-60 and CR-88
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(5068 bp) and the homologous sequence in clubroot-susceptible lines was 86.95%. The
sequence also contained the TIR–NBS–LRR domains by linear comparison with the CRa
gene of B. rapa (Figure 3, Supplementary Table S5).

3.4. Verification of Markers for RsCRa and Marker-Assisted Backcrossing for Selection of
Clubroot Resistance

To further confirm the utility of the Rsa10025569 loci for molecular marker-assisted
selection of clubroot resistance, the marker pair CRa-9F/9R was used for genotyping of
BC1F1 populations derived from the crosses (CR-88 × CR-10) × CR-10. Among the 77
progenies infected with P. brassicae, the number of individuals identified as immune, highly
resistant, slightly susceptible, moderately susceptible, and highly susceptible was 7, 10, 10,
36, and 14, respectively. Co-segregation analysis of the markers CRa-9F/9R and clubroot
resistance revealed that the 17 immune or highly resistant individuals had a CRa-9F/9R
heterozygous genotype (1500 bp/750 bp), whereas the most highly susceptible 14 plants
had the same genotype as the clubroot-susceptible line CR-10 (1500 bp/1500 bp, Figure 4).
The correlation value was 89.61% between the genotype of the markers CRa-9F/9R and
clubroot resistance in all 77 BC1F1 progenies. These data indicated that molecular marker-
assisted selection of clubroot-resistant lines was feasible.
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Figure 4. Validation of PCR markers using BC1F1 populations derived from the crosses (CR-88 ×
CR-10) × CR-10. (A) Clubroot symptoms of individual plants at 60 days after first infection with
P. brassicae. Seventeen immune or highly resistant individuals and fourteen of the most highly
susceptible plants. (B) Results of PCR amplification. S and R indicate clubroot-susceptible and
clubroot-resistant lines, respectively. M: DNA marker 2000 bp. (C) Clubroot symptoms of individuals
derived from CR-10 and individuals of BC2F3.

Based on the above research, molecular marker-assisted selection was used to trans-
fer disease resistance genes to susceptible varieties (Figure 5). Three clubroot-resistant
individuals were selected as the female parent from the BC1F1 populations and crossed
with the recurrent parent (CR-10) to generate the BC2F1 populations. At the seedling
stage, ten individuals with the CRa-9F/9R heterozygous genotype (1500 bp/750 bp) were
selected from 24 BC2F1 plants, and large-scale BC2F2 populations were generated through
self-pollination. Agronomic traits of 426 BC2F2 progenies were evaluated in autumn, and
12 individuals with CRa-9F/9R homozygous genotypes (750 bp/750 bp) and crucial agro-
nomic traits similar to those of the reincarnation parents were selected for further selfing. A
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new CR germplasm of Xinlimei was obtained and the clubroot resistance was significantly
enhanced compared with the control (Figure 4C).
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4. Discussion

We evaluated the clubroot resistance of 95 radish accessions. Thirty-three lines were
immune or strongly resistant to P. brassicae race 4, of which 26 lines (78%) were of for-
eign origin. In addition, 30 of the 41 inbred lines (73.17%) that originated from Chinese
cultivars were moderately to highly susceptible to clubroot (Table 1). All lines of the red-
skin, green-skin, and ‘Xinlimei’ types were susceptible to P. brassicae, consistent with the
findings of Yoshikawa [39]. Rowe et al. reported that most US radish accessions tested
were moderately to highly susceptible to clubroot, whereas all Japanese and many Dutch
cultivars showed absolute resistance [28]. A recent study reported that the majority of the
tested radish germplasm was susceptible to the clubroot pathogen, including 81 susceptible
and 204 highly susceptible accessions based on the DIs of an extensive source collection
of 349 accessions. Exotic radish germplasm has a higher degree of resistance to clubroot
disease than local Chinese radish cultivars [29]. However, early studies indicated that the
majority of radish cultivars and inbred lines possess a high degree of resistance [32,40],
which may reflect differences in the tested germplasm and pathogen races.

The main artificial methods of inoculating cruciferous crops with P. brassicae comprise
treatment with resting spore-inoculated soil, injection, soaking, or dipping the root in a
spore suspension [41]. Radish develops an enlarged taproot with few fibrous roots, which
may result in infection symptoms that are initially inconspicuous and only subsequently
become visible. Precise and reliable artificial inoculation of radish with P. brassicae is not
straightforward compared with inoculation of other cruciferous crops [1,29]. Yang et al.
evaluated the clubroot resistance of a radish germplasm collection using a two-stage
inoculation method combining bud injection and injury to the seedling root, which achieved
superior stability and accuracy of infection compared to a single-inoculation method [29].
In the present study, we improved the inoculation method by increasing the resting spore
concentration (2 × 108 spores/mL), performing two-stage inoculation (at seed sowing and
1 week after sowing), and delaying the assessment of symptoms (60 days after sowing). In
addition, we performed two or three repeat assessments of disease-resistant inbred lines to
overcome the influence of environmental or plant physiological factors.
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At present, it is difficult to control clubroot disease with chemical fungicides and
cultivation management. Development of disease-resistant cultivars is the most effective
strategy for disease control. However, clubroot-resistant radish cultivars in China remain
scarce, especially green-skin, red-skin, and Xinlimei types, for which no resistant lines were
identified. Therefore, our main objective is to improve the degree of clubroot resistance
of radish cultivars by backcrossing and marker-assisted selection using immune or highly
resistant radish accessions. In this study, we obtained a new CR germplasm of Xinlimei
by transferring disease resistance genes into susceptible varieties. Furthermore, multiple
resistance genes must be accumulated into a single cultivar for broad-spectrum and longer-
lasting clubroot resistance. Three CR genes (CRa, CRk, and CRc) were accumulated in
Chinese cabbage through marker-assisted selection [42]. Similarly, the NARO Institute of
Vegetable and Tea Science developed a Chinese cabbage cultivar with strong resistance
to clubroot disease by accumulating CR genes located at the Crr1, Crr2, and CRb loci.
Combinations of different CR genes exhibit enhanced resistance to clubroot disease [43].
Although we evaluated the resistance of 95 radish inbred lines to P. brassicae race 4, the
degree of resistance to other races remains unclear. More precise identification of resistance
is required using different pathotypes, and CR genes require characterization and cloning
in the future.

Many clubroot-resistant cultivars of radish and Brassica crops have been bred [42,44–49].
However, two potential risks remain. One is that the resistance source in Brassica is ex-
tremely narrow and most CR genes originate from European fodder turnip [43], which may
result in deficiency of CR genes when resistance is overcome. In addition, the resistance
of clubroot-resistant cultivars weakens or disappears with time owing to race-specific
resistance and extensive pathogenic variation. Therefore, it is essential to screen resistance
sources extensively and enrich disease-resistance genes. In the present study, we identified
33 immune or strongly resistant radish lines, which may harbor different CR genes based
on the results of molecular marker genotyping (Figure 2). Considering that radish is a
close relative of Brassica [50], the CR genes may exhibit a common ancestral relationship
with CR genes of Brassica species [30,31]. Thus, resistance genes from radish transferred to
Brassica species through distant hybridization or protoplast fusion are expected to show
considerable potential for conferring disease resistance. The transfer of CR genes to Brassica
has been attempted previously [51,52]. Akaba et al. evaluated nine types of B. napus–R.
sativus monosomic addition lines (MALs) and observed that the C-type MAL showed
strong resistance to clubroot disease [53].

Most disease-resistance (R) genes encode proteins that carry a nucleotide binding site
(NBS) in the central region and a leucine-rich repeat (LRR) domain at the C-terminus. In
general, the LRR protein can recognize pathogen signals and the NBS domain regulates
activation of the plant immune system [54]. Hundreds of NBS–LRR genes are present in
plant genomes [55]. The R genes have been comprehensively identified in radish and several
species of Brassica [56–58]. Thirty-eight NBS-encoding sequences were identified from the
radish leaf transcriptome by bioinformatic analysis [58]. Complex mixed clusters of NBS–
LRR loci are a notable feature derived from gene duplication events and frequently undergo
rearrangement [59]. In the present study, RsCRa loci also contained three tandem repeat
genes (Rsa10025569, Rsa10025570, and Rsa10025571), although Rsa10025570 contained an
incomplete NBS–LRR structure (Figure 3). RsCra gene haplotypes may be more abundant,
except for CR-88 and CR-10 types, considering that we did not sequence all lines. In
addition, the association between degree of clubroot resistance and the other haplotypes of
CR genes requires further analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12030554/s1, Table S1: Response of 95 radish inbred
lines to P. brassicae race 4 in a greenhouse, Table S2: Homology and synteny analysis of the clubroot
resistance genes and QTL Crr1, CRa, and Crr3 in B. rapa and R. sativus, Table S3: Clubroot resistance
to P. brassicae race 4 and the genotype of Crr1, Crr3, and CRa, Table S4: Primers used in this study,
Table S5: Alignment of CRa, Rsa10025569, and Rsa10025571 sequences in the CR-60 and CR-10 lines,
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and the XYB36-2 reference genome. Figure S1: Collinearity between the clubroot resistance genes and
flanking region of B. rapa and the radish ‘XYB36-2’ genome, Figure S2: Collinearity between the Crr3
gene and flanking region of B. rapa and the radish chromosome R05 (798486 bp–891819 bp), Figure
S3: Collinearity between the Crr1 gene and flanking region of B. rapa and the radish chromosome R08
(27084498 bp–27148246 bp), and Figure S4: Collinearity between the CRa gene and flanking region of
B. rapa and the radish chromo-some R04 (5197160 bp–5238084 bp).
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