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Abstract: Trace elements in farmland soil are important indicators of soil quality and farmland health,
and also maintain the nutrient balance and promote the healthy growth of plants. In this study,
taking Conghua District of Guangzhou city as the study area, the effects of topography, soil, land use,
and other factors on trace elements in soil were investigated, and the spatial variability of boron (B),
manganese (Mn), molybdenum (Mo), copper (Cu), and zinc (Zn) in farmland soil in a typical red soil
region were mapped using a geographically weighted regression (GWR) method. The pH and land
economic index (LEI) were important factors affecting the changes in trace element concentrations in
the five soils, and the Cu and Zn concentrations were clearly affected by human factors. In the study
area, 86.99% of B measurements were classified as low and very low levels, 50.61% and 49.20% of Mo
measurements were also low and very low, 71.79% of Mn measurements were classified as moderate,
while 91.02% of Cu and 52.95% of Zn measurements were classified as high. After a cross validation,
the GWR Kriging (GWRK) model results of each element were relatively stable, and the order of
the fitting coefficient (R2) was Cu > Zn > B> Mn > Mo. This study clarifies the spatial distribution
and influencing factors of soil microelements in the studied region. This information can be used to
improve the nutrient imbalance, further guide agricultural production, strengthen the management
of farmland, and improve the healthy productivity of cultivated land.

Keywords: soil environmental quality; trace elements; spatial variation; influence factor; digital
soil mapping

1. Introduction

Trace elements in farmland soils are important environmental indicators [1,2], and are
also used to characterize soil quality [3,4]. The abundance/deficiency of each trace element
in the soil directly affects the growth and development of crops, as well as human health to
a certain extent [5]. In recent years, due to natural disasters and long-term overexploitation,
the fertility, productivity, and quality of soils in China has declined. Soil health issues,
particularly the spatial variability of trace elements and their influencing factors, have
attracted increasing attention from researchers worldwide [6–8]. Due to the combined
effect of soil formation processes and human factors, the distribution of trace elements in
different regions and on different scales has a certain spatial heterogeneity [9,10]. Therefore,
it is of great significance to accurately describe the spatial variability of trace elements in
farmland and clarify the influence of various factors on the evolution of trace elements
in the farmland ecosystem to improve the yield and quality of plants, implement field
management, and increase farmland health and productivity.
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In studies of the spatial variability of trace elements in soil, geostatistical methods have
been widely used to analyze the spatial variability of regional variables [11–15]. Correlation
analysis, single factor analysis of variance (ANOVA), geostatistics, and geographic informa-
tion system (GIS) technology have been used to systematically analyze the spatial variability
of trace elements in cultivated land in Jiangxi Province, and their influence in terms of topo-
graphical, chemical, soil-forming, and random factors [5]. With the development of digital
soil mapping technology, spatial measurement models based on data-mining algorithms
have become more widely used in soil spatial mapping [16,17]. Machine-learning methods
have been used to map and analyze the main soil properties that affect crop growth, such as
organic matter, plant essential nutrients, and trace elements. One study identified the soil
properties that were related to plant growth and protection [18]. Another study used soil
sampling data, remote sensing data, and ground spectral data as predictors in digital soil
mapping research, employing tree structure-based data mining technology, and found that
mapping accuracy was significantly better than that using ordinary Kriging methods [19].

Previous studies have determined the spatial variability of trace elements in soil based
on different methods, but most of them have only considered the impact of natural factors
and have not considered the spatial variability caused by human factors. There is also
uncertainty in how to reflect the overall change in soil properties based on information on
combined natural and human-made factors. Zhao et al. [20] proposed a geographically
weighted regression (GWR) method that used the location of sampling points to determine
the spatial variability of soil attributes, effectively revealing some local changes that may
have been hidden by spatial non-stationarity. The method has achieved good results for
assessing spatial variation and for spatial mapping of soil organic carbon (SOC) and soil
organic matter (SOM) [21–23].

Due to long-term application of large element chemical fertilizer which caused imbal-
ance of soil trace elements and nutrients, the role of trace elements in soil in agricultural
production has attracted more and more attention. Soil trace elements, such as copper (Cu),
iron (Fe), manganese (Mn), and zinc (Zn), are important components of crop nutrients. At
the same time, boron (B), manganese (Mn), and molybdenum (Mo) are essential nutrients
for plant growth and play an important role in crop yield and product quality [2,5]. In
the present study, we measured the trace elements, B, Mn, Mo, Cu, and Zn, in farmland
soil in Conghua District, Guangzhou City, a typical red soiled hilly area. A land use index
(LUI) and land economic index (LEI) were introduced based on topographical and soil
chemical factors, with GWR methods used to determine the spatial variability of trace
elements and their influencing factors. The results provide a reference for the protection
and improvement of cultivated land in terms of health and productivity.

2. Materials and Methods
2.1. Study Area

Conghua District (E 113◦17′–114◦04′, N 23◦22′–23◦56′) is located in the central part
of Guangdong Province, northeast of Guangzhou City. The terrain slopes from north to
south. The topography is ladder-shaped, with the northeast dominated by mountains and
hills, the center and south dominated by hills and valleys, and the west dominated by hills
and terraces (Figure 1). The region has a subtropical monsoon climate, which is mild, with
abundant rainfall throughout the year. The annual average temperature is 21.4 ◦C, the
sunshine duration is 1857.2 h, the effective accumulated temperature is 6700 ◦C, the annual
average rainfall is 2000 mm, and the evaporation is 1250 mm.

Paddy soil is the largest cultivated soil type in the district, with gleyic paddy soil
sporadically distributed on the hillside terraces of moderate and low hills. The paddy
soil is mainly distributed in the low mountain basin and valley alluvial plain in the north.
Permeable paddy soil is mainly found in the high-altitude terrain of the hilly plain area,
and gleyic paddy soil is distributed in pit fields in mountainous areas [24–26]. The natural
vegetation in the district is a subtropical evergreen seasonal rain forest. The vegetation
types mainly include coniferous and broad-leaved mixed forest, scattered Masson pine
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shrub grass slopes, hilly grass slopes, and mountain grass slopes. The abundant light
and precipitation conditions, and a convenient transportation network, have contributed
favorably to agricultural production in Conghua District, which has become an important
grain production area in Guangdong Province.

Figure 1. Location of the study area and sampling point distribution.

2.2. Soil Sampling and Analysis

Soil samples were collected from July to October 2017. Combined with the soil types
and topographic and geomorphic characteristics of the study area, 204 cultivated land
surface soil samples (0–20 cm) were collected using a combination of grid point distribution
and multi-point mixing (Figure 1), and the location of the sampling points was recorded by
GPS. Based on the soil sampling requirements of the “Technical specification for cultivated
land fertility investigation and quality evaluation” [27], the following sampling protocols
were followed. Large areas of farmland were selected, sampling points were more than
100 m from roads and railways, and locations that would directly affect soil properties,
such as composting sites and irrigation outlets, were avoided. After removing animal
and plant residues and stones, soil samples were dried naturally at room temperature and
uniformly screened by passing them through a 1 mm mesh after grinding.

The inductively coupled plasma mass spectrometry (ICP-MS) technique is a commonly
used detection method for soil elemental analysis, with the advantages of low detection
limit, high precision, wide linear range, low interference, and good stability. It can be
used for rapid analysis and determination of multiple elements simultaneously. The test
instrument used was an ELAN 9000 DRC II inductively coupled plasma mass spectrom-
eter (Perkin Elmer Company, Norwalk, Connecticut, USA). Reagents include ultra-pure
HNO3, superior pure perchloric acid (HCLO4), hydrofluoric acid (HF), concentration 50%
hydrochloric acid (HCL), ultra-pure water, B, Mn, Mo, Cu, and Zn elements standard
solutions, national soil standard substances like GBW 07403 (GSS-3), etc.

Sample preparation involved weighing 0.25 g of soil sample to be tested and adding
2:2:1:1 ultrapure water (H2O), hydrofluoric acid (HF), high-grade pure perchloric acid
(HCLO4), ultrapure HNO3, and 50% hydrochloric acid (HCL) to digest on the electric
heating plate until it is completely evaporated. Then 50% HCL solution was poured into
the residue. The digestion solution was transferred to the test tube after heating and cooling,
the volume with fixed with dilute HCL solution, and put on the machine for testing.

For precision assessment, the content of soil B, Mn, Mo, Cu, and Zn were determined
by ICP-MS under optimized conditions, accompanied by a blank experiment, and the limit
of detection for each element was obtained by multiplying the equivalent concentration of
three times the standard deviation by a dilution factor (1000). The national soil standard
GSS-3 was also digested and measured 10 times until the mean value, relative standard
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deviation, and relative error of each element tested were less than 5% to ensure the precision
and accuracy of the assay.

2.3. Data Processing and Analysis Methods

The total number of data points was 204. In an ArcGIS 10.2 random classification,
80% of the samples were used as the modeling set and 20% of the samples were used as
the verification set to verify the accuracy of the model. Then, modeling data were statisti-
cally analyzed using the SPSS 19.0 statistical software, and GWR models corresponding
to trace elements as the dependent variable were constructed using GWR4.0 software.
A Kriging spatial interpolation method was used to map and analyze the spatial variation
in trace elements. Spatial variation semi variance analyses were used for model fitting
using the GS + 9.0 software, where the model with the largest determination coefficient R2

and the smallest residual sum of squares was considered the optimal model with optimal
parameters.

Geographically weighted regression is a spatial analysis technology that has increas-
ingly been used in geography and related disciplines involving spatial data processing.
A local regression equation was established at each point in the spatial range to reflect
the spatial interaction between the independent and dependent variables [26,27], and was
expressed as:

Ygwr(ui, vi) = β0(ui, vi) +
k

∑
z=1

βz(ui, vi)Xk(ui, vi) (1)

where (ui, vi) is the longitude and latitude of sample point i; βz(ui, vi) is the continuous
function of βz (u, v); z is the regression parameter value at sample point i; Xk(ui, vi) is the
actual value of the function Xk(u, v) at sample point i; and k is the number of regression
terms of sample point i. The weight of the model was determined by a Gaussian function,
and the Akaike information criterion (AIC) method was selected to determine the most
effective bandwidth.

2.4. Accuracy Assessment

Using the cross-validation method [28], the accuracy of the model was evaluated
according to the mean error (ME), mean absolute error (MAE), and root mean square error
(RMSE), which were calculated as follows:

ME =
1
N

N

∑
i=1
{Z(xi)− Z∗(xi)} (2)

MAE =
1
N

N

∑
i=1
{|Z(xi)− Z∗(xi)|} (3)

RMSE =

√√√√ 1
N

N

∑
i=1
{Z(xi)− Z∗(xi)} 2 (4)

where N is the number of verification points, Z(xi) is the measured value of the ith ver-
ification point, and Z∗(xi) is the predicted value. The ME is a measure of the bias of an
interpolation; the closer it is to 0, the more unbiased the result. The MAE and RMSE are
measures of interpolation accuracy; the smaller their values, the higher the interpolation
accuracy of the model.

3. Results
3.1. Descriptive Statistics

Descriptive data are presented in Table 1 and the classification standards of the trace ele-
ments are given in Table 2. The B concentration in the study area was 0.08–0.89 mg·kg−1 (aver-
age, 0.42 mg·kg−1), which was classified as low. The Mn concentration was 3.20–46.72 mg·kg−1



Agronomy 2022, 12, 478 5 of 12

(13.03 mg·kg−1), which was classified as moderate. The Mo concentration was 0.02–0.20 mg·kg−1

(0.10 mg·kg−1), which was classified as low, being less than the accepted critical value of
0.15 mg·kg−1. The Cu concentration was 0.30–11.42 mg·kg−1 (1.65 mg·kg−1), which was
classified as high, indicating a rich Cu content in the soil in the study area. The Zn concen-
tration was 0.57–12.13 mg·kg−1 (1.89 mg·kg−1), which was also classified as high.

Table 1. Descriptive statistics of soil trace elements.

Elements Max Mini Mean Std. Dev. Skewness Kurtosis CV/%

B (mg·kg−1) 0.89 0.08 0.42 0.19 0.83 −0.07 45.23
Mn (mg·kg−1) 46.72 3.20 13.03 6.23 2.13 6.85 47.81
Mo (mg·kg−1) 0.20 0.02 0.10 0.04 1.18 1.57 40.00
Cu (mg·kg−1) 11.42 0.30 1.65 0.97 1.73 4.15 58.79
Zn (mg·kg−1) 12.13 0.57 1.89 1.21 1.14 0.93 64.02

B, boron; Mn, manganese; Mo, molybdenum; Cu, copper; Zn, zinc; Max, Maximum; Mini, Minimum; Std. Dev.,
standard deviation; CV, coefficient of variation, (Std. Dev./Mean).

Table 2. Classification standard of soil trace elements in Guangdong Province.

Elements Extremely Low Low Medium High Extremely High Critical Value

B (mg·kg−1) <0.20 0.20–0.50 0.50–1.00 1.00–2.00 >2.00 0.50
Mn (mg·kg−1) <1.00 1.00–5.00 5.00–15.00 15.00–30.00 >30.00 5.00
Mo (mg·kg−1) <0.10 0.10–0.15 0.15–0.20 0.20–0.30 >0.30 0.15
Cu (mg·kg−1) <0.10 0.10–0.20 0.2–1.00 1.00–1.80 >1.80 0.20
Zn (mg·kg−1) <0.30 0.30–0.50 0.50–1.00 1.00–3.00 >3.00 0.50

B, boron; Mn, manganese; Mo, molybdenum; Cu, copper; Zn, zinc.

The coefficient of variation is an important index reflecting the spatial variation in soil
attributes. A coefficient of variation ≥100% indicates strong variation, 10–100% indicates
moderate variation, and ≤10% indicates weak variation [29,30]. The coefficient of variation
for the five trace elements were in the range of 40.00–64.02%, which indicates a moderate
degree of variation. The degree of variation followed the order of Zn > Cu > Mn > B > Mo.

3.2. Correlation Analysis of the Influencing Factors of Trace Elements

Soil is formed and developed under the comprehensive action of various natural
conditions and human factors. Changes in the trace element content of soil are therefore
affected by both natural and humanmade driving forces. When investigating the spatial
variation in trace elements, it is necessary to analyze the correlation between trace elements
in the study area and selected topographic factors, soil factors, and human factors. Our
results are shown in Figure 2. Especially, the elevation, slope, and aspect values were
extracted from DEM in the study area. The pH, soil organic matter (SOM), land economic
index (LEI), and land use index (LUI) data were from the evaluation of cultivated land
quality and productivity in the study area in 2017.

In the study area, the B concentration was significantly positively correlated with
pH in terms of soil factors, and the LEI in terms of human factors. This suggests that the
energy transformation of the soil itself and the input level of external land production
are the main driving factors of changes in B concentration [31]. There was a significant
positive correlation between the Mn concentration and the LEI, which indicates that the
input level of land production directly affects the accumulation of Mn in the soil. There was
a significant positive correlation between the Mo concentration and both pH and the LEI,
and therefore a change in soil pH and an increase in LEI will promote the accumulation
of Mo in the soil. The same was true for Cu concentration, further suggesting that, in flat
terrain, areas with high external input are vulnerable to those inputs. The inputs in this
case were mainly industrial pollution emissions and excessive fertilization, as also reported
in previous studies [32,33]. The Zn concentration was significantly negatively correlated
with slope and elevation, and there was a significant positive correlation with pH, SOM,
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the LEI, and LUI. This indicates that in areas with a large slope, high elevation, and low
SOM content, degree of land use, and input levels, the accumulation of Zn is hindered to
some extent [2,30].

Figure 2. Correlation heat map of soil trace elements and influencing factors. B, boron; Mn, man-
ganese; Mo, molybdenum; Cu, copper; Zn, zinc; SOM, soil organic matter; LEI, land economic index;
LUI, land use index; * means p < 0.05; ** means p < 0.01.

3.3. Geographically Weighted Regression Modeling and Semi Variance Function Analysis

To further explore the impacts of various factors influencing trace elements and more
accurately estimate their spatial distribution, variables with a strong correlation with trace
elements were analyzed further. To eliminate the influence of multifactor collinearity, the
stepwise multiple regression method was used to screen the variables. Finally, a spatial
regression analysis model between trace elements and significant variables was established
using the GWR4.0 software.

In geostatistics, the semi variance function is an effective tool for exploring the natural
phenomenon of randomness in the spatial distribution of soil attributes; it can effectively
characterize the degree of variation in each sample [29]. The residual of the soil trace
element GWR modeling results was analyzed using GS+ 9.0 software, and the results are
shown in Table 3.

Table 3. Semi variance function parameters of GWR prediction model for soil trace elements.

Elements Model Nugget
(C0)

Sill
(C0 + C)

NSR
[Co/(C0 + C),%]

Range
(Km)

R2

(%)
Residual

B Spherical 0.040 0.190 21.05 3.04 0.42 5.938 × 10−3

Mn Gaussian 13.501 65.560 20.59 2.24 0.93 22.200
Mo Spherical 0.004 0.013 30.76 2.76 0.79 2.356 × 10−7

Cu Exponential 1.490 1.952 76.33 3.38 0.72 0.818
Zn Exponential 1.456 2.143 67.94 3.23 0.68 0.654

B, boron; Mn, manganese; Mo, molybdenum; Cu, copper; Zn, zinc; NSR, Nugget to Sill ratio; R2, R-squared.

The optimal semi variance function model was spherical for B and Mo, exponential
for Cu and Zn, and Gaussian for Mn. The highest fitting coefficient (R2) was Mn (0.93), and
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the smallest was B (0.42), with an order of Mo > Cu > Zn > B. This model can determine the
degree of spatial correlation among regionalized variables using the nugget-to-sill ratio
(NSR), which reflects the spatial dependence of soil attributes. According to the grading
standard for such analyses [34], an NSR less than 25% indicates a strong correlation; a rate
between 25% and 75% is moderate, and >75% is weak.

The NSR values were 30.76 and 67.94 for Mo and Zn, respectively, with a moderate
spatial correlation of 25–75%, indicating that the spatial variation in Mo and Zn was the
result of the joint action of structural and random factors in the system. The spatial variation
in Mo was affected more by structural factors than random factors. The randomness factor
of the spatial variation in Zn was stronger than the structural factor. The NSR values
were 21.05% and 20.59% for B and Mn, respectively. The spatial correlations were strong,
indicating that their spatial variation was obviously affected by structural factors in the
system, such as the parent material, terrain, and soil-forming processes. The NSR value
was 76.33% for Cu and the spatial correlation was weak, indicating that Cu in the study
area was mainly affected by human factors such as farming, fertilization, and industrial
pollution. Therefore, human activities play an important role in the accumulation of Cu in
the soil.

The distance over which trace elements significantly varied in the study area ranged
between 2.24 and 3.38 km, with the differences for each element being small. The distance
was largest for Cu at 3.38 km, while Mn had the smallest distance of 2.24 km. In general,
the spatial correlation range was relatively small, due to the scale of the selected study area.

3.4. Spatial Distribution Characteristics

To reflect the spatial distribution of the trace element concentrations more intuitively,
spatial interpolation was conducted using the geostatistical module in ArcGIS 10.2 to obtain
the spatial distributions of trace elements based on the GWR Kriging (GWRK) method
(Figure 3). Farmland area and the proportion of different trace elements at each level were
determined by region (Table 4).

Table 4. The soil trace elements in different grades of soil area and proportion.

Grade
B Mn Mo Cu Zn

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Area
(km2)

Proportion
(%)

Extremely low 818.36 40.52 - - 1002.56 50.61 - - - -
Low 903.69 46.47 0.38 0.02 974.62 49.20 0.78 0.04 2.25 0.12

Medium 257.95 13.01 1422.06 71.79 3.43 0.19 175.13 8.84 929.62 46.93
High - - 552.44 27.89 - - 865.00 43.67 1028.37 51.93

Extremely high - - 5.67 0.30 - - 939.81 47.45 20.25 1.02

B, boron; Mn, manganese; Mo, molybdenum; Cu, copper; Zn, zinc.

Figure 3 and Table 4 show the results. In 86.99% of the total farmland area, B was
present at low and very low levels, while for the remaining 13.01% it was present at a
moderate level. There were no areas with high levels, and the overall spatial distribution
was relatively scattered. Overall, 40.52% of the farmland had extremely low levels, mainly
distributed in the center, north, and south of the study area. See the figure for more details.
The levels of Mn were mostly moderate to high, with high levels found mainly on the
northern and western edges of the study area. There was a serious lack of Mo, with low
and extremely low levels nearly throughout. Only 0.19% of the area had a moderate level.
Spatially, the extremely low levels were concentrated in the northern mountainous areas,
and the central, southern, and northeastern areas, while the low levels were concentrated
in the northeast and southwest.
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Figure 3. Spatial distribution of soil trace elements based on GWRK method: (A) boron, (B) man-
ganese, (C) molybdenum, (D) copper, (E) zinc.

Cu was generally present at high (43.67%) and extremely high (47.45%) levels, with
the highest levels in the central and eastern plains. Zn was present at a moderate or
high level, almost across the entire area (99.88% of the total area). In terms of spatial
distribution, moderate levels (46.93%) were mainly distributed in the north, northwest, and
southwest, and high levels were in the northeast, east, and western marginal areas, with
some extremely high levels (1.02%) scattered throughout the southern plain.
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3.5. Evaluation of Prediction Methods

Using the sample point data in the validation set, the accuracy of the GWRK model
was evaluated using a cross-validation method. The results (Table 5) showed that among
the trace elements, the smallest ME, MAE, and RMSE were obtained for B and Mo, due
to the relatively low concentrations of those two elements. The MAE (5.483) and RMSE
(7.667) of Mn were larger than those of the other elements, indicating that the Mn data
were more discrete. According to the descriptive statistical results of the data in Table 1,
the maximum value of Mn element is 46.72, the minimum value is 3.20, and the values of
skewness and kurtosis are 2.13 and 6.85, respectively; there was also a larger error between
the predicted and actual values. In addition, the fitting coefficient (R2 = 0.496) was smaller
than for the other elements. The ME, MAE, and RMSE of Cu and Zn were similar, with
R2 values of 0.686 and 0.665, respectively, indicating better prediction than for the other
elements. These data suggest that the model effectively reflected the spatial distribution of
each trace element.

Table 5. Precision evaluation index of soil trace elements prediction model.

Elements Model ME MAE RMSE R2

B GWRK −0.001 0.031 0.572 0.528
Mn GWRK −0.040 5.483 7.667 0.496
Mo GWRK 0.002 0.025 0.102 0.473
Cu GWRK −0.060 0.781 1.218 0.686
Zn GWRK −0.057 0.986 1.349 0.665

B, boron; Mn, manganese; Mo, molybdenum; Cu, copper; Zn, zinc; ME, mean error; MAE, mean absolute error;
RMSE, root mean square error; R2, R-squared.

4. Discussion

Trace elements provide the necessary nutrient conditions for plant growth and are
mainly supplemented by soil fertilization. In recent years, with the increase in the applica-
tion of nitrogen, phosphorus, and other elemental fertilizers, the proportion of farmland
nutrients has gradually become unbalanced, resulting in increasingly serious problems
such as trace element deficiencies [35]. To effectively alleviate such imbalances and en-
hance the sustainable supply of elements available for plant growth, it is necessary to take
targeted field management measures according to the spatial variation in trace element
concentrations in soil [36]. To this end, it is necessary to clarify the driving factors affecting
changes in trace element concentrations in soil.

The driving factors of changes in trace elements are both natural and human activ-
ities [31]. In this study, the driving factors were investigated via a correlation analysis.
The Zn concentration was significantly negatively correlated with elevation and slope,
indicating that the higher the elevation and greater the slope, the less conducive the topog-
raphy would be to the accumulation of Zn. There was a significant positive correlation
between B, Mo, Cu, Zn, and pH in the study area, indicating that a change in soil pH
directly affects the accumulation of these trace elements. The study area has a lateritic red
soil. The soil is acidic, and the effects of acid rain and precipitation further intensify the
degree of soil acidification. Changes in soil pH within a certain range affects the solubility
of trace elements [37]. Among human factors, the concentrations of the five trace elements
were strongly correlated with the LEI, indicating that economic investment in land plays
an important role in the changes to and accumulation of trace elements. Due to data
limitations, we were unable to consider what kinds of land use or production input level,
such as straw being returned to the field, chemical fertilizer application, or plastic film
use [38–41], affected element concentrations. This will be the focus of the next stage of
this research.

Regarding spatial distribution, B was mainly present at low and extremely low levels.
Hence, it is necessary to adopt biological or engineering measures to improve the B concen-
tration throughout much of the study area. There was rich Mn in most of the study area,
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whereas Mo was lacking throughout. The extremely low levels were concentrated in the
northern mountainous areas, the central region, and the southern and northeastern regions,
while the low levels were concentrated in the northeastern and southwestern regions. The
agricultural management department should advise farmers to take relevant countermea-
sures in these areas, improve field management, and improve the current situation of soil
Mo deficiency. Cu concentrations were high in the study area, with high and extremely
high levels accounting for 91.02% of the area. Spatially, the western and southern plains
had high levels, and the central and eastern plains had extremely high levels. These areas
have a flat terrain and a high degree of industrialization. When taking field management
measures to improve the Cu concentration, it will be necessary to guard against the input of
exogenous pollution, including transportation, atmosphere, rivers, etc. Zn concentrations
were generally at a moderate to high level, with high levels over 52.95% of the total area.
Although not as obvious as Cu, these high levels cannot be ignored. In terms of spatial
distribution, moderate levels were mainly in the north, northwest, and southwest, and high
levels were concentrated in the northeast, east, and western marginal areas. Both Zn and
Cu are heavy metals, and excess concentrations will lead to soil pollution, affecting plant
growth and the health of agricultural products. Therefore, specific field measures need to
be implemented to prevent excess concentrations accumulating in the soils of these areas.

5. Conclusions

The concentrations of five trace elements in the study area, particularly Cu and Zn,
were affected by natural factors, soil factors, and human factors. Overall, B and Mo con-
centrations were low, Mn levels were appropriate, and Cu and Zn concentrations were
high. The spatial distribution of Mn was relatively uniform, but those of the other elements
were relatively dispersed. Field management measures should be taken according to these
findings. This could be accomplished through the application of soil improvers, by strate-
gic plantings, and other methods that would improve the trace element concentrations.
Clarifying the spatial distributions and influencing factors of trace elements will not only
improve the current soil nutrient imbalance, but also further guide agricultural produc-
tion, strengthen farmland field management, and improve the health and productivity of
cultivated land.
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