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Abstract: Wild potato germplasm serves as a natural pool of agronomically valuable traits for
potato breeding, such as resistance to pathogens and abiotic stresses, quality, and consumer-oriented
traits. The introgression of these traits into cultivated potato is hampered by the different kinds of
incompatibility and linkages between desirable and undesirable features in hybrid progeny. The trait
donor improvement via correction of negative characteristics prior to hybridization to domestic potato
can be a solution to the linkage drag problem. The de novo domestication concept for developing
new crops using gene editing technologies was previously proposed and performed for tomato and
physalis. In this review, we collected information about donor properties of different wild potato
species and developed a strategy for potato germplasm enhancement using the de novo domestication
approach. The possible modifications of several candidate genes responsible for undesirable traits in
wild potato, including high steroidal glycoalkaloid content, self-incompatibility, tuberization under
short day conditions, and long stolons are proposed. The current challenges and future prospects of
implementing the de novo domestication strategy for potato are discussed.

Keywords: wild potato; de novo domestication; genome editing; glycoalkaloid; petota; R-gene

1. Introduction

The loss of natural genetic diversity is a complex problem in modern potato breed-
ing. According to recent estimation, during the domestication process, potato lost about
500 genes, including many R-genes (for resistance) involved in pathogen resistance. Wild
potato species contain a high allelic diversity of R-genes and potential alleles for increased
abiotic stress resistance, quality, and consumer-oriented traits [1–3]. Potato germplasm
enhancement suggests the transfer of valuable traits from wild to cultivated potato [2].
The linkage between desirable and undesirable traits complicates this transfer and greatly
restricts the donor potential of wild potato [4]. A recently proposed strategy for mod-
ern crop breeding is de novo domestication, an approach aiming to convert wild species
into domesticated crops using genome editing methods [5]. The concept is based on the
assumption that ‘wild’ alleles of domestication genes can be artificially converted into
‘domestic’ with the formation of a phenotype typical for the domestication syndrome. The
concept was initially proposed and then experimentally proved for tomato [6,7]. Two
research groups simultaneously showed successful introduction of domestication traits
into wild tomato by targeted knockouts of a few key genes [7,8]. A similar experiment
was also performed for physalis, creating new ‘more domestic’ genotypes having common
features with modern tomato [9]. In the past five years, the progress in genome sequencing
and gene function research has allowed the identification of key genes related to major
domestication-associated traits for many crops, including potato [10].
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The application of the de novo domestication concept requires appropriate gene
and genotype selection. There are about 200 wild potato species [11], comprising many
thousands of accessions in world genebanks. If de novo domestication is considered as a
way to create new domestic crops, the selection of one or few wild potato genotypes seems
a very difficult challenge. An alternative approach is to apply the de novo domestication
concept as a tool for trait donor improvement. The selection of donor genotypes for
valuable traits and their modification in order to eliminate or correct the most undesirable
characteristics can accelerate the process of elite potato germplasm enhancement. Here, we
discuss a strategy for potato de novo domestication considering the enhancement of potato
germplasm as the main practical goal.

2. Pros and Cons of Wild Species for Potato Breeding

During the early years of potato breeding, the work of breeders was focused only
on the domestic cultivated potato Solanum tuberosum L. Intraspecific crosses were not
sufficient to develop cultivars resistant to widespread pathogens and pests. The first
wild potato successfully crossed with S. tuberosum and then involved in the breeding
process was the Mexican species S. demissum Lindl. The work with wild potato was
initiated in 1908 by J. Broili and K.O. Muller, and led to development of so-called W-races
of potato. In 1934, the first cultivar with introgressions of wild potato germplasm was
developed. This Sandnudel cultivar contained genes of late blight resistance [12]. After
the Latin American expeditions of N.I. Vavilov (1925–1927, 1932) and the foundation
of the first wild potato germplasm collection, the new potato cultivars with different
resistance traits transferred from wild germplasm were developed. The N.I. Vavilov All-
Russian Institute of Plant Genetic Resources became the first potato genebank, providing the
opportunity for phenotyping of wild potato accessions, genotype selection, and interspecific
crosses [13]. Potato germplasm enhancement allows for development of new cultivars
harboring resistance to viruses, late blight, potato cyst nematode, Rhizoctonia disease,
etc. Some other important characteristics, such as starch content in tubers, resistance
to cold sweetening, high tuber solids, or abiotic stress resistance, can also be related to
introgressions from wild relatives [2,14].

Despite the progress in the development of resistant potato cultivars, the number of
wild genotypes involved in potato breeding is limited. According to our estimation, about
10% of 228 wild potato species (based on the taxonomical system of J.G. Hawkes [11]) are
involved in breeding [12,15,16]. Jansky et al. [14] reports on twelve of 107 wild relatives
in the pedigrees of European and North American cultivars. Independent researchers
acknowledge the great disparity between the large number of potential trait donors and the
limited success in their actual involvement in elite potato cultivar development [14,17,18].
Many species are still not sufficiently studied, and others with confirmed valuable traits
cannot be readily crossed with cultivated potato [2,19]. Other complications are the high
adaptive variation and unpredictable phenotypic plasticity within species, unclear species
boundaries, and, as a result, the great number of poorly described closely related accessions
in germplasm collections. The use of wild potato germplasm in breeding must be preceded
by phenotyping, genotyping, annotation, resistant genotype searching, and maintenance.
Every wild potato genotype can be considered to be a source of certain resistance or
other valuable traits, but not every genotype can be used as a trait donor [20]. The genes
controlling desirable characteristics are inherited together with genes defining negative
features, such as long stolons, small tubers, bitterness, photoperiod sensitivity, and short
dormancy [14]. The negative characteristics of potential donors are poorly described,
whereas most published research works are usually focused only on positive results. The
identification and description of negative properties is an important gap to be filled in wild
potato germplasm annotation. The long-term study of wild potato germplasm in the N.I.
Vavilov All-Russian Institute of Plant Genetic Resources (VIR) has focused on evaluation of
both positive and negative characteristics of wild potato accessions as potential trait donors.
Table 1 shows the examples of wild potato species from the VIR collection, involved in
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hybridization with cultivated potato and harboring a pool of agronomically important
properties coupled with undesirable characteristics.

Table 1. Valuable and negative traits of wild species involved in hybridization with cultivated potato.

Species Pathogen Resistance Desirable Characteristics
for Breeding

Undesirable
Characteristics
for Breeding

Reference

Series Bulbocastana (Rudb.) Hawkes

S. bulbocastanum Dunal

Synchytrium endobioticum
(Schilb.) Percival, Phytophthora
infestans (Mont.) Pectobacterium
carotovorum subsp. atrosepticum
(van Hall 1902) Gardan et al.,
Leptinotarsa decemlineata Say,
Epilacha vigintioctomaculata

Motschulsky., Globodera
rostochiensis Woll., Meloidogyne
chitwoodi Golden, O’Bannon,

Santo et Finley viruses:
PVX, PVY.

High starch content in
tubers (up to 37%)

Susceptible to Oospora
pustulans M.N.Owen et

Wakefield Bad tuberization
under long-day conditions

[21,22]

Series Commersoniana Bukasov

S. commersonii Dunal

S. endobioticum, Streptomyces
scabies (R. Thaxter), O. pustulans,
P. atrosepticum, G. rostochiensis, G.
pallida Stone, L. decemlineata, E.

vigintioctomaculata, viruses: PVY,
PVA, PVM.

High starch content in
tubers (up to 37%). Frost,

heat, drought tolerant
Small tubers [23]

Series Yungasensa Correll.

S. chacoense Bitter

S. endobioticum, G. rostochiensis,
G. pallida, L. decemlineata, E.

vigintioctomaculata, viruses: PVY,
PVA, PLRV.

No data Susceptible to P. infestans
and frost, long stolons [23,24]

Series Megistacroloba Card.et Hawkes

S. raphanifolium Cardenas
et Hawkes

Verticillium albo-atrum Reinke et
Berthold, V. dahlia Kleb. Frost, drought tolerant.

Susceptible to P. infestans.
Bad tuberization under

long-day conditions
[23]

S. megistacrolobum sabtax
toralapanum Cardenas

et Hawkes
Viruses: PVX, PVM, PLRV. Frost tolerant, Susceptible to P. infestans. [23]

Series Maglia Bitter

S. maglia Schltdl. S. endobioticum No data Susceptible to P. infestans. [23]

Series Tuberosa (Rudb.) Hawkes (wild species) i

S. verrucosum Schltdl.
P. infestans, Alteraria solani Ell. et

Mart., L. decemlineata,
E. vigintioctomaculata

High starch content Small tubers. [21]

Series Tuberosa (wild species) ii

S. multidissectum Hawkes S. endobioticum, P. atrosepticum,
G. rostochiensis. Frost tolerant Susceptible to P. infestans. [23]

Series Tuberosa (wild species) iii

S. berthaultii Hawkes
P. infestans, S. endobioticum P.
atrosepticum, G. rostochiensis,

L. decemlineata
No data No data [22–24]

S. kurtzianum Bitt. et Wittm.
ex Endl.

G. rostochiensis, L. decemlineata, E.
vigintioctomaculata, viruses:

PVX, PVY.

High starch content in
tubers (up to 28%).

Susceptible to P. infestans.
High SGA content [22,23,25]
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Table 1. Cont.

Species Pathogen Resistance Desirable Characteristics
for Breeding

Undesirable
Characteristics
for Breeding

Reference

S. microdontum Bitter

P. infestans, S. endobioticum
Meloidogyne hapla Chitwood, G.

rostochiensis, G. pallida, L.
decemlineata, viruses: PVY,

PVA, PVS.

Drought tolerant.

Susceptible to Clavibacter
michiganensis subsp.

sepedonicus (Spiekermann &
Kotthoff) Davis et al., black

leg disease. High
SGA content

[22–25]

S. vernei Bitter et Wittm.

P. infestans, S. endobioticum, A.
solani, Rhizoctonia solani (Kühn),
O. pustulans, P. atrosepticum, G.

rostochiensis, L. decemlineata;
viruses: PVX, PVY, PVA,

PVS, PVM.

Frost tolerant (up to −4 ◦C). Susceptible to High
SGA content. [22,23,26]

Series Acaulia Juz.

S. acaule Bitter
S. endobioticum, S. scabies, O.

pustulans, P. atrosepticum,
virus PVX.

Frost tolerant Bad tuberization under
long-day conditions [23]

Series Longipedicellata Buk.

S. fendleri A. Gray ex Torrey
syn. S. stoloniferum Schltdl.

P. infestans, A. solani, viruses:
PVY, PVX, PLRV.

High starch content in
tubers (up to 28%). No data [21]

S. polytrichon Rydberg syn.
S. stoloniferum Schltdl.

P. infestans, L. decemlineata,
P. atrosepticum, viruses:

PVY, PVA.

Tuberization under
long-day conditions No data [21]

S.× vallis-mexici Juzepczuk
et Bukasov

P. infestans, S. endobioticum,
P. atrosepticum No data Bad tuberization under

long-day conditions [21]

Series Demissa Bukasov.

S. demissum Lindley P. infestans, S. scabies
Frost, heat, drought tolerant.

High starch content in
tubers (up to 33%).

Small tubers [21]

3. Agronomically Important Genes of Wild Potato

The genetic study of wild potato has mainly focused on identification of so-called
R-loci and R-genes responsible for pathogen and pest resistance. Most identified R-loci are
related to late blight resistance. Late blight caused by the oomycete Phytophthora infestans
(Mont.) is the most harmful potato disease, and is capable of overcoming different control
strategies [27,28]. Introgression or transfer of R-genes from wild species to cultivated
potato provides field resistance to late blight and remains the most sustainable means of
pathogen control [29–31]. Virus and nematode resistance associated with known R-genes
from wild germplasm is also the focus of modern potato breeding [32,33]. Examples of
R-genes identified in wild potato species are given in Table 2.

Table 2. Mapped and identified genes for pathogen resistance in wild diploid potato.

Species Pathogen Resistance Mapped R-Loci
or Identified Genes Reference

Series Bulbocastana

S. bulbocastanum Dunal
Phytophthora infestans (Mont.)

Rpi-blb1 [34]

Rpi-blb2 [35]

Rpi-blb3 [36]

Rpi-bt1 [37]

Meloidogyne chitwoodi Golden, O’Bannon, Santo et Finley RMc1blb [38]
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Table 2. Cont.

Species Pathogen Resistance Mapped R-Loci
or Identified Genes Reference

Series Pinnatisecta (Rudb.) Hawkes

S. brachistotrichum (Bitter) Rydb P. infestans Rpi-bst1 [39]

S.× michoacanum (Bitter) Rydb. P. infestans Rpi-mch1 [40]

S. pinnatisectum Dunal P. infestans Rpi-pnt1 [41]

Series Circaeifolia Hawkes

S. capsicibaccatum Cardenas P. infestans Rpi-cap1 [42]

Series Yungasensa

S. chacoense Bitter

P. infestans Rpi-chc1 [43]

Virus PVY Ry chc [44]

Viruses: PVY, PVX Ny chc, Nx chc [45]

Series Megistacroloba

S. megistacrolobum Bitter Virus PVM Rm [46]

Series Piurana Ochoa(Piu)

S. paucissectum Bitter P. infestans QTLpcs10, QTLpcs11 QTLpcs12 [47]

Series Tuberosa (wild species) ii

S. mochiquense Ochoa P. infestans Rpi-moc1 [48]

S. sparsipilum Bitter
P. infestans Pi_QTLspr-1, Pi_QTLspr-2 [49]

Virus PVYc Nc spl [50]

Globodera pallida Stone Pa2, Pa3 Gpa Vsspl, Gpa XIsspl [51]

Series Tuberosa (wild species) iii

S. berthaultii Hawkes P. infestans Rpi-ber1
Rpi-ber2 [52]

S. microdontum Bitter P. infestans Rpi-mcd1 [53]

S. spegazzinii Bitter

P. infestans Pi_QTLspg [49]

G. rostochiensis Woll. Ro1-Ro5 Gro1, [54]

G. rostochiensis Ro1 Gro1-4 [55]

G. rostochiensis Ro1
G. pallida Pa2, Pa3

Gro1.2, Gro1.3, Gro1.4,
Gpa3 [56]

G. pallida Pa2, Pa3 GpaM1, GpaM2, GpaM3 [57]

S. venturii Hawkes et Hjerting P. infestans Rpi-vnt1.1 [58]

S. vernei Bitter et Wittm.
Virus PVX Rx vrn [59]

G. rostochiensis Ro1 GroV1 [60]

As mentioned above, wild species carry various beneficial properties in addition
to pathogen resistance, such as resistance to abiotic stresses and quality traits, but there
is not yet much information about the specific genes and alleles responsible for these
properties. Few reports describe QTLs or candidate genes for quality and abiotic stress
resistance. The S. commersonii Dunal genome sequence analysis revealed 126 cold-related
genes that are lacking in S. tuberosum. It is hypothesized that high expression of S. com-
mersonii galactinol synthase (GOLS1) in conjunction with the increased activity of the
cold-associated and -inducible proteins may contribute to the frost tolerance of S. com-
mersonii [61]. S. candolleanum Berth. genome sequence analysis revealed large differences
between wild potato and S. tuberosum. Many genes that were lost during domestication
are implicated in signal transduction pathways, such as the G-protein coupled receptor
(GPCR) signaling pathway. GPCRs are involved in plant responses to a wide range of biotic
and abiotic stresses [1]. Different end uses of potato cultivars require different ratios of
amylose and amylopectin in starch. Analysis of potato lines with high amylose content,



Agronomy 2022, 12, 462 6 of 13

which were generated by crossing with the wild potato species S. sandemanii Hawkes,
revealed that gene encoding isoamylase-type debranching enzyme Stisa1 is a candidate for
increased amylose phenotype [62]. Cold-induced sweetening resistance is an important
agronomic trait that defines the quality of tuber frying products (such as chips). Analysis of
the mapping population that was generated by crossing the susceptible cultivated potato
clone to the highly resistant wild relative (S. chacoense Bitter) clone revealed two QTLs for
resistance to cold-induced sweetening [63]. A high nutritional value of potato tubers is also
very important for consumers. A high folate diploid clone from the wild potato relative S.
boliviense Dunal was crossed with a low/medium folate diploid S. tuberosum clone. Anal-
ysis of progeny revealed SNP markers that have potential to be used in marker-assisted
selection for breeding high folate potato varieties [64].

4. Candidate Genes for Correction of Undesirable Traits in Wild Potato

Obviously the most differences between wild and domestic potato belong to genes
controlling domestication traits. Two major domestication traits in potato are reduction
in steroidal glycoalkaloid (SGA) content and tuberization under long-day conditions. Ac-
cumulation of steroidal glycoalkaloids is one of the main disadvantages of wild potato
species as trait donors. An example of an undesirable linkage between good quality and
high SGA content is the story of the Lenape cultivar. Release of the Lenape cultivar bearing
introgressions from S. chacoense was a starting point in breeding for processing quality
improvement. Lenape demonstrated much better chipping characteristics than all other
cultivars. However, due to high SGA content inherited from S. chacoense, it was removed
from commerce [65]. There are about 80 different SGAs found in potato species. Two major
SGA compounds found in tuber bearing Petota subsection species are alpha-chaconine
and alpha-solanine. SGAs play a protective role against pests and pathogens, and are also
toxic to humans [66]. The biochemical pathway leading to these compounds consists of
many enzyme-catalyzed steps and is regulated by a few key transcription factors [66,67].
The knockout of the key enzymes of the SGA synthesis pathway is one of the possible
strategies to reduce SGA content in wild potato. It was shown that targeted knockout of the
St16DOX gene encoding steroid 16α-hydroxylase prevents SGA accumulation in potato
hairy root culture [68], and knockout of the StSSR2 gene results in a decrease in cholesterol
and SGA, and has no effect on plant growth [69]. The EMS-induced mutations in other
genes encoding enzymes of SGA synthesis (including a few GAME genes, for glycoalkaloid
metabolism) were also associated with a decrease in SGA content [70]. Moreover, silencing
of genes connected with SGA biosynthesis, such as SGT1 and SGT2, that encode enzymes
catalyzing glycosylation steps in SGA biosynthesis [71], GAME4 [72], and the recently
identified dioxygenase-encoding DPS gene [73] led to a reduction in total SGA levels. The
de novo domestication approach involves modification of genes associated with domes-
tication. The domestication-related gene controlling SGA accumulation was identified
in multiple genome comparisons between wild and cultivated potato [10]. It encodes
APETALA2/Ethylene Response Factor (AP2/ERF) GAME9 (glycoalkaloid metabolism 9),
activating different genes controlling the SGA biosynthesis pathway [74]. Modification or
knockout of the GAME9 gene in wild potato is needed to verify the role of this transcription
factor in the domestication-associated SGA decrease in potato. Another SGA regulatory re-
gion was found in QTL analysis of the F2 population after crossing the cultured S. tuberosum
and wild S. chacoense species. It revealed a qSTF8 locus associated with SGA accumulation
in the tuber flesh of wild potato. A group of transcription factors genes co-expressed
with GAME genes was identified in the qSTF8 locus of S. chacoense [75]; these can also be
considered to be candidates for knockout in de novo domestication experiments.

A second trait strongly associated with domestication is tuberization in summer under
long-day and warm conditions [76]. Wild potato usually produces tubers late in autumn
during short days and at low temperature. The search for long-day associated genes in
domestic potato revealed a key regulatory gene for tuberization time control. StCDF1 gene
encoding CYCLING DOF FACTOR family protein acts between the circadian molecular
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clock and tuberization signal induction [77]. Late tuberization during a short day was
associated with the intact allele of this gene, and early tuberization under a long day
was associated with mutations leading to either a truncated gene product or modification
at the C-terminus. The result was confirmed in an experiment where overexpression of
the truncated allele caused the conversion from short-day to long-day tuberization in
potato [77]. Genome comparison between wild and domestic potato also showed that most
studied long-day potato varieties contain a truncated version of the CDF1 gene [10]. The
reconstruction of frameshift mutation leading to a premature stop-codon at the C-terminus
of the CDF1 gene product is the most obvious means to achieve the tuberization under
long-day conditions in wild potato. Another strategy to induce early tuberization is the
knockout of flowering repressor SELF-PRUNING 5G (SP5G) involved in tuberization
repression under long-day conditions [78]. The changes in the SP5G gene regulation in
domestic tomato are associated with day-length neutrality in comparison to late flowering
wild genotypes. Targeted knockout of the SP5G gene in day-length-sensitive tomato leads
to early flowering and compact plant architecture [79]. The same modification in wild
potato can potentially improve both tuberization time and plant morphology.

A serious barrier for successful crosses between wild and domestic potato is different
kinds of sexual incompatibility preventing either pollination or normal seed develop-
ment [4,80]. The only well-described incompatibility mechanism, known at genetic and
molecular levels, is self-incompatibility. Self-incompatibility is typical for many potato
species and prevents self-crosses and crosses with genotypes having the same alleles
of compatibility-controlling genes [4]. Self-incompatibility can be overcome using tar-
geted genome modification. It was shown that Cas9/gRNA-mediated knockout of the
S-RNase gene leads to generation of self-compatible potato [81,82]. The introduction of
self-compatibility alleles in wild potato germplasm prior to hybridization with domestic
potato will facilitate further self- and back-crosses in order to create homozygous lines or
achieve desirable trait introgression.

Other traits needed to be corrected in wild potato are associated with the growth
habit of stolons and tubers. Many wild potato species produce long stolons with small
tubers of different shapes and sizes, whereas domesticated potato has short stolons with
large uniform roundish tubers. The stolon architecture and tuber initiation are shown
to be controlled by gibberellic acid (GA) and cytokinins [83]. The GA20ox-1 gene shows
signatures of selection [1] and its expression change is associated with altered stolon ar-
chitecture [83–85]. GA20ox-1 is a candidate gene for modification in order to improve the
stolon architecture but, due to the pleiotropic effect of this gene, the effect of its modifica-
tion is impossible to predict. Tuber dormancy is an important characteristic because the
undesirable tuber sprouting or too-long dormancy period can seriously affect the potato
quality. Tuber dormancy and sprouting time are known to be regulated by environmental
factors and associated with different hormone signals, but key genes affecting this trait are
still to be identified [86]. QTLs have been identified for tuber shape and size control [1], but
key genes are not known and de novo domestication cannot yet be applied for these traits.

5. The Strategy for Trait Donor Improvement

The successful application of de novo domestication for trait donor improvement
requires three basic components: (i) known target genes and a means of their modification,
(ii) well-annotated wild potato genotypes with high donor potential, and (iii) a transfor-
mation platform to perform target modification. The current knowledge provides the
possibility of only a few basic modifications related to domestication traits in potato. The
number of known genes controlling undesirable characteristics is limited. Nevertheless,
the genes responsible for major domestication traits are identified and can be artificially
modified. The first step in application of the de novo domestication approach for wild
potato should be the experimental validation of the candidate gene modification effects.
The most phenotypically valuable target genes will form a basic set of targets for donor im-
provement. Genome editing methods based on RNA-guided Cas endonucleases require the
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selection of a genomic target site for each precise modification. Because the potato species
are phylogenetically close to each other, it should be possible to select target sites conserved
across many potato species and use the same guide RNAs to modify the same genes in
different genotypes. The modular gRNA set for customized improvement of selected traits
can serve as a domestication toolkit enabling the correction of specific undesirable traits in
the selected genotype (Figure 1a).
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ents cannot be easily assessed by massive screenings. An even more complicated issue 
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Figure 1. De novo domestication strategy for wild potato. (a) The candidate genes for modification
and expected improved phenotypes. S-RNase—Self-incompatibility RNase, GA20ox-1—Gibberellic acid 20
oxidase 1, SP5G—SELF-PRUNING 5G, CDF1—CYCLING DOF FACTOR 1, GAME—GLYCOALKALOID
METABOLISM; (b) Scheme of de novo domestication strategy from general approaches to precise
experimental design.

Due to high diversity of wild potato accessions, the genotype selection is the next
question to address. A wide research dataset is available for valuable traits of wild potato
species, but only a small portion of genebank accessions have been tested comprehensively
and, in most cases, the genetic regulation and phenotypic plasticity of studied traits remain
elusive. Revision and systematization of existing data from different databases and early
published work may be sufficient to reveal accessions with high donor potential. The bottle-
neck for scaled improvement of wild potato germplasm is in vitro regeneration and genetic
transformation. Few reports of regeneration system establishment and successful genetic
transformation are available for wild potato species [87–89]. It is difficult to predict the
efficiency of genome modification methods for different genotypes; hence additional efforts
are required to estimate the general amenability of wild potato for genetic transformation.
It can be concluded that current knowledge allows only proof-of-concept experiments for
potato de novo domestication. Scaled application of the approach in breeding requires the
pipeline development to advance all three components of the technology (Figure 1b).

The approaches for further development of the de novo domestication concept have
been discussed in a few recent reviews [5,90–92] The integration of multiomics data (tran-
scriptomics, proteomics, and metabolomics) together with pan-genome assembly will
accelerate the identification of domestication-related and trait-controlling genes. A high-
throughput phenotyping pipeline based on dynamic fixation of multiple parameters and
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wide application of automated imaging systems will define the best genotypes for de novo
domestication. Modern imaging and image-processing technologies allow the mining of
such characteristics as overall growth habit, stress resilience, rate of photosynthesis, and
productivity [5]. Unfortunately, the pathogen resistance or specific biochemical constituents
cannot be easily assessed by massive screenings. An even more complicated issue relates to
the development of a universal transformation and regeneration platform. Most biotechno-
logical methods related to genetic transformation or genome editing are genotype specific.
The development of new approaches aiming to overcome genotype dependency is one
of the main problems in modern plant biotechnology [93]. The proposed integration of
different approaches for scaled potato germplasm enhancement is greatly hindered by
insufficient annotation of genebank collections and low data availability. Integrated efforts
of world genebanks are needed to create transparent, comprehensive, and user-friendly
databases accumulating all information about genes, phenotypes, and transformation meth-
ods for wild potato germplasm. Such databases will be instrumental for practical breeders
working on potato germplasm enhancement and the development of new potato cultivars.

6. Conclusions

The nature of potato as a vegetatively propagated tetraploid crop causes specific prob-
lems in breeding, such as loss of genetic diversity and accumulation of deleterious alleles.
The need of new genetic material in potato germplasm is very high. Here, we propose
a pre-breeding strategy for wild donors, which includes their description and analysis,
followed by the selection of appropriate donors and modification of their undesirable traits
with targeted genome editing. In this review, we provide information about positive and
negative characteristics of wild potato species. The data were collected during a long-term
study by VIR, some of which was not previously published in English. The state-of-the-art
de novo domestication concept for potato wild relatives includes modification of only a
few genes because there is still a lack of research data relating to both wild potato genetics
and phenomics. However, we believe that application of the concept for wild relatives
can greatly facilitate the process of valuable trait transfer from wild to cultivated potato.
Modification of few domestication-trait-related genes may solve the linkage drag prob-
lem and improve such characteristics as high SGA content, day-length sensitivity, growth
habit, and self-incompatibility. The application of de novo domestication technology for
donor improvement is complicated by insufficient annotation of genebank collections.
An integrated approach including multiomics, precise phenotyping, and development of
biotechnological methods can provide sufficient resources for routine application of the de
novo domestication concept for potato germplasm enhancement.
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