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Abstract: The three-dimensional (3D) morphological structure of wheat directly reflects the inter-
relationship among genetics, environments, and cropping systems. However, the morphological
complexity of wheat limits its rapid and accurate 3D modelling. We have developed a 3D wheat
modelling method that is based on the progression from skeletons to mesh models. Firstly, we
identified five morphological parameters that describe the 3D leaf features of wheat from amounts of
3D leaf digitizing data at the grain filling stage. The template samples were selected based on the
similarity between the input leaf skeleton and leaf templates in the constructed wheat leaf database.
The leaf modelling was then performed using the as-rigid-as-possible (ARAP) mesh deformation
method. We found that 3D wheat modelling at the individual leaf level, leaf group, and individual
plant scales can be achieved. Compared with directly acquiring 3D digitizing data for 3D modelling, it
saves 79.9% of the time. The minimum correlation R2 of the extracted morphological leaf parameters
between using the measured data and 3D model by this method was 0.91 and the maximum RMSE
was 0.03, implying that this method preserves the morphological leaf features. The proposed method
provides a strong foundation for further morphological phenotype extraction, functional–structural
analysis, and virtual reality applications in wheat plants. Overall, we provide a new 3D modelling
method for complex plants.

Keywords: three-dimensional modelling; mesh deformation; wheat; morphological leaf features;
3D digitization

1. Introduction

Plant growth and development are predominantly reflected by the plants’ morpholog-
ical structures and are significantly affected by several factors such as the type of cultivar,
the growth period, and environmental parameters, as well as the cultivation and manage-
ment measures. The rapid and accurate quantification of plant morphological structures
is of great significance in plant science [1]. The one-dimensional (1D) parameters such
as plant height, plant coverage, leaf area index, leaf length, and leaf angle that are used
to characterize the morphological and structural characteristics of plants present unique
limitations. These parameters mostly describe the morphological structure of the plants,
which does not reflect the three-dimensional (3D) morphological details of plant organs.
The 3D modelling of plants integrates the morphological and structural characteristics
of the plants using computer graphics, achieving the high-resolution reconstruction of
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the morphological structure of plants in the 3D space [2]. The 3D modelling of plants
analyzes the phenotypic and morphological structure of plants with high precision and
is critical for plant research and application [3,4]. However, the 3D modelling of plants
has always been a challenging problem due to the complex morphological structure of
plants and the stringent requirements of different applications for reconstruction accuracy
and photorealism [5,6].

Wheat is a food crop that is farmed globally. Given the complex plant morphology,
multiple tillers, and serious cross-occlusion between organs, the 3D modelling of wheat
faces many challenges. The current 3D simulation and reconstruction of wheat plant
morphology can be divided into three categories: the mathematical modelling method, the
skeleton-driven method, and reconstruction using point cloud and 3D digitization data.
The mathematical modelling method mainly utilizes manually measured data to construct
mathematical equations for wheat organs that realize the 3D simulation of wheat. For
example, 3D models that are based on OpenAlea or ADEL-Wheat [7,8] of individual plants
and populations of wheat at different periods have been developed [9,10]. This model can
be used to simulate the canopy structure-related phenotypic parameters, calculate the light
distribution, and simulate the growth dynamics of wheat. However, the model can only be
used to distinguish the overall morphology of wheat plants in different periods but cannot
reflect the detailed morphology of wheat leaves and morphological differences among
cultivars. The skeleton-driven method can realize the 3D modelling of the wheat leaves
and plants by constructing vein equations or using vein information that was extracted
from the 3D point cloud [11] combined with leaf simulation modelling methods such as the
non-uniform rational b-splines (NURBS) surface [12,13], thus it can incorporate the crimp
and twist characteristics of wheat leaves [14–16]. Though preserving the main topological
structure of the wheat plants, the existing methods require many control points in order to
simulate the 3D morphological characteristics of the leaves, especially the twisting property
of the leaves [14]. The reconstruction methods mainly use 3D point cloud data of the
plants in order to reconstruct the 3D model of the plants through point cloud denoising,
segmentation, and reconstruction [17–20]. Compared with the previous two kinds of
methods, 3D reconstruction is highly automated and the reconstructed 3D models are
more accurate and realistic [21,22]. In particular, point cloud data combined with discrete
smoothing, D2-spline, and other surface fitting methods achieve the 3D reconstruction
of wheat leaves with twisting characteristics [23]. However, they can only distinguish
the overall morphology of the wheat plants in different periods but they cannot reflect
the detailed morphology of the wheat leaves and the morphological differences among
cultivars. Meanwhile, they rely on high-quality 3D point cloud data of each leaf and it is
still difficult to achieve the high-throughput acquisition and segmentation of a 3D point
cloud in wheat plants [24]. In general, the above methods do not achieve accurate 3D
modelling of wheat leaves of different shapes due to the large tillers and serious cross
occlusion that are present in wheat plants. The 3D digitization method is still the most
accurate means of the 3D simulation of multi-tiller crops [25]. However, the efficiency of
3D digitizing is low. Therefore, it is urgent to improve the efficiency of the 3D modelling of
multi-tiller crops by integrating existing knowledge of 3D digitization.

The leaf is an important structural and functional organ for plants. Leaf morphology
varies between cultivars, the leaves’ positions on the plant, and the growth period, among
other variables. Thus, it is important to describe these differences quantitatively. The
traditional measurement methods that use parameters such as the leaf length, leaf width,
leaf area, leaf angle, and azimuth angle to distinguish the differences between leaves are
relatively unsatisfactory. Zhang et al. [26] proposed the use of parameters such as leaf
angle and leaf curvature in order to describe the two-dimensional (2D) morphological
characteristics of maize veins. Jin et al. [27] proposed parameters such as leaf height,
projected leaf area, and leaf volume in order to describe the morphological leaf features
of maize, which were used to estimate the biomass of maize plants in different periods.
Fournier et al. [8] accurately described the birth direction and the vein spatial curve of
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wheat leaves and the precise position of the leaves in 3D space by using the 3D digitizer.
Yang et al. [28] predicted different leaf shapes using leaf and elevation angles as well as
curvature. These studies show that the 3D leaf morphology can be represented by both the
size and the 3D space posture indices of the leaf. However, a systematic index system that
can simulate the morphological variations of different wheat cultivars is currently lacking.

A 3D model that can reflect the morphological differences among cultivars in the same
species can effectively establish the relationship between plant 3D modelling technology
and plant breeding, cultivation, and application. In recent years, researchers have devel-
oped a rapid 3D modelling method that can realize cultivar differences in corn [29] and
other crops. However, to the best of our knowledge, no research has distinguished wheat
plant type among cultivars, especially leaf shape differences.

To address the 3D wheat modelling challenges of improving the efficiency under the
condition of ensuring accuracy, a wheat modelling method that is based on morphological
leaf features and deformation was proposed. The specific objectives of this study involve:
(1) identifying the 3D morphological features and quantitative estimation methods of wheat
leaves among cultivars, and (2) realizing the 3D modelling or simulation of wheat leaves
and individual plants for varied cultivars using 3D morphological leaf parameters.

2. Materials
2.1. Experiment Design

This experiment was performed at the Beijing Academy of Agriculture and Forestry
Sciences, Beijing (N39◦56′, E116◦16′). The winter wheat was planted from 2020 to 2021.
A total of 60 wheat cultivars with marked morphological leaf differences were used. Each
wheat cultivar was planted on a separate plot measuring 2.25 m × 1.5 m. The planting was
performed on 4 October 2020. The spacing between the rows and plants was 0.2 m and
0.05 m, respectively. The features of the morphological parameters were collected in early
May 2021, when the wheat plants were at the grain filling stage in which the morphological
development of the wheat cultivars had stabilized.

2.2. Data Acquisition

The morphological and structural data of the wheat at the grain filling stage were
collected between 12 and 20 May 2021. The whole wheat plants were transplanted to
pots and moved indoors. The 3D digitizing data of the aboveground parts of the wheat
cultivars were collected using MicroScribe i (Figure 1a). Three replicas were collected
for each cultivar. The complete 3D digital data of all of the leaves of a given plant were
obtained for the cultivars with large morphological differences. For the remaining cultivars,
we only collected the data of leaves on the main stem and one tiller, and only the leaf
skeleton of the remaining tillers.

Figure 1. (a) The 3D digital data acquisition instrument; (b) The specific data captured; (c) The
extracted leaf skeleton.
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The data acquisition specifications [30] were as follows:

(1) Stem: the stem thickness around the root area, at several coordinate points from top
to bottom, and at the point between the last leaf and the stem were recorded.

(2) Leaf: three coordinate points at the left edge, leaf vein, and right edge of the wheat
in each row along the growth direction, in the same direction, were obtained. The
data were captured for the areas between the leaf nodes to the leaf tip (Figure 1b). The
distances between the measurement rows were with similar intervals and included
features that can reflect the morphological parameters and changes of the leaves.

The extracted leaf skeleton data is shown in Figure 1c. Figure 1 shows the instruments
that were used for capturing the relevant data and the specific data that were collected.

In this experiment, complete leaf data was captured from 15 cultivars (45 plants),
whereas complete data of a leaf on the main stem and one tiller and leaf skeletons on other
tillers were captured from the remaining 45 cultivars (135 plants). In the end, 3D digital
data were collected for 2775 leaves in total (Table 1).

Table 1. Summary of the type and quantity of data collected.

Complete Plant

Complete Leaves of
the Main Stem and
a Tiller with Leaf

Skeletons on
Other Tillers

Summation

Number of cultivars 15 45 60
Number of plants 45 135 180
Number of stems 342 270 612

Total number
of leaves 1549 1226 2775

3. The 3D Modelling of Wheat
3.1. Overview

The 3D modelling method was based on the leaf or plant skeleton and leaf mesh
template data through three steps (Figure 2). First, the morphological leaf parameters
were calculated. The leaf template selection comprised the clustering of the leaf data,
weight determination of the 3D parameters, and generating a typical leaf template database;
template selection then followed. The vein-driven mesh deformation method involved
the template calling, rotation, scaling, and translation of the leaf templates, leaf vein curve
resampling, and mesh deformation using ARAP.

Figure 2. Overall flow chart of wheat 3D modelling method.
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3.2. The Special 3D Morphological Leaf Features of Wheat

The quantitative characterization of the 3D spatial morphological characteristics of
wheat leaves was determined to systematically and comprehensively characterize the
differences between the various wheat cultivars, including the leaf size ratio, maximum
leaf width position, leaf sag, leaf bending, and leaf twisting. Among them, the leaf size
ratio and maximum leaf width position describe the relationship between the change in
leaf width and leaf length, whereas leaf sagging and leaf bending describe the change in
the morphological leaf features along the leaf vein direction. Leaf twisting describes the
change in the leaf surface that is perpendicular to the leaf vein direction. Table 2 highlights
how the important parameters of the five 3D morphological leaf features were calculated.

Table 2. Calculating specific parameters of the five morphological leaf features.

Parameter Identifier The Parameter of the
Morphological Feature Calculation Formula Schematic Diagram

Leaf size ratio Fratio

The ratio of the maximum
leaf width to the leaf’s

length, dependent on the
maximum leaf width

Fratio = maximum leaf
width/leaf length

Maximum leaf
width position Fwpos

The proportion of the
maximum leaf width,

dependent on the maximum
leaf width

Fwpos = current leaf
length from maximum
leaf width to leaf birth

point/leaf length

Leaf sag Fsag

The overall sagging radian of
the leaf based on the position

where the drooping point
appears on the leaf’s vein

Fsag = distance from
the highest point of the

leaf to the tip
point/leaf length

Leaf bending Fbend
The overall bending radian

of the leaf, dependent on the
height of the highest point

Fbend = 1-distance from
the birth point of the

leaf to the tip
point/leaf length

Leaf twisting Ftwist

The overall twisting degree
of the leaf, dependent on the

trend in the change of the
leaf vector

Ftwist = the absolute
value sum of rotation

angle increment
connected by the left
and right edge points
of the leaf along the
vein direction/360◦

3.3. Leaf Template Selection Method Based on Parameters of Morphological Leaf Feature
3.3.1. Leaf Template Standardization

A total of 2775 points of leaf data were standardized in order to generate a leaf template
database. The leaf template standardization was performed in three steps:

(1) Data normalization: the leaf was first translated to the position where the birth point
of the vein coincides with the origin. The (angle) vector that is formed by the third vein
point and the origin is considered to be the leaf growth direction vector

⇀
g . The angle

α between the projection vector
⇀
gz of

⇀
g on the XOY plane and the positive direction

of the X-axis was then calculated. All of the data points of the leaf α angles were then
rotated around the Z-axis so that the birth and growth directions of all of the leaves
were consistent with the positive direction of the X-axis.

(2) Triangulation: a triangular mesh model was then generated according to the corre-
sponding rules from the normalized 3D digitizing data of the leaves [29].
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(3) Mesh subdivision: for the leaves with a triangular mesh, the Loop mesh subdivision
method [31] was used in order to refine the mesh of each leaf, which was ideal for
selecting the best control points during the templates’ deformation. For the wheat
plants, the best effect was achieved after subdividing the iterative leaf two times.

3.3.2. Leaf template Selection Method

For the 3D modelling of wheat leaves, selecting a leaf template with close resemblance
to the target cultivar needs to be performed [32]. Thus, the number of iterations can be
reduced as much as possible, whilst retaining the leaf’s morphological features, including
the cultivar differences. Due to the difference in the leaf size ratios and the twisting of
leaves at different positions, it was necessary to classify the leaves in the selection of
templates according to this parameter. Five morphological leaf parameters, including leaf
size ratio, maximum leaf width position, leaf sag, leaf bending, and leaf twisting were
the main factors determining the leaf shape. The principal component analysis (PCA)
and dimension reduction were carried out for the five leaf parameters of all of the leaves,
then the K-means algorithm was used for the clustering analysis. Accordingly, the flag
leaf, middle leaves, and first leaf were clustered into two categories, nine categories, and
three categories, respectively (Figure 3). The leaves with typical shape characteristics were
selected from the 14 categories in order to build a leaf template database that was useful
for selection in the subsequent leaf deformation process. Table 3 shows the key values of
the five morphological leaf features and the total number of leaves of each cluster at the
different leaf positions.

The clustering results show that the leaf size ratio and maximum leaf width position are
not key clustering parameters and that the significance of the remaining three parameters
on the leaf shape varies. To a certain extent, leaf sag affects leaf bending and leaf twisting
is mainly related to the cultivar’s characteristics but not strongly related to leaf sag and
leaf bending. Thus, the similarity function that was used to search for the most similar
leaf template in the database with a pre-modeled leaf vein curve was defined based on the
morphological leaf features and numerical experiments (Equation (1)):

ui = 0.75(0.9
∣∣∣Fsag

i − Fsag
j

∣∣∣+0.1
∣∣∣Fbend

i − Fbend
j

∣∣∣) + 0.25
∣∣∣Ftwist

i − Ftwist
j

∣∣∣ (1)

where i represents the serial number of the pre-modeled veins and j is the serial number
of the leaf templates in the leaf template database. For the pre-modeled leaf vein curve,
leaf sagging and leaf bending could be calculated according to the leaf vein curve data.
Combined with the leaf twisting, all of the leaf templates in the template database were
traversed and the similarity u corresponding to the leaf and each template in the template
database was calculated. The template with the smallest u (the most similar leaf template)
was selected for this vein call for subsequent vein-driven mesh deformation. If the newly
added cultivar leaves did not match the existing template then a new leaf template was
added to the template database.

Table 3. The central value of leaf clusters (Figure 3) based on five morphological parameters of leaves.
Note: u is the similarity for further leaf matching, see Equation (1).

Clustering Group Leaf Position Fsag Fbend Ftwist Fratio Fwpos Number
of Leaves u

1 Flag leaf 0.01 0.01 0.37 0.20 0.38 418 0.10
2 Flag leaf 0.86 0.02 0.44 0.16 0.38 122 0.69
3 Middle leaves 0.01 0.05 0.48 0.08 0.40 232 0.13
4 Middle leaves 0.02 0.08 0.78 0.08 0.39 227 0.18
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Table 3. Cont.

Clustering Group Leaf Position Fsag Fbend Ftwist Fratio Fwpos Number
of Leaves u

5 Middle leaves 0.42 0.21 0.62 0.09 0.43 192 0.47
6 Middle leaves 0.50 0.55 0.65 0.08 0.47 252 0.56
7 Middle leaves 0.50 0.55 0.88 0.09 0.46 172 0.61
8 Middle leaves 0.62 0.50 0.71 0.08 0.38 122 0.68
9 Middle leaves 0.64 0.42 0.95 0.08 0.37 150 0.58

10 Middle leaves 0.79 0.16 0.89 0.08 0.39 188 0.77
11 Middle leaves 0.82 0.17 0.58 0.09 0.40 160 0.81
12 First leaf 0.10 0.17 0.62 0.09 0.38 54 0.24
13 First leaf 0.80 0.28 0.90 0.07 0.42 181 0.79
14 First leaf 0.87 0.23 0.65 0.08 0.43 305 0.77

Figure 3. Leaf clustering results based on five morphological leaf parameters. (a)–(c) are the clustering
results of flag leaf, middle leaves, and first leaf, respectively. Dimension 1 and Dimension 2 are the
two principal components in PCA and each circle is a cluster category. Different colors are used to
distinguish the clusters.

3.4. Leaf Mesh Deformation Method Based on ARAP
3.4.1. ARAP Method

The mesh deformation method refers to a modelling method that gradually changes
the mesh shape by switching the position of the control points in the mesh to resemble the
target shape. The ARAP (as-rigid as-possible) deformation method [33] is a commonly used
mesh deformation approach that achieves mesh deformation based on the iterative process
of “deformation, local rotation, re-deformation”. During deformation, the method only uses
translation and rotation data to transform each local element and ensure a minimum change
of the local features during the whole deformation process so that the morphological details
of the object are maintained to the maximum. The primary role of the ARAP algorithm is
to form a rigid deformation element by combining the edges of the vertices of the mesh
with the edges of the neighboring vertices. All of the deformation elements update the
mesh by overlapping and covering the mesh during the deformation process. The rigid
transformation process of a deformation element C to C′ (Figure 4) is expressed as shown
in Equation (2) below:

p′i − p′j = Ri
(

pi − pj
)
, ∀j ∈ N(i) (2)

where pi is a model vertex and pj is a neighboring vertex of pi. The variables p′i and p′j
are the deformed vertices of pi and pj, respectively. Ri is the rotation matrix in the rigid
transformation process, whereas N(i) represents the index of neighboring points of pi.
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Figure 4. Rigid transformation of a deformation element.

During deformation, the minimization energy function is used to increase the rigidity of
the model as much as possible and to retain the local characteristics. Equation (3) is a quadratic
energy function, whose process is a weighted example of a shape matching problem:

E
(
Ci, C′i

)
= ∑

j∈N(i)
wij ‖

(
p′i − p′j

)
− Ri

(
pi − pj

)
‖2 (3)

where Ci and C′i are the deformation elements corresponding to the model vertices pi and
p′i before and after deformation, respectively, and wij represents the weight of the edge
eij =

(
pi, pj

)
. Given the rotation matrix, we let the derivative of the energy function be

equal to 0, then the value of p′ when the function obtains the minimum value can be
calculated. In the next iteration, the optimal rotation matrix Ri can be obtained by taking
p′ as a known quantity. This is repeated until the energy error is less than the expected
threshold value. At this point, the deformation process is completed.

3.4.2. Vein-Driven Leaf Mesh Deformation Method

The 3D modelling of the wheat leaves was based on the input of pre-modeled leaf
veins and data on the leaf’s morphological features, including the leaf width and leaf
twisting, according to the leaf position. The leaf template with the highest similarity was
called from the template database in the near leaf position and deformed to fit the target
vein using the ARAP method through the vein-driven leaf mesh deformation method. The
method can be divided into four parts (Figure 5): (1) Template calling; (2) Scaling of the leaf
template according to the leaf length and leaf width of the target leaf before moving it to the
birth point of the leaf; (3) Resampling the vein curve and establishing the corresponding
relationship of the control points; and (4) Mesh deformation of the leaf based on ARAP.

Figure 5. The vein-driven leaf mesh deformation process. (a) Template calling; (b) Scaling and
translation; (c) Leaf vein curve resampling; (d) Mesh deformation based on ARAP.

(1) Template calling (Figure 5a). This involved calculating the similarity u between the
veins of the target leaf and each template in the leaf template database, based on the
input vein information of the pre-modeled cultivar, after which the most similar leaf
template was selected for subsequent deformation.

(2) Scaling and translation (Figure 5b). This involved normalizing the template leaves
through data processing. Ideally, the base points of all of the leaves were located at
the origin and the growth direction along the X-axis is positive. By directly scaling
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the x, y, and z coordinates of all of the points of the leaf template data, the lengths and
widths of the template and the target leaf became equal. Where the scaling ratio of x
and z coordinates β = l1/l0, and the scaling ratio of y coordinate γ = w1/w0, l1, l0,
w1 and w0 are the length and width of the target and template leaf. After scaling, the
template leaf was moved to the position where the birth point coincides with that of
the target leaf.

(3) Leaf vein curve resampling (Figure 5c). In order to establish the one-to-one correspon-
dence between the target leaf’s vein and control points of the template leaf’s vein, the
input vein curve was resampled. The input vein curve was resampled according to
the accumulated chord length of the selected template leaf while ensuring that the
length of each section was consistent with the length of the template leaf.

(4) Mesh deformation based on ARAP (Figure 5d). The vertices of the template leaf’s
veins were taken as control points, while the corresponding control points of the target
veins were taken as target positions. The leaf mesh was then iteratively deformed. In
each deformation process, a control point was selected as the moving control point
through the transverse leaf section and the leaf base point and the control point that
generated the displacement were used as the fixed control point. The control point
was moved to the target position but the fixed point remained unchanged. Finally, the
ARAP method was used for the mesh deformation after all of the vertices of the mesh
were updated. The deformation of the whole leaf was considered to be completed
when all of the vein control points were traversed. Figure 6 shows the pseudocode of
the leaf mesh deformation that was driven by the leaf veins.

Figure 6. Pseudocode of vein-driven leaf mesh deformation. The keywords and function names are
in bold in pseudocode.

Where the mesh is the template leaf’s mesh, V and W are arrays of vein control points
for establishing corresponding relationships between the template leaf and target leaf,
respectively, P, Q, and O are the arrays of moving control points, fixed control points,
and all vertices of the mesh, respectively, n is the number of control points, and iter is the
maximum number of iterations in a single ARAP deformation process.

3.5. 3D Modelling of the Wheat Leaf Group

The 3D modelling of the wheat leaf group mainly used the leaf mesh deformation
method based on ARAP. The cylinder, which simulated the stem by corresponding to its
thickness and height, was generated according to the 3D digital data of coordinate points.
Finally, the mesh was painted with different colors to reflect the different wheat organs.
Using the 3D model, the phenotypic parameters such as leaf length, leaf width, leaf area,
leaf size ratio, maximum leaf width position, leaf sag, leaf bending, and leaf twisting of
wheat could be calculated.
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3.6. Accuracy of the 3D Model

The accuracy of the 3D model in predicting the leaf-related parameters was evaluated
using the root mean square error (RMSE) and R-squared (R2).

(1) RMSE is the square root of the average error between the actual and predicted values
(Equation (4)).

RMSE =

√√√√√ n
∑

i=1
(actuali − predictedi)

2

n
(4)

(2) R2 is the model fitting degree between the actual and the predicted values (Equation (5))
and ranges between 0–1.

R2 =

n
∑

i=1
(predictedi −Mean)2

n
∑

i=1
(actuali −Mean)2

(5)

where Mean is the mean value of the actual value (Equation (6)).

Mean =

n
∑

i=1
actuali

n
(6)

4. Results
4.1. Statistical Analysis of Morphological Leaf Features

The numerical distribution of the morphological leaf parameters, including leaf size
ratio, maximum leaf width position, leaf sag, leaf bending, and leaf twisting, were statisti-
cally analyzed at different leaf positions based on the obtained data from the 2775 wheat
leaves (Figure 7). The leaf sag, bending, and twisting within 0–0.9 with each increase of
0.1 step size are shown in Figure 8 (from left to right). The ordering results showed that the
leaf sag increased in the clockwise direction, the leaf bending decreased in the clockwise
direction, and the leaf twisting increased in the ordinate direction.

The association analysis was conducted based on the distribution of the morpho-
logical leaf features at the different leaf positions and the leaf clustering results of the
five parameters (Table 3). The following results were found:

(1) The morphological leaf parameters had different effects on the wheat leaf’s shape.
The leaf size ratio and maximum leaf width position had an insignificant effect on the
clustering results of each leaf location, consistent with the clustering results of leaf
sag, leaf bending, and leaf twisting.

(2) The morphological leaf parameters were related. (1) For instance, leaf bending was
highest when leaf sag was between 0.4 and 0.6 and decreased to both ends. (2) Leaf
twisting increased with increasing leaf bending. (3) The clustering results of the
middle leaves showed similar leaf sag categories, except for the fifth category. Leaf
bending was similar in each of the two similar categories. However, leaf twisting was
smaller in one category and larger in another category. These results indicate that leaf
twisting is not directly correlated with leaf sag. In contrast, leaf twisting was related
to the features of cultivars.

(3) The morphological leaf features were significantly different at the various leaf posi-
tions. (1) The leaf size ratio of the flag and middle leaves was about 0.18 and 0.08,
respectively, indicating that the middle and first leaves were more slender than the
flag leaf. (2) The maximum leaf width position was similar at the various leaf posi-
tions. The maximum leaf width appeared from 3/7 to 1/2 of the leaf length from the
leaf birth point. The maximum leaf width position of the flag leaf and some cultivars
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with larger leaf widths moved towards the direction of the leaf birth point. (3) The
leaf sag of the flag leaf was mainly distributed in two into maximum and minimum
based on the characteristics of either the upright or drooping habit of the different
cultivars. The middle leaves had different degrees of distribution in each interval. The
first leaf was drooping and mainly distributed at about 0.8. Only a few cultivars with
upright leaves had lower leaf sag. (4) The flag and first leaves were mostly upright or
drooping, indicating minimal leaf bending mainly below 0.1. The morphology of the
middle leaves was diversified and distributed in each interval above 0.1. (5) The leaf
twisting was similar in each interval based on the features of the cultivars. Specifically,
the leaf twisting of the flag leaf was mainly below 0.5 and the leaf twisting of the
middle leaves and first leaf were above 0.5.

Figure 7. Distribution of the five morphological leaf parameters at different leaf positions. (a)–(e) are
the leaf features distribution of leaf size ratio, maximum leaf width position, leaf sag, leaf bending,
and leaf twisting, respectively.

Figure 8. Leaf sequencing results of leaf sag (a), bending (b), and twisting (c).
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4.2. Individual Leaf Mesh Deformation Results

The deformation process of six typical leaves, which were selected based on the leaves’
morphological features in order to evaluate the effect of vein-driven leaf mesh deformation,
is shown in Figure 9. The deformation process included the input target vein and its
matched template leaf (Figure 9a), and the comparison result of the deformation with
only one leaf tip point as the control point (Figure 9b), as well as the results of 5 iterations
(Figure 9c), 10 iterations (Figure 9d), and the final results of the deformation with all of the
control points of the leaf veins (Figure 9e). The results showed that the mesh deformation
that used all of the control points was closer to the shape of the target leaf than that which
used only one control point of the leaf tip. Moreover, the local characteristics of the leaves
could be maintained by deforming one control point on the veins at a time.

Figure 9. Mesh deformation process and results of six typical leaves. (a) Target vein and matched
template leaf; (b) Using only one control point at the leaf tip; (c) Five iteration results; (d) Ten iteration
results; (e) Final results.

4.3. 3D Modelling Results of Wheat Leaf Group
4.3.1. Visualization Results

The 3D modelling method was evaluated using six wheat cultivars, including Zheng-
mai 618 (ZM618), Jimai 106 (JM106), Xinong 979 (XN979), Jimai 44 (JM44), Zhongxinmai
09 (ZXM09), and Huacheng 3366 (HC3366), with typical plant and leaf shape differences.
The wheat modelling was conducted using the information regarding stems and veins
that was extracted from the obtained 3D digitizing data of the whole plant as the input
and leaf template database. The 3D modelling results of the wheat plants at the filling
stage (excluding the wheat ears; mainly the plant leaves) and the comparison with the
corresponding 3D digital original data of the plant are shown in Figure 10. The visualiza-
tion results showed that the 3D model of the wheat plant that was obtained by using this
method was similar to the original 3D digitizing data in terms of the plant type and leaf
shape. Meanwhile, the modelled leaves were smoother and could reflect the leaf drooping
and bending characteristics of various cultivars. The 3D modelling of wheat can intuitively
solve the severe occlusion of wheat leaves and reflect the characteristics of the plant types,
leaf shapes, and cultivar differences of wheat.
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Figure 10. Comparison between modelling results and 3D digitizing data of six wheat cultivars.
(a)–(f) are the modeling and comparison results of ZM618, JM106, XN979, JM44, ZXM09, and HC3366,
respectively.

4.3.2. Precision Analysis of 3D Modelling Results

The leaf length, width, and area of all of the leaves of the six wheat cultivars were
extracted based on the measured 3D digitizing data and modelling leaves in order to
evaluate the modelling accuracy of this method (Figure 11). The length, width, and area of
the modelled leaves were similar to the parameters from the measured data (R2 0.96, 0.99,
and 0.97, respectively, and RMSE 0.70 cm, 0.04 cm, and 0.99 cm2, respectively).

Figure 11. Comparison between extracted and measured parameters of six wheat cultivars. (a) Com-
parative result of leaf length; (b) Comparative result of leaf width; (c) Comparative result of leaf area.
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The leaf size ratio, maximum leaf width position, leaf sag, leaf bending, and leaf
twisting of the modelled leaves were calculated in order to further evaluate the retention
degree between the wheat leaf modelling results and the morphological leaf features of each
cultivar (Table 4). The R2 of the five parameters was 0.97, 0.91, 1, 0.98, and 0.97, respectively,
and RMSE was 0.01, 0.01, 0.02, 0.02, and 0.03, respectively. This method scaled the template
leaf based on the target leaf’s length and width, thus minimizing the error of the leaf
size ratio since it maintains the leaf length to width ratio during the deformation process.
However, the maximum leaf width position error was relatively large because of the slight
difference in the maximum leaf widths among the cultivars. Meanwhile, the leaf modelling
results had a good fit to the measured data because vein-driven mesh deformation is at
the core of this method, thus minimizing the error of leaf sag and bend. The error of leaf
twisting was larger than that of leaf sag and bend due to the large degree of freedom of leaf
twisting. However, the overall error still had a good performance.

The offset distance between the point cloud positions of the modelling results that
were based on this method and the coordinate points corresponding to the original 3D
digitizing data was calculated in order to verify the similarity between the modelled leaves
and the original plant. The box plot of the offset distance is shown in Figure 12, while the
quartiles and variances of the offset distance are shown in Table 5. The average variance of
the offset distance of the coordinate points was 0.336 cm2, indicating that the 3D model of
this method had a good consistency with the measured data in the 3D space.

Table 4. Comparison between wheat leaf deformation results (A) and leaf shape parameters extracted
from original 3D digitizing data (B).

Cultivars

Leaf Size Ratio Maximum Leaf
Width Position Leaf Sag Leaf Bending Leaf Twisting

p3 p2 p1 p3 p2 p1 p3 p2 p1 p3 p2 p1 p3 p2 p1

ZM618
A 0.12 0.09 0.08 0.36 0.41 0.42 0 0 0.26 0 0.55 0.32 0.42 0.50 0.45
B 0.13 0.09 0.08 0.38 0.41 0.43 0.04 0.02 0.28 0.03 0.56 0.34 0.44 0.54 0.46

JM106
A 0.12 0.08 0.08 0.40 0.49 0.42 0.58 0.36 0.42 0.10 0.25 0 0.58 0.75 0.70
B 0.12 0.07 0.07 0.37 0.49 0.42 0.56 0.38 0.41 0.12 0.27 0.05 0.60 0.75 0.72

XN979
A 0.19 0.09 0.08 0.50 0.49 0.40 0.63 0.67 0.65 0.13 0.39 0.40 0.48 0.83 0.83
B 0.20 0.08 0.08 0.52 0.48 0.41 0.65 0.67 0.65 0.10 0.39 0.41 0.51 0.85 0.86

JM44
A 0.14 0.09 0.08 0.46 0.52 0.40 0 0.36 0.64 0 0.20 0.15 0.32 0.65 0.50
B 0.14 0.09 0.08 0.45 0.53 0.40 0 0.36 0.61 0 0.20 0.18 0.36 0.65 0.52

ZXM09
A 0.19 0.07 0.09 0.42 0.45 0.40 0.83 0.58 0.86 0 0.23 0.15 0.32 0.66 0.70
B 0.20 0.07 0.09 0.40 0.43 0.40 0.84 0.57 0.86 0 0.24 0.17 0.36 0.68 0.74

HC3366
A 0.16 0.08 0.07 0.44 0.50 0.42 0 0.43 0.72 0 0.27 0.25 0.40 0.72 0.73
B 0.15 0.09 0.09 0.45 0.51 0.44 0.02 0.43 0.73 0.01 0.28 0.29 0.43 0.72 0.76

Maximum
error 0.01 0.01 0.02 0.03 0.02 0.02 0.04 0.02 0.03 0.03 0.02 0.05 0.04 0.04 0.04

RMSE 0.01 0.01 0.02 0.02 0.03

R2 0.97 0.91 1.00 0.98 0.97

Note: p1, p2, and p3 represent the three leaf positions of the first leaf, middle leaves, and flag leaf, respec-
tively. Maximum error represents the max difference in comparison data of six cultivars per column and the
corresponding comparison data is marked in bold.
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Figure 12. Box plot of the offset distance between the coordinate points of wheat leaf deformation
results and the original 3D digitizing data.

Table 5. The calculation results of offset distance between the coordinate points of wheat leaf
deformation and the original 3D digitizing data.

Parameter Name ZM618 JM106 XN979 JM44 ZXM09 HC3366 Average Value

Q1 (cm) 0.267 0.342 0.316 0.279 0.409 0.338 0.325
Q2 (cm) 0.509 0.635 0.531 0.477 0.613 0.608 0.562
Q3 (cm) 0.749 0.981 0.792 0.728 0.875 0.916 0.840

Variance (cm2) 0.288 0.408 0.308 0.299 0.328 0.389 0.336

4.3.3. Time Efficiency Analysis of Wheat Leaf 3D Modelling

Finally, the total number of iterations and the modelling time of a single wheat plant
during leaf group deformation were calculated in order to evaluate the efficiency of this
method (Table 6). The modelling time of the wheat plant leaf group was within 1.5–2.5 s
at the filling stage. Moreover, the time efficiency of obtaining the complete 3D digitizing
data of the wheat plants via a 3D digitizer and the 3D modelling of the wheat plants
using this method were compared. The accuracy of this method and the 3D digitizer was
similar. However, the content of the data acquisition was simplified, which only needed
the data points of the plant’s veins, thus reducing the time of the data acquisition process.
The data acquisition process of this method improved by 80% in time, while the overall
process of the data acquisition and 3D modelling improved by 79.9% in time (Table 7). The
above modelling process was conducted using the Windows 10 operating system, using the
following computer configuration: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 16G RAM.

Table 6. Time consumption in modelling wheat plant leaf groups.

Parameter Name ZM618 JM106 XN979 JM44 ZXM09 HC3366

Number of leaves 22 30 27 25 26 28
Total iterations 13200 16600 14580 12600 14040 14800

Running time (s) 1.69 2.49 1.96 1.48 1.78 2.04



Agronomy 2022, 12, 414 16 of 21

Table 7. The total time consumption of this method compared with that of the 3D digitizer to obtain
complete plants for 3D modelling.

Parameter Name Obtaining Complete
3D Digitized Data Our Method Speed Growth Rate

Data acquisition
time (s) 2100–3000 420–600 80%

Modelling time (s) 0.8–1.2 1.5–2.5 −50%
Total time (s) 2100.8–3100.2 421.5–602.5 79.9%

4.4. Phenotypic Analysis of Wheat Leaf Group

The 3D model of the wheat leaf group that was obtained using this method was further
used to calculate the phenotypic parameters of leaf morphology. Besides the above leaf
length, width, area, leaf sag, leaf bending, and leaf twisting, the spatial distribution of the
leaf area was also studied. The stratified leaf area distributions were calculated from the
vertical and the horizontal cylinder directions in order to extensively describe the wheat
plant type. The side and top views of the six cultivars and the calculated vertical and
horizontal leaf area distributions are shown in Figure 13.

XN979 and JM106 had the largest total leaf area, while ZM618 had the smallest total
leaf area. The leaf area distribution was normal in the vertical direction, with the middle
of the plant being the largest. Specifically, the leaf area of JM106 and XN979 were widely
distributed from 15–30 cm in height, followed by JM44 and HC3366. The leaf area of ZM618
and ZXM09 were widely distributed from 30–45 cm in height. The leaf area distribution
of JM106 extended to the cylinder with a radius of 30 cm in the horizontal direction. The
leaf area of HC3366 was distributed in the cylinder with a radius of 25 cm. The leaves
JM106 and HC3366 significantly extended outwards in the horizontal direction because
the leaf sag of the middle leaves occurred in the middle. The leaf area of the remaining
four cultivars was distributed within the cylinder radius of 20 cm, consistent with the
characteristics of relatively flat and raised leaves or large leaf sag of the four cultivars.
Moreover, the leaf area of the wheat with loose plant type (ZM618) was less distributed in
the middle of the horizontal direction and normally distributed on both sides. However,
the leaf area of wheat plants with compact plant types (JM44 and HC3366) slightly tilted
on one side.

Figure 13. Cont.
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Figure 13. Cont.
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Figure 13. Spatial leaf area distribution of six wheat cultivars. (a)–(k) are the vertical leaf area
distribution of ZM618, JM106, XN979, JM44, ZXM09, and HC3366, respectively; (b)–(l) are the
horizontal leaf area distribution of ZM618, JM106, XN979, JM44, ZXM09, and HC3366, respectively.

5. Discussion

The skeleton-driven 3D modelling method has the following advantages: (1) the 3D
modelling methods of wheat plants [7,9,10] that are used to analyze function–structure
mostly have significant differences in plant type, ignoring the differences in 3D leaf shape,
especially leaf twisting. Herein, five parameters were systematically used to characterize
the 3D morphological leaf features of wheat in order to describe the genetic characteristics
of wheat leaf shapes. The constructed 3D models of the wheat leaves and leaf groups could
reflect the 3D morphological leaf features of the different cultivars, with good consistency
with the leaf size ratio, maximum leaf width position, leaf sag, leaf bending, and leaf
twisting from the measured data of the corresponding plant leaf group (Table 4). The
leaf tilt degree (especially that of the flag leaf) of the wheat plants at the filling stage
directly affects their photosynthesis, thus affecting the plants’ yield [10]. This method could
effectively reflect the morphological leaf features, such as those of the flag leaf, middle
leaves, and first leaf of wheat, thus improving the resolution of computational research
based on a 3D visualization model. (2) The existing technology that is used to achieve the
3D modelling of plants through surface deformation mainly ensures the smoothness and
uniformity of global deformation. Therefore, it is difficult to retain the original details of the
leaves during the deformation. Previous studies [14] have shown that several control points
are required in the deformation process (especially, several cross-section control points
are required to achieve foliation distortion). As a result, it is difficult to retain the local
details. Besides realizing the real reduction of the wheat veins in 3D space, this method
can also maintain the local details of the wheat leaf’s surface. The average variance of
the offset distance of the coordinate points before and after deformation was 0.336 cm2

(Table 5), indicating a good level of 3D modelling accuracy. (3) Studies have shown that
3D digitizing can effectively obtain and quantify the skeleton information of multi-tiller
crops [25]. Herein, a 3D digitizer was used to accurately obtain the 3D information of the
stem and leaf veins of wheat plants, thus solving the cross-occlusion problem between
wheat plant organs. Morphological leaf features and the mesh deformation method were
used to construct skeleton data for the mesh model. The three phenotypic parameters (leaf
length, width, and area) that were extracted from the reconstructed 3D model of the wheat
plant leaf group matched the measured data (Figure 11).

However, this method has some disadvantages. (1) 3D modelling of wheat ears was not
conducted due to the complex morphological structure of the wheat ears. Meanwhile, the
reconstructed stem was directly generated as a cylinder. Compared with the reconstructed
leaves, the realism of the result should be improved. (2) This method relied on leaf vein
data. A small amount of typical complete 3D digitizing data of leaves for each cultivar
is needed in order to build the cultivar characteristic database. The method relies on
earlier data acquisition. The reconstruction speed using this method was improved by
79.9% compared with obtaining the complete 3D digitizing data of wheat plants one at
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a time (Table 7). However, this method takes longer for data acquisition than other data
acquisition methods [21,22].

In this method, data acquisition rules, including wheat plant semantic information,
were formulated and a cultivar characteristic database and template database were con-
structed based on morphological wheat leaf features. Moreover, leaf mesh deformation
was conducted based on leaf veins. This whole process is suitable for all wheat growth
stages. However, Fang et al. [18] and Duan et al. [19] showed that the method is only
applicable to wheat in the early tillering stage. This method can also be used in multi-tiller
rice and other crops with long and narrow leaves, such as corn and sorghum. However, it
cannot be used to achieve the desired effect in fan-shaped, palm-shaped, finger-shaped,
and multi-vein leaves.

In the future, the skeleton extraction method that is based on a point cloud should
be used to rapidly construct the vein curve of wheat plants and generate a leaf template
based on the high-resolution 3D point cloud of a single leaf. Moreover, the mesh defor-
mation method should be used in order to reduce the time that is required during the
data acquisition process, thus improving the efficiency of the method. This method can
realize the construction of a high-precision 3D model of wheat and is thus suitable for the
analysis of wheat plant phenotypes at the cultivar scale, calculation of wheat population
light distribution, functional–structure analysis [7], ideal plant type design, and cultivation
decision optimization of wheat [9]. The 3D wheat model can also be used in VR/AR for
knowledge enhancement, skill training, and the display of new cultivars.

6. Conclusions

This study developed a 3D wheat modelling method for the individual leaf, leaf
group, and individual plant. Five morphological parameters were defined in order to
characterize the 3D leaf features. Among which, leaf sag, leaf bending, and leaf twisting
were identified to be capable of describing cultivar differences for template selection in
next-stage modelling. The ARAP mesh deformation method was introduced in order to
model 3D leaves from skeletons and this deformation method was proven to be an effective
way of 3D wheat modelling. The 3D modelling efficiency improved 79.9% with this method
when compared with direct 3D digitizing data acquisition. The R2 of the extracted leaf
sag, leaf bending, and leaf twisting from the constructed 3D model using the proposed
method and 3D digitization data were 1.00, 0.98, and 0.97, respectively. The RMSE were
0.01, 0.02, and 0.03, respectively. The approach in the present study overrides the limitation
of using leaf or plant skeleton data to construct a 3D mesh model. This approach will
provide an accurate and precise 3D model for the phenotypic, structural, and functional
analysis of wheat.
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