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Abstract: The quality of wine grapes in dry climates greatly depends on utilizing optimal amounts 

of irrigation water during the growing season. Robust and accurate techniques are essential for as-

sessing crop water status in grapevines so that both over-irrigation and excessive water deficits can 

be avoided. This study proposes a robust strategy to assess crop water status in grapevines. Exper-

iments were performed on Riesling grapevines (Vitis vinfera L.) planted in rows oriented north–

south and subjected to three irrigation regimes in a vineyard maintained at an experimental farm in 

southeastern Washington, USA. Thermal and red–green–blue (RGB) images were acquired during 

the growing season, using a thermal imaging sensor and digital camera installed on a ground-based 

platform such that both cameras were oriented orthogonally to the crop canopy. A custom-devel-

oped algorithm was created to automatically derive canopy temperature (Tc) and calculate crop 

water stress index (CWSI) from the acquired thermal-RGB images. The relationship between leaf 

water potential (Ψleaf) and CWSI was investigated. The results revealed that the proposed algorithm 

combining thermal and RGB images to determine CWSI can be used for assessing crop water status 

of grapevines. There was a correlation between CWSI and Ψleaf with an R-squared value of 0.67 for 

the measurements in the growing season. It was also found that CWSI from the shaded (east) side 

of the canopy achieved a better correlation with Ψleaf compared to that from the sunlit (west) side 

around solar noon. The created algorithm allowed real-time assessment of crop water status in com-

mercial vineyards and may be used in decision support systems for grapevine irrigation manage-

ment. 
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1. Introduction 

Irrigated agriculture is the biggest consumer of freshwater in arid and semi-arid ar-

eas, with a share of 70–80% of the total consumption. With the growing water scarcity 

related to global climate change, increasing the efficiency of water utilization has become 

a critical issue in irrigated regions. Many vineyards are located in semi-arid areas which 

require precise regulation of the water supply [1]. Since both the yield and quality of ber-

ries are sensitive to changes in water availability to vines [2], precise and robust methods 

to accurately and precisely detect grapevine water status are becoming increasingly im-

portant in commercial vineyards. Traditional measurement approaches, such as pressure 

chambers, used to measure leaf water potential (Ψleaf), are time-consuming and require 
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skilled operators. To address such challenges, interest in the use of infrared thermal im-

agery for irrigation scheduling has increased with the accessibility of remote sensing tech-

nology. Early studies have indicated that stomatal closure related to water stress leads to 

canopy temperature increases. Since then, canopy temperature has been recognized as an 

important indicator of crop water status. Infrared thermography has been employed to 

obtain canopy temperature for assessing grapevine water status since crop water stress 

index (CWSI) was first proposed in the early 1980s [3]. The CWSI is defined as in Equation 

(1): 

���� =
�� − ����
���� − ����

 (1)

Where Tc is the average temperature (in °C) of the canopy, Tdry and Twet represent the 

reference temperatures corresponding to the dry surface and the wet surface, respectively. 

A dry surface and wet surface were used to simulate a non-transpiring leaf with closed 

stomata and fully transpiring leaf with open stomata. However, effective utilization of 

CWSI for evaluating crop water stress was limited by the accessibility to infrared thermal 

sensors for a long period. In recent years, development of thermal cameras has provided 

an opportunity for more robust water stress detection in commercial fields. 

The CWSI has been recognized as an effective thermal index for quantifying water 

stress in plants, and was employed to assess water status for a variety of crops such as 

grapevine [4,5], cotton [6], and rice [7]. Empirical approaches using artificial references to 

obtain Twet and Tdry have been universally used for calculating CWSI [4,8,9]. Artificial ref-

erences simulating a fully transpiring leaf and a non-transpiring leaf are widely adopted 

to obtain Twet and Tdry [10–12]. Twet is determined from a wet artificial reference surface, 

such as a water-sprayed leaf or damp fabric surface, while Tdry is obtained by measuring 

the temperature of a dry reference, such as a leaf fully covered with Vaseline on both sides 

[13]. As natural reference surfaces can be easily disturbed by meteorological factors and 

the location of reference leaves, an alternative strategy has been developed for the deter-

mination of Twet and Tdry using a canopy temperature histogram. In this statistical calcula-

tion of CWSI, Twet and Tdry correspond to the mean temperatures of the lowest part and 

highest part in the canopy temperature histogram, respectively [6]. This approach signif-

icantly reduces the complexity of CWSI calculations and has been applied to thermal im-

ages collected using unmanned aerial vehicles (UAVs) at the plot level [6,10]. UAVs im-

prove the efficiency of data collection by covering a large field in an individual image, 

providing a platform for crop water status monitoring on an aerial basis. UAV-based ther-

mal imagery has showed a great potential to map variations of crop water status at the 

field and farm levels [12]. However, thermal information of crops in large plots is 

squeezed into pixels at the centimeter level, resulting in coarse spatial resolution of indi-

vidual canopies. Mounting sensors (RGB camera and thermal sensor) on an all-terrain ve-

hicle (ATV) or ground-based platforms can be an alternative for crop water status moni-

toring to obtain higher spatial resolution at the canopy level. Deficit drip irrigation strat-

egies aim to save water to improve fruit quality [14]. As vineyards are subject to consid-

erable spatial and temporal variation, ground-based thermal imagery for assessing crop 

water status may provide a means to achieve precision irrigation at the canopy level in 

vineyards. 

In general, canopy temperature is extracted from thermal images to calculate CWSI. 

Reported research has found that thermal imagery could be an ideal approach for the 

measurement of canopy temperature in field environments [15–17]. Region of interest 

(ROI) analysis has been utilized to estimate the mean temperature of canopies using 

ground platform-based images. Different strategies were applied to select ROIs to mini-

mize the influence of background in the thermal imagery of a grapevine canopy. A fully 

exposed leaf on a given part of a shaded or sunlit canopy was outlined in thermal images, 

and the temperature of the selected leaf was extracted to represent the mean temperature 

of the canopy [1]. The middle section of the canopy in the thermal imagery, which was 
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mainly comprised of leaves, was manually selected to determine the average canopy tem-

perature [18]. However, non-vegetation pixels would remain in ROIs without background 

elimination. A bi-modal histogram of temperatures was used to exclude background (soil) 

due to the great difference reflection between the canopy and soil in thermal imagery from 

a zenithal view [19]. Unlike the thermal imagery from the zenithal view—mostly consist-

ing of canopy and soil—sky, soil, and artificial objects are all included in thermal imagery 

at the canopy level. Determination of the threshold with temperature histograms is lim-

ited for thermal images, since there are not obvious boundary values with which to deter-

mine the threshold between these non-vegetation objects from the canopy. Thermal im-

agery, which can only be converted to grey-scale and false color images, is limited by its 

inability to distinguish canopy from non-green vegetation (sky, soil, artificial objects, 

trunks, and shoots) pixels. Nonetheless, manual selection of ROIs for the determination 

of canopy temperature has limited the robust application of thermal imagery to assess 

crop water stress in commercial fields. 

In this study, a canopy-level technique was developed to assess grapevine water sta-

tus using thermal-RGB images, and its performance was examined by the correlation be-

tween CWSI and Ψleaf. The main goal of this study was to create a custom algorithm that 

could be reliably implemented for the segmentation of the grapevine canopy from thermal 

imagery and for calculating the average canopy temperature and CWSI. Consequently, 

RGB imagery was employed to distinguish the canopy in thermal imagery. A canopy bi-

nary mask was created by removing non-green vegetation pixels from the RGB image 

using color information. Segmentation of pure canopy pixels from thermal imagery was 

achieved by registering the binary mask with its corresponding thermal imagery. The av-

erage temperature of the canopy in the registered image was calculated to obtain the 

CWSI, using Equation (1) for crop water status assessment. 

2. Material and Methods 

2.1. Study Site 

The experiment was carried out from mid-July to early-October during the 2019 

growing season in a Washington State University research vineyard located near Prosser, 

Washington, USA. The experimental field is in a semi-arid climate zone, with an average 

daily temperature of 12.05 °C and mean annual rainfall of 229 mm. Grapevines (Vitis vi-

nifera L.) cv. Riesling were planted in 2010 in rows oriented north–south. The vines were 

trained to a vertical shoot positioned (VSP) trellis system with the main trellis wire 

mounted 95 cm above the ground. The inter-vine and inter-row distances were 182 cm 

and 274 cm, respectively. A drip irrigation system was designed to apply varying levels 

of water to three different irrigation treatments: full irrigation (FULL, no water stress) as 

a control, regulated deficit-irrigation (RDI, moderate water stress over time), and partial 

root-zone drying (PRD, moderate water stress over space). Soil water was replenished 

before budbreak and after harvest for each treatment to prevent water stress before bloom 

time and during winter. From budbreak to harvest, FULL vines were irrigated weekly to 

a level that would cause no water stress (soil moisture of 16%, and midday leaf water 

potential between -8 to -10 bar of the vines). Each treatment was replicated in four random 

blocks; each block was comprised of 15 vines. 

2.2. Image Acquisition and Field Measurement 

Thermal images were acquired with an infrared thermal camera (FLIR Vue Pro R, 

FLIR Systems, Wilsonville, OR, USA). The thermal camera has a resolution of 640 (hori-

zontal) × 512 (vertical) pixels and a microbolometer sensor with a field of view (FOV) of 

69˚, a reported accuracy of ±5 °C, frame rate of 30 Hz, and a spectral response wavelength 

range of 7.5–13.5 μm. RGB images were acquired with a Sony Alpha camera (a6000, Sony, 

Tokyo, Japan Inc.). Both cameras were mounted on a ground-based utility vehicle plat-

form at a height of 156 cm above ground, as shown in Figure 1. Thermal and RGB images 
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were taken within 30 min before and after solar noon in a clear-sky and breeze-less day, 

since it has been shown that the stomata are essentially closed, and the canopy tempera-

ture is at its daily maximum at this time in grapevines that are subjected to a water deficit 

at this location [20,21].  

 

Figure 1. Thermal sensor and RGB camera mounted on a utility vehicle to acquire thermal and cor-

responding RGB images. 

Weather data (air temperature, soil temperature, wind speed, vapor pressure deficit 

(VPD), relative humidity) were obtained from an on-site AgWeatherNet station 

(http://weather.wsu.edu (accessed on 30 September 2019) located 415 m to the north of the 

vineyard. Canopy temperatures were measured using a handheld thermal sensor. As the 

reference indicator of crop water status, Ψleaf was measured in the center row of each block 

with a Scholander pressure chamber (Model 615, PMS Instruments Co., Albany, OR, USA) 

in the field periodically, along with the acquisition of thermal imagery and visible images. 

Ψleaf was measured as described elsewhere [20] on four well-illuminated and fully ex-

panded middle-aged leaves per plot, from shoots near the main trunk per plot. Ψleaf was 

measured on Day of Year (DOY) 218, DOY 225, DOY 232, DOY239, DOY 247, DOY 253, 

and DOY 267 around solar noon (from 12:30 h to 13:30 h local time). 

2.3. Image Processing 

Data acquired in the FLIR Systems’ proprietary data format was converted to pixe-

lated temperature data (.csv format) using FLIR Tools. Electronic component aging can 

cause calibration shift and produce inaccurate temperature measurements by infrared 

thermal imaging. Calibration of the thermal camera was performed with a blackbody ref-

erence source set to different known temperatures ranging from 5 to 65 °C in an incre-

mental step of 5 °C, which covers the range of leaf temperatures in a field environment 

[21]. Temperatures read by the thermal sensor were captured along with each reference 

temperature value to obtain the calibration coefficient; then, the coefficient was used to 

correct the pixelated temperature in thermal imagery. To segment the desired pure can-

opy regions from the thermal imagery, a custom algorithm was developed and imple-

mented in MATLAB (R2018b, The MathWorks, Natick, MA, USA) using pixelated tem-

perature data and RGB images, which were then used to calculate CWSI.  

Image analysis steps followed in the CWSI calculation are shown in Figure 2. First, 

raw binary thermal data were converted into a matrix (512 × 640) of actual temperature. 

Calibration coefficients determined using blackbody were applied to the temperature val-

ues of each pixel. After resizing and cropping the original RGB images, RGB images were 

transformed into grayscale images. An intensity-based image registration, nonreflective 

similarity transformation consisting of translation, rotation, and scale, was employed to 

align thermal images to the corresponding RGB images. In the next step, binary masks 
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were created using individual RGB images to segment out canopies in thermal images. To 

create the canopy masks, RGB images were first converted to Hue–Saturation–Intensity 

(HSI) color space and a threshold in the hue band determined based on trial-and-error 

was used to remove non-green vegetation pixels, including sky, soil, and artificial objects. 

Then, RGB images were converted to the color space defined by the International Com-

mission on Illumination (CIE-Lab) for setting the threshold via visual inspection to re-

move trunks and shoots. Two morphological operations, erosion and dilation, were then 

used to remove small noisy areas and to fill small unwanted holes in the segmented im-

ages. Desired canopy regions in the thermal images were then delineated by multiplying 

the registered images with corresponding binary masks. Consistent with the location of 

the ψleaf measurements, ROIs used for average temperature calculations were selected 

from the middle of the overlapped thermal images, which focused on the middle zone of 

the canopy. A script (in Matlab) was implemented to perform these procedures automat-

ically, which has the potential to improve the simplicity and robustness of thermography 

in field conditions. 

 

Figure 2. Steps used in analyzing color and thermal imagery for CWSI calculation. 

2.4. CWSI Calculation 

2.4.1. Determination of Canopy Temperature (Tc) 

Canopy temperature has been used as indicator of Ψleaf, which indicates crop water 

status. To reduce the background effects on the calculation of average canopy tempera-

ture, ROIs have traditionally been selected by manual inspection, referring to the corre-

sponding visible images [9]. Manual selection of ROIs has impeded the real-time moni-

toring of crop water stress, and non-green vegetation information cannot be completely 

eliminated in the ROI. To overcome these limitations, the algorithm proposed in this study 

allows the automatic selection of an ROI with pure vegetation pixels in the central canopy, 

improving the applicability of thermal imagery for assessing crop water status in real-

time. In this study, Tc is the average temperature of the canopy area within the selected 

ROI.  
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2.4.2. Determination of CWSIe and CWSIs 

Previous studies have suggested that CWSI could be calculated by empirical and sta-

tistical methods, resulting in indices which are referred to as CWSIe (empirical CWSI) and 

CWSIs (statistical CWSI), respectively [6,22]. Tdry and Twet in CWSIe are acquired by meas-

uring the temperatures of the wet and dry reference surfaces, while Tdry and Twet in CWSIs 

are adaptive approximations of the highest and lowest parts of the canopy temperature 

histogram. Recently, CWSIs were reported to be able to represent crop water status at the 

plot level [6,23]. This is based on the knowledge that the variance of leaf temperature is 

directly related to crop water stress [24]. In this study, CWSIs and CWSIe were correlated 

with field measurements of Ψleaf to identify the CWSI type that better represents the crop 

water status at the canopy level. Tdry and Twet for CWSIe calculation were determined using 

artificial references during the period of imaging acquisition; a green sponge soaked in 

water was used as wet reference, and dry wood bark was used as a dry reference. As 

suggested by Bian et al. [6], Tdry and Twet for CWSI calculation were the mean of the highest 

5% and the lowest 5% of canopy temperature in the histogram. With the determination of 

Tc, Tdry and Twet, CWSI was calculated using Equation (1). 

With the aim of improving the efficiency of using infrared thermal imagery for crop 

water status assessment, correlations between thermal indices and Ψleaf were performed. 

Tc and CWSI derived from thermal imagery for the shaded and sunlit sides of the canopy 

were correlated with Ψleaf. Since vines in RDI and PRD treatments presented similar trends 

of Tc, as expected, samples from FULL and RDI were used for the correlation between 

Ψleaf and CWSI. Ψleaf, Tc and CWSI are the average values of the consecutive vines in each 

block. Ψleaf, Tc and CWSI acquired in cloudy and windy conditions were eliminated. A 

total of 42 samples of Ψleaf, Tc and CWSI were used in the correlation. Artificial references 

and statistical references were used to determine Tdry and Twet for CWSIe and CWSIs cal-

culation. Linear correlations between CWSIe and Ψleaf, and CWSIs and Ψleaf were then as-

sessed and compared. 

3. Results and Discussion 

3.1. ROI Identification 

Non-green vegetation pixels (sky, soil, artificial objects, trunks, and shoots) and 

shaded areas of the canopy were removed from thermal images using the proposed algo-

rithm. The canopy segmentation results are shown in Figure 3, including the false color 

thermal imaging (each pixel is expressed in °C; Figure 3a), corresponding original RGB 

image (Figure 3b), the binary mask created using RGB imaging (Figure 3c), and the false 

color thermal image after removal of non-green vegetation pixels (Figure 3d). The rectan-

gular ROI was set in the canopy region of the masked thermal image (Figure 3d) for fur-

ther analysis and CWSI calculation. 

  
(A) (B) 
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(C) (D) 

Figure 3. Thermal imagery and processed image of a sample grapevine canopy: (A) false color ther-

mal image, (B) original RGB image, (C) canopy binary mask, (D) overlapped thermal image with 

selected rectangle ROI. 

Average canopy temperature and CWSI were determined using the proposed image 

processing algorithm. Canopy temperatures in the same ROIs were manually extracted 

from thermal imaging, with visual inspection to validate the Tc determination. The per-

formance of the proposed algorithm for average Tc calculation is shown in Figure 4. Linear 

regression of calculated Tc versus measured Tc resulted in correlation coefficients 0.98 for 

both the sunlit and shaded sides of vine canopies. Root mean square errors (RMSE) of the 

calculated Tc for the sunlit and shaded sides were 0.60 and 0.56, respectively. The linear 

regression versus measured Tc illustrates that the Tc obtained with the proposed algorithm 

could accurately represent the actual average canopy temperature of grapevines. Temper-

ature histograms of the original thermal image and the masked thermal image are illus-

trated in Figure 5. The average temperatures of the original thermal imagery prior to re-

moval of non-green vegetation pixels and of the processed thermal imagery were 36.5 °C 

and 30.6 °C, respectively. Pixels representing non-green vegetation parts of the canopy 

exhibited higher (soil and artificial objects) or lower (sky) temperatures in thermal im-

agery. Since the non-green vegetation pixels were eliminated from the thermal imagery, 

the temperature distribution of the masked thermal image was found to be more concen-

trated around the actual canopy temperature than in the original thermal image. As solar 

radiation heats exposed tissues, the canopy temperature is typically higher during the day 

than the surrounding air temperature, despite the evaporative cooling effect provided by 

transpiration [20]. 

  
(A) (B) 

Figure 4. Performance of the proposed imaging processing algorithm for average Tc calculation rel-

ative to the manually measured Tc in the (A) shaded side and (B) sunlit side of vine canopies. 
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(A) (B) 

Figure 5. Temperature histogram of a sample vine (A) with the original thermal image and (B) with 

the masked thermal image. 

3.2. Variation of Ψleaf and CWSI 

Changes of Ψleaf, Tc and CWSIe from DOY 218 to 267 for three irrigation regimes are 

illustrated in Figure 6. The Ψleaf, Tc and CWSIe shown in Figure 6 are the average values 

of the samples for each treatment. Ψleaf of FULL and PRD vines exhibited similar behav-

iors, as shown in the curves. This outcome was expected since the alternating wet sides of 

the root zone in PRD maintains plant water status [25]. The variation of Ψleaf over the entire 

season depended on the irrigation schedule. Three treatments had higher values on DOY 

225 and DOY 267, when the vineyard was being irrigated. The deficit irrigation of RDI 

treatment was applied from the first irrigation (DOY 119) until DOY 239, when it was 

changed to the same irrigation amount as the FULL treatments. Correspondingly, RDI 

vines were more stressed from DOY 218 to DOY 239, and exhibited the same variation 

pattern as FULL and PRD vines after DOY 239. Identical trends were not noticed between 

the CWSIe and Tc curves, because Twet and Tdry were used to calculate CWSIe for each 

measurement to reduce the disturbance due to environmental conditions.  

   
(A) (B) (C) 

Figure 6. Seasonal variation of (A) midday leaf water potential (Ψleaf); (B) canopy temperature (Tc); 

and (C) empirical crop water stress index (CWSIe) for three water stress irrigation regimes in field-

grown Riesling grapevines. 

Generally, CWSIe showed an inverse pattern from Ψleaf. CWSIe of all three regimes 

reached the lowest values on DOY 225 and DOY 267, while Ψleaf had the highest values on 

the same days. However, Tc was not at the lowest point on those days, confirming that the 

wet and dry references obtained along with the imaging acquisition were appropriate for 

crop water stress detection. Similar findings were also reported by Idso et al. [26], who 

stated that different references should be employed for different plant growth stages. The 

need for better correlation with multiple wet and dry references is because different ref-

erences are more efficient at reducing environmental disturbances on CWSI calculations 

under different weather conditions and growing stages.  
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3.3. Relationship between Ψleaf and CWSI 

Correlations between Tc and Ψleaf for both the shaded and sunlit sides of the canopy 

are shown in Figure 7. Tc and Ψleaf were negatively correlated for both sides, indicating a 

higher Tc with more severe water stress. This result is expected, as the stomatal closure 

induced by water stress reduces the transpiration rate, thus lowering evaporative cooling 

and increasing the leaf temperature [27]. The coefficient of determination (R2) for the 

shaded and sunlit sides was 0.55 and 0.22, respectively. In addition, the slope of the linear 

correlation equations y = ax + b for the shaded and sunlit sides was 0.24 and −0.17, respec-

tively. Consequently, a stronger correlation was obtained from the shaded side of the can-

opy than from the sunlit side. 

  

(A) (B) 

Figure 7. Correlation between Tc and Ψleaf in the (A) shaded side and (B) sunlit side of the vine 

canopies. 

Correlations between CWSIe and Ψleaf for the shaded and sunlit sides of the canopy 

are shown in Figure 8. To reduce the impact of weather conditions (e.g., windy, slightly 

cloudy) and growth stages, different artificial references were used for the CWSI calcula-

tion. The shaded and sunlit sides showed similar relationships between CWSIe and Ψleaf. 

The R2 for the shaded and sunlit sides was 0.67 and 0.48, respectively, and the linear equa-

tions shared similar slopes a (−3.8466 and −4.3973, respectively). Similar to Tc, the CWSIe 

for the shaded side of the canopy correlated better with Ψleaf than did that for the sunlit 

side. Figure 9 shows the correlation plots between CWSIs and Ψleaf for the shaded and 

sunlit sides of the canopy. Neither correlation was significant, demonstrating that CWSIs 

is not an accurate representative of grapevine water status in this study. 

  
(A) (B) 

Figure 8. Correlation between CWSIe and Ψleaf in the (A) shaded side and (B) sunlit side of the 

canopy. 
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(A) (B) 

Figure 9. Correlation between CWSIs and Ψleaf in the (A) shaded side and (B) sunlit side of the can-

opy. 

The results of the correlation analysis demonstrated that CWSI and Tc were signifi-

cantly correlated with grapevine water status as represented by Ψleaf. These results are in 

line with previous studies on grapevine subjected to deficit irrigation [1,28]. A higher R2 

was obtained between thermal indices and Ψleaf measured near solar noon on the shaded 

side of the canopy than on the sunlit side. These results are in agreement with those pre-

sented by Gutiérrez et al. [18]. Concerning the vineyard with north–south row orientation, 

the east side was gradually shaded after a whole morning of direct sunlight, resulting in 

larger acclimation to sun exposure for leaves in the shaded side. Hence, the shaded (east)-

side leaves showed more sensitivity to differences in crop water stress than the sunlit 

(west) side at solar noon. 

It was found that CWSIs was not significantly correlated with Ψleaf for measurements 

on both sides of the canopy. Previous studies using the highest and lowest parts of the 

temperature histogram to calculate CWSI were conducted with images collected from 

UAVs at the plot level [6,10]. Plots of full irrigation and deficit irrigation treatments were 

included in UAV-based thermal imaging; therefore, the means of the lowest and highest 

temperatures in the histogram might simulate the maximal and minimal leaf transpira-

tion. The transpiration of grapevine leaves has been found to increase linearly or even 

exponentially with increasing leaf temperature [2]. In this study, infrared thermal images 

were collected at the canopy level. Twet and Tdry for CWSIs calculation were extracted from 

the thermal images of the vines (FULL, RDI and PRD treatments), and these reference 

surfaces were greatly dependent on the Tc of an individual canopy, and therefore varied 

significantly among vines. The main reason for the weak correlation between CWSIs and 

Ψleaf could be that wet and dry references obtained at the canopy level cannot precisely 

represent a non-transpiring leaf and a fully transpiring leaf. Tdry extracted from fully irri-

gated vines was lower than the actual temperature of the dry reference, while Twet derived 

from vines with no to minimal water stress was higher than the actual temperature of the 

wet reference. 

4. Conclusions 

Water deficit estimation at the individual canopy level could provide a powerful tool 

for precision water management in grape production. This study created and tested a non-

invasive strategy to assess crop water status for grapevine using thermal-RGB images. It 

included the elimination of non-green vegetation pixels (including sky, soil, artificial ob-

jects, trunks, and shoots) from thermal imagery by multiplying a binary mask with the 

corresponding RGB image to determine the average temperature of the pure canopy pix-

els using CWSI calculations. Both calculated CWSIe and CWSIs from shaded and sunlit 

sides were reasonably correlated with Ψleaf. A correlation (R2 = 0.67) was found between 
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CWSIe from the shaded side and Ψleaf. The obtained verification results indicated that ther-

mal imagery could provide a non-invasive tool for assessing crop water status at the can-

opy level. Despite relating to the canopy temperature, crop water status was found to be 

affected by many other environmental parameters, such as air temperature, wind speed, 

relative humidity, etc. Further studies would be needed to improve the performance of 

this sensing technology using advanced data processing methods. As deep learning has 

gained much attention for capturing the nonlinear relationship between environmental 

and crop physiological parameters, the authors would like to suggest exploring the pos-

sibility of creating deep learning-based methods for analyzing thermal imagery data to 

obtain faster and more reliable detection of crop water status in natural field environ-

ments.  
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