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Abstract: The relationships between crop yield and its selected related impact factors has often been
explored using ordinary least squares regression (OLSR). However, this model is non-spatial and non-
robust. This study first used stepwise regression to identify the main factors affecting winter wheat
yield from twelve potential related factors in Yucheng County, China. Next, robust geographically
weighted regression (RGWR) was used to explore the spatially non-stationary relationships between
wheat yield and its main impact factors. Then, its modeling effect was compared with that of GWR
and OLSR. Last, robust geostatistical analysis was conducted for spatial soil management measures
in low-yield areas. Results showed that: (i) three main impact factors on wheat yield were identified
by stepwise regression, namely soil organic matter, soil total phosphorus, and pH; (ii) the spatially
non-stationary effects of the main impact factors on wheat yield were revealed by RGWR but were
ignored by OLSR; (iii) RGWR obtained the best modeling effect (RI = 52.31%); (iv) robust geostatistics
obtains a better spatial prediction effect and the low-yield areas are mainly located in the northeast
and the middle east of the study area. Therefore, the integrated yield-based methodology effectively
improves soil nutrient management at a regional scale.

Keywords: wheat yield; soil nutrient management; regional scale; robust geographically weighted
regression; robust geostatistics

1. Introduction

With a growing human population [1], global food demand will double by 2050 [2]. In
China, 30% to 50% more food will be needed to meet the country’s demands in the next
two to three decades [3]. Therefore, the Chinese Government has taken drastic steps to
increase food production to feed its 1.3 billion people [4]. Wheat is a staple food in China,
and increasing wheat yield per unit area is crucial to ensuring the country’s food supply.

Wheat yield may be influenced by many factors, such as soil physical and chemical
properties, climate, irrigation, tillage, and so on [5–12]. Since the influence degree of en-
vironmental factors in each agricultural area is not identical, the main limiting factors for
crop yield are usually different. For example, in an agricultural areas rich in a certain soil
nutrient, this nutrient is often not the key limiting factor for crop growth and development.
However, in the areas with severe deficiency of this nutrient, the application of this fertilizer
can often significantly increase crop yield. Therefore, it is crucial to determine the main
impact factors on wheat yields. Stepwise regression could choose explanatory variables
using an automatic procedure [13]. A variable is added to or subtracted from the explana-
tory variable set based on some prespecified criterion in each step. Stepwise regression is a
potential tool for identifying the main impact factors on wheat yield in this study.

In previous studies, global regression techniques, such as ordinary least squares
regression (OLSR), were usually used to explore the relationships between crop yield and
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its related impact factors [14–16]. However, these models are non-spatial; that is to say,
spatial coordinates were not considered in regression coefficient estimation, and thus only
constant regression coefficients could be obtained. However, the strength or concentration
of soil physicochemical properties varies with spatial position, so their effects on crop yield
are not constant. Therefore, global relationships obtained by the non-spatial models (e.g.,
OLSR) may deviate considerably from those observed locally, providing only an average
impression of the relationships over an entire region [17,18].

Geographically weighted regression (GWR) is a spatially local regression technol-
ogy [19]. This model takes the spatial coordinates into the coefficient estimation, permitting
the coefficients to vary with spatial position. However, the locally linear estimation of GWR
also causes this technology to be sensitive to outliers [20,21]. With the strengthening of
human activities, spatial outliers commonly exist in the geochemical data sets measured at
a regional scale. These outliers may further affect the performance of OLSR and basic GWR
for exploring the relationships between wheat yield and its main impact factors [20–23]. In
recent years, a robust local regression model, robust geographically weighted regression
(RGWR), has emerged [24]. In theory, RGWR may be an effective tool for exploring the
spatially non-stationary influences of main impact factors on wheat yield at a regional scale.

In addition, determining the spatial distribution pattern of wheat yield is a prerequisite
for precisely managing the soil nutrients in low-yield areas. Geostatistical models can
greatly minimize the estimation errors and investigation costs [25,26]. However, the
traditionally-used Matheron variogram is sensitive to outliers, which may further affect
the spatial prediction accuracy of wheat yield. Therefore, it is necessary to establish robust
statistics in the spatial prediction of environmental factors in the area with high-intensity
human influence.

The main objectives of this study are to: (i) identify the main impact factors on winter
wheat yield in Yucheng County, China, using stepwise regression; (ii) establish RGWR for
exploring spatially non-stationary relationships between wheat yield and its related main
impact factors; (iii) compare the performance of RGWR, GWR, and OLSR in modeling the
relationships; (iv) conduct robust geostatistical analysis and further suggest some spatially
precise soil management measures in the low-yield areas of the county.

2. Materials and Methods
2.1. Study Area and Data

Yucheng County (116◦22′~116◦45′ E, 36◦40′~37◦12′ N) is located in the northwest
of Shandong Province, with an area of 990 km2 (Figure 1). This county belongs to the
North China Plain and has a better irrigation and drainage system. The cultivated land
covers 683 km2, accounting for 69% of the total land area in the county [27]. The annual
average temperature and precipitation are 13.1 ◦C and 593.2 mm, respectively. The Yellow
River runs through the county. Winter wheat (Triticum aestivum L.) is one of the most
important crops in the County. Climate, topography, and agronomic measures for winter
wheat are similar across the county. Main soil subgroups in this county are Calcaric-
Endorusti-Ustic Cambosols (Fluvisols), Calaric-Ochri-Aquic Cambosols (Fluvic Cambisols),
Parasalic-Ochric-Aquic Cambosols (Calcaric Fluvisols) and Typic-Aqui-Orthic Halosols
(Calcaric-Fluvic Cambisols) [28,29].
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Figure 1. Study area and the sampling sites in Yucheng County, Shandong Province, China.

2.2. Determination of the Main Limiting Factors

In this study area, the main limiting factors on winter wheat yield were identified
using stepwise regression from twelve potential related soil factors, namely soil pH,
cation exchange capacity (CEC), soil organic matter (SOM), total nitrogen (TN), total
phosphorus (TP), total potassium (TK), available boron, copper, iron, zinc, molybdenum,
and manganese.

2.3. Soil Sampling and Chemical Analysis

Ninety-nine pairs of wheat grains and surface soils (0~20 cm depth) were collected
in June 2012 (Figure 1). The wheat genotype in the study area was mainly the Ji-Mai-22.
The sampling locations were randomly arranged throughout the study area, and their
coordinate information was recorded using a handheld GPS receiver (MAP60CSX, Garmin
Ltd., Lenexa, KS, USA). The wheat and the corresponding surface soil were collected from
the same location. Each sample comprised four subsamples within a distance of 10 m
surrounding a specific sampling location. For wheat sampling, one square meter of wheat
was collected at each subsample location and was sent to the lab for drying, threshing,
weighing, and finally calculating the wheat yield.

All soil samples were air-dried at room temperature (20~22 ◦C). After removing stones
and other debris, soil samples were sieved into soil particles less than 2 mm. A portion
of each soil sample (about 50 g) was then ground to pass through a sieve of 1/100 mm
meshes. Standard methods were adopted to measure the following 12 soil properties:
pH (glass pH electrodes method), CEC (ammonium acetate method), SOM (potassium
dichromate-wet combustion method), TN (Kjeldahl method with H2SO4 + H2O2 digestion),
TP (acid digestion and colorimetry method), TK (acid digestion and atomic absorption
spectroscopy method), available boron (hot water extraction and colorimetry method), and
available copper, iron, zinc, molybdenum, and manganese (diethylentriaminepentaacetic
acid and atomic absorption spectroscopy method) [30]. Quality control was based on the
certified samples (GBW 07413) and analysis duplicates.

2.4. Robust Geostatistics

Kriging is expressed as the weighted sums of the adjacent sample points by taking
into account the spatial dependence of the sample data. Variogram describes the spatial
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correlation structure of a continuous variable. In the kriging system, variogram is calculated
as [31]:

γi,i(h) =
1
2

E
{
[zi(u)− zi(u + h)]2

}
, (1)

where E{ ·} is the expectation value of the sample data in brackets; zi(u) is the target
variable zi at location u; h is the separation distance vector. Matheron’s estimator is the
most widely used estimator for the variogram [32]. However, this estimator is sensitive to
outliers [33–35]. In this study, three robust variogram estimators were first used, namely the
Cressie-Hawkins estimator [33], Dowd’s estimator [36], and Genton’s estimator [37]. Then,
standardized square prediction error (SSPE) at each sampling site were calculated [38]:

SSPE(u) =
{z∗(u)− z(u)}2

σ2(u)
, (2)

where z∗(u) and σ2(u) are kriging estimate and kriging variance, respectively, at location
u. The expectation of the median value of SSPE is 0.455. The optimal variogram estimator
corresponds to the one with the median value of SSPE closest to 0.455 [38]. In this study,
the robust ordinary kriging z∗ROK(u) is written:

z∗ROK(u) =
n

∑
α=1

λα(u)z(uα), (3)

subject to:
n

∑
α=1

λα(u) = 1, (4)

where λα is the weight of the αth sample in the search radius used for kriging calculation.
For detailed descriptions of ROK, please refer to the related literature [38].

2.5. Robust Geographically Weighted Regression

Traditional global regression techniques, such as ordinary least squares regression
(OLSR), assume that the relationships between the dependent variable (i.e., wheat yield)
and its explanatory variables (i.e., main related soil factors) are constant throughout the
study area. OLSR model is expressed as [20]:

y = β0 +
p

∑
i=1

βixi + ε, (5)

where y, xi, and ε represent the wheat yield, the ith related soil factor, and the Gaussian error
term, respectively; β0 and βi represent the model intercept and the regression coefficient
for the ith related soil factor xi, respectively; and p is the number of the main related soil
factors in the OLSR model. This type of regression model is non-spatial; that is to say,
spatial coordinates are not considered in estimating regression parameters.

Geographically weighted regression (GWR) takes the spatial locations of samples into
the estimation of regression coefficients, permitting the coefficients to vary spatially. The
GWR model is expressed as [20,39]:

y(µ, v) = β0(µ, v) +
p

∑
i=1

βi(µ, v)xi(µ, v) + ε(µ, ν), (6)

where y(µ, v), xi(µ, v), and ε(µ, ν) represent wheat yield, the ith main soil factor, and the
Gaussian error term, respectively, at the location (µ, ν); β0(µ, v) and βi(µ, v) represent the
intercept and the local regression coefficient for the ith main soil factor, respectively, at
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the location (µ, ν). The vector of estimated regression coefficients at the location (µ, ν) is
calculated by:

^
β(µ, v) = [XTW(µ, v)X]

−1
XTW(µ, v)Y, (7)

where X is an [m × (p + 1)] data matrix of main related soil factors with p being the
number of the main related soil factors and m being the number of observed data at the
regression point (µ, ν); Y is an (m × 1) data vector of the wheat yield; W(u, v) is an (m × m)
local weights diagonal matrix which is calculated from a kernel function that places more
weights on samples spatially closer to the calibration location [20]. As the sample density
varies with spatial position, the adaptive bi-square kernel function was adopted for weight
estimation. The optimal adaptive bandwidth was determined based on the corrected
Akaike information criterion (AICc) [20]. Thirty-five surrounding points (i.e., optimal
adaptive bandwidth) were finally used to calibrate the basic GWR model at each location.

Since outliers are widely present in geochemical datasets, robust geographically
weighted regression (RGWR) borrowed from the robust multiple linear regression paradigm
was used to reduce the influences of outliers on the estimation of local regression coeffi-
cients. This technology is to refit a basic GWR with a filtered dataset by removing sample
data with large externally studentized residuals of an initial GWR fit [20,21]. Details about
the RGWR model were described in Fotheringham et al. [20] and Harris et al. [21].

2.6. Model Validation

In order to evaluate the modeling effects of the regression models (i.e., RGWR, GWR,
and OLSR), the regression residuals (n = 99) were analyzed. Traditionally, two indices are
often used to evaluate modeling effects based on predicted and measured values, namely
mean absolute error (MAE) and root-mean-square error (RMSE). The two indices can be
calculated using the following equations:

MAE =
1
n

n

∑
i=1
|zi − z∗i | (8)

RMSE =

√
1
n

n

∑
i=1

(
zi − z∗i

)2, (9)

where n is the number of validation points; zi and z∗i are the measured and predicted wheat
yield, respectively, at the ith validation site. Lower MAE and RMSE values indicate higher
prediction accuracy.

However, the above indices are susceptible to outliers. High outliers usually make
MAE and RMSE overestimated, which in turn affects the assessment results. In order to
weaken the influence of outliers on model validation, this study used the median rather
than the mean in the validation indices. When MAE and RMSE are calculated using the
idea of the median, both indices are transformed into median absolute error (MAE*):

MAE∗ = Median{|zi − z∗i ||1 ≤ i ≤ 99}. (10)

The relative improvement (RI) of one model over the other is calculated using [40]:

RI =
MAE∗R −MAE∗E

MAE∗R
, (11)

where MAE∗R and MAE∗E are the MAE∗ of the reference and evaluated models, respectively.
In this study, OLSR, GWR, and RGWR were performed on the “GWmodel” pack-

ages [20] in R 3.3.3 software (R Development Core Team); robust variograms were fitted
on the “Georob” package [41] in R 3.3.3 software (R Development Core Team); ArcGIS
(version 10.0) was used for producing maps.
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3. Results
3.1. Wheat Yield and Its Main Impact Factor

Stepwise regression analysis was used to identify the main impact factors on wheat
yield in Yucheng County. Three optimal explanatory variables (i.e., SOM, TP, and pH) were
identified from the 12 soil properties (i.e., SOM, pH, CEC, TN, TP, TK, and available boron,
copper, iron, zinc, molybdenum and manganese). The stepwise regression model is given
as follows:

YYield = 11.939 + 0.065× XSOM + 0.572× XTP − 0.839× XpH ,
(

R2 = 0.58
)

. (12)

In this model, the spatial coordinate was not considered [42]. The relationships
derived from the global model provided only average influences on wheat yield over the
entire region.

Descriptive statistics of sample data for wheat yield and its three main impact factors
(i.e., SOM, soil TP, and soil pH) are listed in Table 1. The soil samples in the whole study
area are alkaline. The mean of soil pH is 8.56 in the study area. Such an alkaline soil
environment may weaken the transformation ability of soil nutrients from fixed forms
to available forms directly or indirectly [43,44]. The coefficients of variation (CVs) of soil
SOM, TP, and wheat yield range from 15.12–38.49%, showing moderate variability for
these indicators [45].

Table 1. Descriptive statistics of the sample data for wheat yield, soil organic matter (SOM), total
phosphorus (TP), and soil pH (n = 99).

Properties Minimum Maximum Mean SD a CV b (%)

SOM (g kg−1) 2.33 31.07 16.03 6.17 38.49
TP (g kg−1) 0.20 3.14 1.52 0.50 32.89

Soil pH 7.50 9.14 8.56 0.22 2.57
Yield (t hm−2) 3.63 8.44 6.68 1.01 15.12

a Standard deviation. b Coefficient of variation.

3.2. Global Influences of the Main Related Factors on Wheat Yield

Pearson’s correlation coefficients (r) between wheat yield and its main related factors
are shown in Table 2. Wheat yield is negatively correlated with soil pH (r = −0.56) and
positively correlated with SOM (r = 0.71) and TP (r = 0.62). The correlation between the
three indicators (i.e., SOM, TP, and pH) is weak (Table 2). Therefore, SOM, TP, and soil pH
all strongly influence wheat yield. However, since the traditional correlation analysis does
not consider spatial coordinates, the above results can only reflect the global rather than
local effects.

Table 2. Pearson’s correlation coefficients between wheat yield and its main impact factors.

Variables Wheat Yield Soil Organic
Matter

Soil Total
Phosphorus Soil pH

Wheat yield 1 0.71 ** 0.62 ** −0.56 **
Soil organic matter 1 0.20 * −0.15

Soil total phosphorus 1 −0.13
Soil pH 1

* Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 level (two-tailed).

3.3. Robust Geostatistical Analysis of Wheat Yield and the Main Related Factors

The medians of the SSPE obtained by leave-one-out cross-validation are presented
in Table 3. The medians of SSPE corresponding to the traditional Matheron estimator
deviated the farthest from 0.455. The main reason is that the traditional Matheron estimator
is sensitive to outliers. The optimal estimators were the Dowd estimator for wheat yield
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and SOM and Genton estimators for soil TP and pH. Therefore, the above robust estimators
rather than the traditionally-used Matheron estimator were adopted in this study.

Table 3. The medians of the standardized square prediction error (SSPE) generated by leave-one-out
cross-validation.

Wheat Yield Soil Organic
Matter

Soil Total
Phosphorus Soil pH

Matheron 0.33 0.334 0.326 0.351
Genton 0.408 0.471 0.448 0.451
Dowd 0.449 0.453 0.386 0.432

Cressie-Hawkins 0.418 0. 412 0.422 0.44
Note: the medians of SSPE closest to 0.455 are in bold.

There was no apparent anisotropy for wheat yield, SOM, soil TP and pH. Therefore,
all robust variograms were fitted omnidirectionally. Parameters of the optimal robust
variogram are shown in Table 4. Except that the experimental variogram corresponding to
wheat yield is fitted by the spherical model, the experimental variograms corresponding to
the others are fitted by the exponential model. The nugget/sill ratios range from 19.79% to
31.58%, showing moderate spatial self-dependency for all four indicators [41].

Table 4. Parameters of the optimal robust variogram models.

Estimator Model Nugget Sill Nugget/Sill (%) Range (km)

Wheat yield Dowd Spherical 0.21 0.85 24.71 7.91
Soil organic matter Dowd Exponential 5.98 30.21 19.79 11.43

Soil total
phosphorus Genton Exponential 0.06 0.19 31.58 8.95

Soil pH Genton Exponential 0.012 0.041 29.27 9.33

The spatial distribution maps of wheat yield and its main impact factors generated
by ROK are presented in Figure 2. High-yield areas are mainly concentrated in the west
and southeast of the study area, and low-yield areas are mainly located in the northeast
of the study area. It can be seen from Figure 2 that multiple factors jointly affected the
wheat yield in the study area. The low-yield areas in the northeast also have lower SOM,
TP, and stronger soil alkalinity; high-yield areas in the west also have higher SOM, TP, and
weaker soil alkalinity. However, only a qualitative effect of these soil factors on wheat yield
can be obtained from Figure 2. Therefore, it is necessary to explore further the spatially
non-stationary influences of main related factors on winter wheat yield.

3.4. Model Validation for RGWR

Validation indices for OLSR, GWR and RGWR are shown in Table 5. RGWR produced
the best modeling effect (MAE* = 0.5), and OLSR produced the worst modeling effect
(MAE* = 1.04). Relative improvement accuracy over OLSR was 52.31% for RGWR and
34.1% for GWR. Therefore, RGWR performed better than GWR and OLSR for modeling the
relationships between wheat yield and its related impact factors (i.e., SOM, soil TP, and soil
pH). Therefore, RGWR could effectively reveal the spatially non-stationary influences of
main related factors on winter wheat yield in this study.

3.5. Spatially Non-Stationary Relationships between Wheat Yield and Its Main Impact Factors

Local regression coefficients (i.e., intercepts, slopes) generated by RGWR analysis
of wheat yield against its main impact factors are presented in Figure 3. The spatially
non-stationary relationship maps of wheat yield vs. its main impact factors could be used
to explain the local causes of low wheat yield in the study area. The relationships between
wheat yield and its three related soil factors were spatially non-stationary (Figure 3); that
is to say, the regression coefficients vary with spatial position. Their corresponding local
regression coefficients explain the influences of SOM, soil TP, and soil pH on wheat yield. In
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general, positive regression coefficients represent the positive influence on wheat yield, and
negative regression coefficients represent the negative influence on wheat yield. Therefore,
the measures such as reducing soil alkalinity and increasing soil SOM and TP levels should
be conducted for increasing wheat yield in this county. The influence strength of the related
impact factors on wheat yield varies with spatial location. The areas with the strongest
impact were mainly located in the southeast, east, and west of the study area. The results
are crucial information for improving soil nutrient management.
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Table 5. Validation indices a for the regression models calculated based on the 99 pairs of the
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OLSR 1.04 -
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RGWR 0.50 52.31
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3.6. Delineating Areas for Soil Improvement

Soil nutrient management areas (wheat yield < 6.00 t hm−2) delineated based on the
spatial distribution pattern of wheat yield are shown in Figure 4. Low-yield areas are
mainly located in the northeast (i.e., subarea I) and the middle east (i.e., subarea II) of
the study area (Figure 4). Local regression coefficients generated by RGWR indicate that
soil pH has a negative contribution to wheat yield while SOM and soil TP have positive
contributions (Figure 3). Thus, reducing soil alkalinity, increasing SOM and soil TP should
be important measures to increase wheat yield in Yucheng County. Thus, applying organic
fertilizer, phosphate fertilizer, or/and acid fertilizer may be important measures to improve
soil nutrition, which may be beneficial to increase wheat production in Yucheng County. As
the influence strength of the main impact factors (i.e., SOM, soil TP, and soil pH) on wheat
yield varies with spatial location (Figure 3), improvement measures should be different
for different low-yield areas. For example, SOM has a greater impact on wheat yield in
subarea I than in subarea II; soil pH has a greater impact on wheat yield in subarea I than
in subarea II (Figures 3 and 4).
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Usually, wheat yield is influenced by multiple factors, such as soil physical and chem-
ical properties, climate, irrigation, tillage and so on [5,6,8,12]. At the national scale of
China, climate factors may be important indicators affecting the spatial variation of wheat
yield [46]. Because the environmental factors in each region are not identical, the main
factors that limit the growth of wheat in each region are different. Stepwise regression is
an effective model for identifying the main impact factors on crop yield at a regional scale.
However, this model is a type of global regression, and spatial coordinate was not consid-
ered in regression coefficient estimation. Thus, stepwise regression can only qualitatively
identify the main factors that impact wheat yield in the entire study area. RGWR takes into
account spatial coordinates in the regression analysis and is robust to outliers. Therefore,
RGWR was used to explore the spatially non-stationary influences of main related soil
factors on winter wheat yield. Model validation shows that the relationships generated by
RGWR are more accurate than those generated by GWR and OLSR.

This study mainly focused on improving soil nutrient management at the county scale
to increase wheat yield. Crop yields at the regional scale are often affected by local limiting
soil factors. In order to increase the crop yields in a spatially targeted manner, the limiting
soil factors must be determined first, and then the spatially non-stationary relationship
between crop yield and the limiting soil factors should be explored.

It is worth noting that the content of specific soil factors and their spatial variability
in each study area are quite different, and the limiting factors of wheat yield in this study
area are not necessarily the same as those in other areas. Moreover, since soil factors will
also change to a certain extent over time, the main limiting factors of wheat yield may also
change after a larger time span. After a long period of time or in other study areas, the main
limiting factors of crop yield and their spatially varying impact need to be re-determined.
In addition, wheat cultivars may also have an important influence on wheat yield [47].
Ji-Mai-22, one of the most important wheat cultivars in Yucheng County, was considered in
this study. If other wheat cultivars were planted in the same study area, the relationships
between wheat yield and related soil properties might not be identical.
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4. Conclusions

Stepwise regression was used to identify the most important impact factor on wheat
yield from 12 potential impact factors. Then, RGWR was established to explore the rela-
tionships between winter wheat yield and its main related soil factors, and its modeling
effect was further compared with the traditionally-used OLSR and GWR. Finally, robust
geostatistical analysis was conducted for spatially precise soil management measures in the
low-yield areas of the county. Results showed that: (i) SOM, soil TP, and pH were the main
impact factors on wheat yield; (ii) the relative improvement accuracy over OLSR was 52.31%
for RGWR and 34.1% for GWR; (iii) RGWR revealed the spatially non-stationary influences
of the main impact factors on wheat yield, which were ignored by the traditional OLSR
model; (iv) robust geostatistics obtain a better spatial prediction effect and the low-yield
areas are mainly located in the northeast and middle east of the study area. Therefore, the
method recommended in this study provided information for guideline field management.
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