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Abstract: Nitrogen (N) fertilization is a crucial agricultural practice for boosting production traits
in vegetables. However, N synthetic fertilizers—commonly adopted by farmers—have several
counterproductive effects on the environment and on humans. The research was performed to assess
the combined influence of plant growth promoting bacteria (PGPB) (Azospirillum brasilense DSM 1690,
A. brasilense DSM 2298 and Pseudomonas sp. DSM 25356) and various N fertilization doses (0, 30, 60
or 120 kg ha−1) on growth, yield, quality and nitrogen indices of lettuce in protected cultivation.
Plant height, root collar diameter, number of leaves and fresh weight were enhanced by A. brasilense
DSM 2298 inoculation and N at 30 or 60 kg ha−1. Overall, soluble solids content (SSC), ascorbic acid,
total phenolics, carotenoids, total chlorophyll and total sugars were augmented by the combined
effect of A. brasilense strains and 30, 60 or 120 kg N ha−1. Furthermore, PGBP inoculation improved
potassium (K) and magnesium (Mg) concentrations in leaf tissues. PGPB inoculation increased N
leaf concentration; however, it hastened N indices. These results suggest that the PGPB tested can be
considered an eco-friendly tool to improve lettuce yield, particularly when combined with N at 30 or
60 kg ha−1.

Keywords: Azospirillum brasilense strains; Pseudomonas sp.; N fertilization rate; ‘Canasta’ lettuce;
nutritional features; functional components; NUE

1. Introduction

Lettuce (Lactuca sativa L.) is a cool-season leafy vegetable grown in all regions [1,2].
Currently, more than a million hectares are cultivated with a production of more than
22 million tons [3]. Lettuce is mainly consumed as a fresh-cut, raw salad vegetable and
provides a notable source of vitamins (A, B9, C and E), carotenoids, flavonoids, minerals
and phenolic compounds [4–9].

Vegetable production systems need specific agricultural practices [10–12] and depend
on high quantity of mineral nutrients (especially N, P and K) to enhance growth, yield and
quality [13–15]. However, the incessant use of artificial fertilizers may pose threats on the
ecosystem survival. In this scenario—in line with the European Green Deal strategies—plant
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biostimulants, including plant growth promoting bacteria (PGPB), are considered eco-
friendly tools to hasten growth and development of vegetable crops [13,14,16–18]. PGPB
consist of a group of microorganisms characterized by the ability to colonize roots, rhizo-
sphere, and interior plant tissues [19,20]. PGPB can elicit plant development by influencing
several processes such as nitrogen fixation, nitrate reductase activity [21], hormones synthe-
sis (auxins, cytokinins, gibberellins, and ethylene) [22–24], solubilization of phosphate [25],
and biological control of pathogens [26]. Nowadays, a wide range of PGPB genus was
recognized, involving Pseudomonas, Burkholderia, Bacillus, Bradyrhizobium, Rhizobium, Glu-
conacetobacter, Herbaspirillum, and Azozpirillum [27–29]. Among them, Azospirillum and
Pseudomonas are two free-living genus commonly found all over the world and are generally
used in the agriculture sector [21,30].

As reported by Broadley et al. [31], N availability influences phenotypic and physi-
ological plant parameters, which in turn affect marketability features and visual quality
traits. However, the high nitrogen fertilization rate—commonly adopted by farmers—bring
an upsurge in terms of nitrate content in plant tissues, causing harmful effects on the
ecosystem (N leaching) and on human health. In this respect, the application of PGPB
could be helpful to boost lettuce yield due to their aptitudes to enhance NUE, eliciting
mineral uptake and utilization efficiency. Nevertheless, since plant response to PGPB and
N dose are influenced by genotype and growing conditions, a detailed study is required to
appraise methods and doses. To the best of our knowledge, the literature lacks information
on the interaction between the PGPB tested and N dose in lettuce and on its effects on
quantitative and qualitative traits.

Starting from the aforesaid premise, the aim of the present research was to appraise
the influence of three PGPB (Azospirillum brasilense DSM 1690, A. brasilense DSM 2298 and
Pseudomonas sp. DSM 25356) under four nitrogen fertilization levels (0, 30, 60, 120 kg ha−1)
on ‘Canasta’ lettuce yield, as well as nutritional and functional compounds. This research
offers information on the function of three different PGPB and on their influence on lettuce
N assumption.

2. Materials and Methods
2.1. Experimental Site and Material

The investigation was accomplished during the 2021 winter-spring period at the field
facilities of the Department of Agricultural, Food and Forestry Sciences of the University of
Palermo (SAAF), Palermo (latitude 38◦12′ N, longitude 13◦36′ E, altitude 65 m), located in
a sub-urban area. Plants under investigation were grown in a polyethylene-covered tunnel.
The tunnel was equipped with a drip irrigation system for water and nutrients distribution.
A data logger was placed inside the tunnel to record microclimate data (daily maximum
and minimum temperature) (Figure 1).

On 5 February 2021, 720 Lactuca sativa L. ‘Canasta’ (Syngenta Seed, Basel, Switzerland)
plug plants at 3–4 true leaves stage were transplanted adopting an inter-/intra-row spacing
of 0.25 m and obtaining a density of 16 plant m−2. On 6 April 2021, all plants were harvested
by cutting the collar, and then the external damaged leaves were removed. Throughout the
whole cultivation cycle, all plant needs (water, nutrients, and cultivation practices) were
covered, as recommended by Tesi [32]. The soil was a medium-textured soil at pH 7.1,
containing 1.7% total nitrogen and 3.1% organic matter.

2.2. Design and Procedure

Four N levels (0, 30, 60, or 120 kg ha−1) were combined with four microorganism
treatments (not inoculated or inoculated with A. brasilense DSM 1690, A. brasilense DSM 2298,
and Pseudomonas sp. DSM 25356) in a two factorial experiment rendering 16 treatments.
The treatments were set in a complete randomized block design, and they were replicated
three times. Each experimental block enclosed 15 lettuce plants for a total of 720 plants
(16 treatments × 3 blocks × 15 plants).
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Figure 1. Maximum and minimum temperatures inside the tunnel from 5 February 2021 to 6
April 2021.

The nitrogen fertilization was accomplished using Nitrosol 34® (Mugavero fertiliz-
ers, Italy) and it was applied weekly starting one week after transplant. This nitrogen
fertilizer contained 34% of nitrogen in the form of ammonium nitrate (NH4NO3), dis-
tributed via a fertigation system.

The PGPB strains adopted for this study are deposited in the Leibniz Institute DSMZ
(German Collection of Microorganisms and Cell Cultures GmbH). Each strain was grown
in nutrient agar plate. All Pre-cultures were obtained inoculating pure single colonies in
100-mL Erlenmeyer flasks at 28 ◦C with 10 mL of nutrient broth (NB), containing 5.0 g L−1

of peptone and 3.0 g L−1 of meat extract, spinning at 150 rpm in a centrifuge for 24 h
(Azospirillum brasilense) and 48 h (Pseudomonas sp.).

After the incubation time, each bacterial culture was collected in a 50 mL tube and
centrifuged at 4000 rpm for 10 min, then the supernatant was removed, and the pellet
resuspended in 0.8% NaCl. The optical density was corrected up to 1.0 (540 nm) for about
109 CFU/mL. A volume of 2 mL of this suspension was inoculated in 500-mL flasks with
120 mL of nutrient broth.

Growth was established optically at 600 nm (Beckman DU730 spectrophotometer).
Finally, CFU per millilitre was assessed by multiplying the number of colonies by the
dilution factor.

Each of the three bacteria was inoculated to the plants during the transplanting phase
by soaking the roots for 2 min in a solution containing 10 mL L−1 of microorganism
suspension; in addition, 15 days after transplant, the inoculation was repeated in the soil
using 100 mL of solution. Control plants only received water treatment.

2.3. Measurements

Determinations on agronomic and colorimetric traits were performed on six samples,
casually chosen from each replicate. Once ‘Canasta’ plants were harvested, head fresh
weight, number of leaves, collar diameter and plant height values were collected. CIELab
colour coordinates were appraised via a colorimeter (Chroma-meter CR-400, Minolta
corporation Ltd., Osaka, Japan).

To appraise head dry matter content, the samples were put in a thermo-aerated oven
at 105 ◦C until constant weight. The dry matter value was expressed as percentage using
the following formula: dry weight (g)/fresh weight (g)*100.

All analysis on plant nutritional and bioactive traits were appraised on six samples,
arbitrarily chosen from each biological replicate. Soluble solids content values (SSC) were
obtained through a refractometer (MTD-045 nD, Taipei, Taiwan) and the results were
presented as ◦Brix.

Plant ascorbic acid content was determined by employing a Reflectometer RQflex10
Reflectoquant® (Sigma-Aldrich, Saint Louis, MO, USA) and Reflectoquant Ascorbic Acid
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Test Strips (Merck, Darmstadt, Germany). Total phenolic values were appraised by the
Folin-Ciocalteu method [33]. Total sugar concentration was evaluated following the method
described by Serna et al. [34].

Total chlorophyll and carotenoid contents were assessed spectrophotometrically fol-
lowing the procedure of Costache et al. [35]. Both pigments values were expressed as
mg 100 g−1 of fresh weight. Total nitrogen (N) was evaluated via the Kjeldahl method.
Phosphorous (P), potassium (K), calcium (Ca) and magnesium (Mg) concentrations were
appraised following the Fogg and Wilkinson method [36] and the Morand and Gullo
method [37]. The entire mineral profile data were reported as mg g−1 dry weight.

N indices (nitrogen use efficiency and nitrogen uptake efficiency) were calculated as
follow: Nitrogen use efficiency (NUE) = yield (t)/nitrogen application rate (kg), nitrogen
uptake efficiency (UE) = plant nitrogen content (kg)/nitrogen application rate (kg).

2.4. Statistical Analyses

All collected data were analysed (StatSoft, Inc., Chicago, IL, USA) through two-way
analysis of variance (ANOVA) by the SPSS software v. 20 (StatSoft, Inc., Chicago, IL,
USA), setting nitrogen doses and microorganisms as main factors. For means separa-
tion, Tukey’s honestly significant difference (HSD) test at p ≤ 0.05 was used. Data ex-
pressed as percentages were subjected to arcsin transformation before ANOVA analysis
(Ø = arcsin(p/100)1/2).

3. Results
3.1. Implications of PGPB and Nitrogen Dose on Yield and Yield-Related Features

Plant height, root collar diameter, number of leaves, head fresh weight and head
dry matter percentage were influenced by PGPB application and nitrogen dose (Table 1).
Moreover, ANOVA indicated a significant effect of the interaction PGPB × N (Table 1).

Table 1. Interaction effect of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690,
A. brasilense DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (0, 30, 60 and 120 kg ha−1)
on plant height, root collar diameter, number of leaves, head fresh weight and head dry weight of
‘Canasta’ lettuce.

Treatments Plant Height (cm) Root Collar
Diameter (mm)

Number of Leaves
(No. plant−1)

Head Fresh Weight
(g plant−1)

Head Dry
Matter (%)

N dose (kg ha−1) PGPB

0

Non-inoculated 24.4 g 16.8 i 24.0 d 292.9 l 12.5 g
A. brasilense DSM 1690 27.9 d 20.1 h 28.3 b 633.4 h 14.2 c
A. brasilense DSM 2298 30.2 c 28.5 a 25.7 c 637.4 h 13.8 d

Pseudomonas sp. DSM 25356 25.2 f 12.8 j 23.7 e 457.0 k 13.3 e

30

Non-inoculated 28.4 d 28.5 a 24.7 cd 565.0 j 12.7 g
A. brasilense DSM 1690 31.5 b 22.9 f 25.3 c 751.3 c 14.7 c
A. brasilense DSM 2298 32.8 a 24.1 e 24.7 cd 835.3 a 14.0 c

Pseudomonas sp. DSM 25356 28.0 d 21.8 g 30.0 a 653.5 g 13.6 de

60

Non-inoculated 29.0 c 28.9 a 28.7 ab 631.1 h 13.1 f
A. brasilense DSM 1690 32.0 a 23.8 ef 30.3 a 603.5 i 14.9 b
A. brasilense DSM 2298 26.9 e 25.3 d 26.0 c 675.3 e 14.3 c

Pseudomonas sp. DSM 25356 30.2 c 27.1 c 25.7 c 725.6 d 13.8 d

120

Non-inoculated 30.0 c 26.0 d 26.7 bc 630.1 h 13.5 e
A. brasilense DSM 1690 25.8 f 28.0 b 27.7 b 658.1 f 15.5 a
A. brasilense DSM 2298 29.8 cd 24.2 e 26.3 c 816.3 b 15.1 b

Pseudomonas sp. DSM 25356 30.3 c 22.7 f 29.7 a 829.4 a 13.8 d

Significance
Nitrogen (N) *** *** *** *** ***

PGPB *** *** *** *** ***
N × PGPB *** *** *** *** ***

Means followed by the same letter for treatments are not significantly different accordingly to Tukey’s honestly
significant difference (HSD) test at p ≤ 0.05. Significance levels: *** significant at p ≤ 0.001.

The highest plant height was observed in plants from the combination 30×A. brasilense
DSM 2298 and the combination 60 × A. brasilense DSM 1690, followed by those supplied
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with 30 kg N ha−1 and treated with A. brasilense DSM 1690. Control plants (0 kg N ha−1 × non-
inoculated) displayed the lowest values (Table 1).

Both plants supplied with A. brasilense DSM 2298 and treated with 0 kg N ha−1

and those non-inoculated and supplied with 30 or 60 kg N ha−1 had the highest root
collar diameter, followed by plants subjected to the highest N level and inoculated with
A. brasilense DSM 1690 (Table 1). Lettuce plants from the 0 × Pseudomonas sp. DSM 25356
combination had the lowest root collar diameter.

The highest number of leaves was appraised in the combinations: 30× Pseudomonas sp.
DSM 25356, 60 × A. brasilense DSM 1690 and 120 × Pseudomonas sp. DSM 25356, followed
by those with N at 60 or 120 kg N ha−1 and A. brasilense DSM 1690 (Table 1). Nevertheless,
plants from non-inoculated plots and treated with 60 kg N ha−1 did not significantly
diverge neither from plants from the combinations 30 × Pseudomonas sp. DSM 25356,
60 kg × A. brasilense DSM 1690 and 120 × Pseudomonas sp. DSM 25356 nor from those
supplied with 60 or 120 kg N ha−1 and inoculated with A. brasilense DSM 1690. The lowest
number of leaves was observed in plants treated with 0 kg N ha−1 and inoculated with
Pseudomonas sp. DSM 25356 (Table 1).

Plants fertigated with 30 kg N ha−1 and treated with A. brasilense DSM 2298 and those
exposed to 120 × Pseudomonas sp. DSM 25356 combination had the highest head fresh
weight, followed by plants from plots fertigated with the 120 kg N ha−1 and inoculated
with A. brasilense DSM 2298, which in turn revealed higher values than plants from the
combination 30 × A. brasilense DSM 1690 (Table 1). Control plants had the lowest head
fresh weight.

The greatest head dry matter percentage was found in plants fertigated with the
highest nitrogen dose and inoculated with A. brasilense DSM 1690, followed by those
exposed to 120 kg N ha−1 and inoculated with A. brasilense DSM 2298 (Table 1). The lowest
head dry matter percentage was observed in control plants and in non-inoculated plants
fertigated with 30 kg N ha−1.

3.2. Implications of PGPB and Nitrogen Dose on Leaf Colour, Nutritional and Functional
Components and Mineral Concentrations

ANOVA showed that SSC and CIELab colour parameters were significantly influenced
by PGPB and nitrogen dose treatments and by their interaction (Table 2).

Plants from the 30 × A. brasilense DSM 1690, 60 × A. brasilense DSM 2298 and
120 × Pseudomonas sp. DSM 25356 combinations had the highest SSC (Table 2), whereas,
non-inoculated plants fertigated with 30 kg N ha−1 had the lowest SSC.

Plants supplied with 30 kg N ha−1 and treated with A. brasilense DSM 2298 had the
highest a* values, whereas non-fertigated plants inoculated with A. brasilense DSM 1690
had the lowest a* values. Plants from the combinations 60 × A. brasilense DSM 1690 had
the highest b* (Table 2), while, non-fertigated plants inoculated with brasilense DSM 2298
had the lowest b*.

The highest L* value was observed in plants fertigated with 120 kg N ha−1 and treated
with Pseudomonas sp. DSM 25356, followed by that detected in plants not fertigated and
exposed to Pseudomonas sp. DSM 25356 (Table 2). The lowest lightness value was recorded
in plants treated with A. brasilense DSM 1690 and not fertigated with N.

As regard total sugars, ANOVA did not show a significant effect of the interaction
N × PGPB (Figure 2). Averaged over PGPB, total sugars level was not affected by nitrogen
dose (Figure 2).

Contrariwise, when averaged over nitrogen dose, sugar content was significantly
affected by inoculation. Plants inoculated with A. brasilense DSM 1690 revealed the highest
values, followed by those inoculated with A. brasilense DSM 2298, which in turn showed
a higher total sugar concentration than those treated with Pseudomonas sp. DSM 25356
(Figure 2). Non-inoculated plants had the lowest total sugar content.
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Table 2. Interaction effect of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690, A.
brasilense DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (0, 30, 60 and 120 kg ha−1)
on soluble solid content (SSC), a*, b* and L* of ‘Canasta’ lettuce.

Treatments SSC (◦Brix) a* b* L*

N dose (kg ha−1) PGPB

0

Non-inoculated 4.1 b −19.32 c 26.87 c 46.50 cd
A. brasilense DSM 1690 4.1 b −20.67 d 28.30 c 41.70 e
A. brasilense DSM 2298 4.0 c −17.09 b 22.58 e 45.39 d

Pseudomonas sp. DSM 25356 4.1 a −19.40 c 32.46 a 53.10 b

30

Non-inoculated 3.2 e −17.26 b 24.85 d 52.17 b
A. brasilense DSM 1690 4.4 a −19.34 c 32.61 a 44.65 d
A. brasilense DSM 2298 4.2 b −11.30 a 24.39 d 44.36 d

Pseudomonas sp. DSM 25356 4.1 b −17.96 b 33.34 a 52.11 b

60

Non-inoculated 3.7 d −17.87 b 30.55 b 52.96 b
A. brasilense DSM 1690 4.2 b −20.74 d 33.67 a 47.36 c
A. brasilense DSM 2298 4.3 a −18.82 c 25.11 d 44.67 d

Pseudomonas sp. DSM 25356 4.0 c −19.63 c 31.15 b 47.60 c

120

Non-inoculated 4.2 b −16.81 b 25.74 d 45.50 d
A. brasilense DSM 1690 4.1 b −17.13 b 25.49 d 48.05 c
A. brasilense DSM 2298 4.1 b −20.22 d 23.18 e 44.18 d

Pseudomonas sp. DSM 25356 4.5 a −17.00 b 26.17 c 54.31 a

Significance
Nitrogen (N) * *** *** ***

PGPB *** *** *** ***
N × PGPB *** *** *** ***

Means followed by the same letter for treatments are not significantly different accordingly to Tukey’s honestly
significant difference (HSD) test at p≤ 0.05. Significance levels: * significant at p≤ 0.05; *** significant at p ≤ 0.001.
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Figure 2. Impact of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690, A. brasilense
DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (0, 30, 60 and 120 kg ha−1) on total
sugars of ‘Canasta’ lettuce. Means followed by the same letter for treatments are not significantly
different accordingly to Tukey’s honestly significant difference (HSD) test at p ≤ 0.05. Significance
levels: NS non-significant; *** significant at p ≤ 0.001. Bars indicate standard error. 0 N, 30 N, 60 N
and 120 N represent 0, 30, 60 and 120 kg N ha−1, respectively.

As regard ascorbic acid, total phenolics, carotenoids, total chlorophyll and nitrogen,
ANOVA showed a significant effect of the interaction between nitrogen dose and PGPB
application (Table 3).
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Table 3. Interaction effect of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690,
A. brasilense DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (0, 30, 60 and 120 kg ha−1)
on ascorbic acid, total phenolics, carotenoids, total chlorophyll and nitrogen (N) of ‘Canasta’ lettuce.

Treatments Ascorbic Acid
(mg g−1 fw)

Total Phenolics
(µg g−1 fw)

Carotenoids
(mg 100 g−1 fw)

Total Chlorophyll
(mg 100 g−1 fw) N (mg g−1 dw)

N dose (kg ha−1) PGPB

0

Non-inoculated 28.28 f 47.90 d 14.94 g 33.47 h 25.66 i
A. brasilense DSM 1690 39.06 a 55.38 a 17.52 e 38.32 c 30.27 f
A. brasilense DSM 2298 36.84 b 51.15 b 17.23 e 36.74 f 28.98 g

Pseudomonas sp. DSM 25356 35.65 c 49.76 c 16.70 f 35.81 g 25.56 i

30

Non-inoculated 28.14 f 47.52 d 15.59 g 35.37 g 28.67 h
A. brasilense DSM 1690 39.18 a 55.65 a 20.96 b 40.50 b 33.46 d
A. brasilense DSM 2298 36.51 b 51.51 b 18.67 d 37.67 d 30.18 f

Pseudomonas sp. DSM 25356 34.94 d 49.80 c 17.20 ef 36.96 e 29.43 g

60

Non-inoculated 27.78 f 47.52 d 15.52 g 35.45 g 30.46 f
A. brasilense DSM 1690 39.35 a 55.49 a 22.88 a 40.43 b 35.47 b
A. brasilense DSM 2298 36.46 bc 51.55 b 19.52 c 37.86 d 31.55 e

Pseudomonas sp. DSM 25356 34.44 d 49.61 c 17.23 e 36.88 e 31.69 e

120

Non-inoculated 27.22 g 45.54 e 15.48 g 35.41 g 34.36 c
A. brasilense DSM 1690 37.27 b 52.01 b 22.79 a 42.53 a 38.59 a
A. brasilense DSM 2298 34.99 d 50.26 c 19.48 c 38.76 c 34.70 c

Pseudomonas sp. DSM 25356 30.98 e 48.18 d 17.36 e 37.28 e 35.52 b

Significance
Nitrogen (N) *** *** *** *** ***

PGPB *** *** *** *** ***
N × PGPB *** ** *** *** ***

Means followed by the same letter for treatments are not significantly different accordingly to Tukey’s honestly
significant difference (HSD) test at p ≤ 0.05. Significance levels: ** significant at p ≤ 0.005; *** significant at
p ≤ 0.001.

Plants inoculated with A. brasilense DSM 1690 and fertigated with 0, 30 or 60 kg N ha−1

had a higher ascorbic acid concentration than those treated with A. brasilense DSM 2298
and fertigated with 0, 30 or 60 kg N ha−1 (Table 3). The lowest ascorbic acid concentration
was detected in non-inoculated plants fertigated with the highest nitrogen dose. Data on
total phenolics followed the trend described for ascorbic acid (Table 3).

Plants inoculated with A. brasilense DSM 1690 and fertigated with 60 or 120 kg N ha−1

had a higher carotenoids content (Table 3) than those fertigated with 30 kg N ha−1 and
treated with A. brasilense DSM 1690. Regardless N dosages, non-inoculated plants revealed
the lowest carotenoids concentrations.

Lettuce plants supplied with the highest N dosage and inoculated with A. brasilense
DSM 1690 had a higher total chlorophyll concentration (Table 3) than those inoculated with
the same PGPB strain and fertigated with 30 or 60 kg N ha−1. The lowest values were
detected in control plants.

Plants exposed to 120 kg N ha−1 and inoculated with A. brasilense DSM 1690 had the
highest N concentration (Table 3), followed by those fertigated with 60 kg N ha−1 and
inoculated with A. brasilense DSM 1690. Control plants and those from non-fertigated plots
and inoculated with Pseudomonas sp. DSM 25356 had the lowest N concentration values.

ANOVA for P, K, Ca and Mg did not reveal a significant effect of the interaction
N × PGPB (Figure 3).

Regardless of the PGPB application, plants fertigated with 60 or 120 kg N ha−1 had
the highest P concentration (Figure 3A), whereas plants not supplied with nitrogen showed
the lowest P concentration values. Conversely, when averaged over nitrogen fertigation,
PGPB application did not significantly affected P concentration.

Nitrogen fertigation level did not significantly affect K concentration (Figure 3B).
Contrariwise, PGPB significantly affected the aforementioned parameter. The highest K
concentration was observed in plants inoculated with A. brasilense DSM 1690, followed by
that detected in plants treated with the other strain of A. brasilense (DSM 2298). The lowest
K concentration was recorded in non-inoculated plants.
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Figure 3. Impact of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690, A. brasilense
DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (0, 30, 60 and 120 kg ha−1) on
phosphorous (P) (A), potassium (K) (B), calcium (Ca) (C) and magnesium (Mg) (D) of ‘Canasta’
lettuce. Means followed by the same letter for treatments are not significantly different accordingly to
Tukey’s honestly significant difference (HSD) test at p ≤ 0.05. Significance levels: NS non-significant;
*** significant at p ≤ 0.001. Bars indicate standard error. 0 N, 30 N, 60 N and 120 N represent 0, 30, 60
and 120 kg N ha−1, respectively.

Nitrogen dose and PGPB did not significantly affect Ca concentration (Figure 3C).
Data on Mg concentration supported the trend presented for K concentration (Figure 3D).

3.3. Nitrogen Indices

As regard NUE and UE, ANOVA revealed a significant effect of the interaction
N × PGPB (Table 4).

Lettuce plants from the combination 30× A. brasilense DSM 2298 displayed the highest
NUE value, followed by those fertigated with 30 kg N ha−1 and inoculated with A. brasilense
DSM 1690 (Table 4). The lowest NUE was observed in non-inoculated plants fertigated
with 120 kg N ha−1.

Plants treated with A. brasilense DSM 1690 and fertigated with 30 kg N ha−1 had the
highest UE values, followed by those inoculated with A. brasilense DSM 2298 and supplied
with 30 kg N ha−1, which in turn revealed a higher UE value than those inoculated with
Pseudomonas sp. DSM 25356 and fed with 30 kg N ha−1 (Table 4). The lowest UE values
were recorded from non-inoculated plants and exposed to the highest N level.
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Table 4. Interaction effect of plant growth promoting bacteria (PGPB) (A. brasilense DSM 1690,
A. brasilense DSM 2298 and Pseudomonas sp. DSM 25356) and nitrogen dose (30, 60 and 120 kg ha−1)
on nitrogen use efficiency (NUE) and nitrogen utilization efficiency (UE) of ‘Canasta’ lettuce.

Treatments NUE (t kg−1) UE (kg kg−1)

N dose (kg ha−1) PGPB

30

Non-inoculated 3.01 d 11.00 d
A. brasilense DSM 1690 4.01 b 19.66 a
A. brasilense DSM 2298 4.45 a 18.87 b

Pseudomonas sp. DSM 25356 3.49 c 13.92 c

60

Non-inoculated 1.68 g 6.70 f
A. brasilense DSM 1690 1.61 h 8.50 e
A. brasilense DSM 2298 1.80 f 8.13 e

Pseudomonas sp. DSM 25356 1.94 e 8.44 e

120

Non-inoculated 0.84 j 3.91 h
A. brasilense DSM 1690 0.88 j 5.26 g
A. brasilense DSM 2298 1.09 i 5.69 g

Pseudomonas sp. DSM 25356 1.11 i 5.43 g

Significance
Nitrogen (N) *** ***

PGPB *** ***
N × PGPB *** ***

Means followed by the same letter for treatments are not significantly different accordingly to Tukey’s honestly
significant difference (HSD) test at p ≤ 0.05. Significance levels: *** significant at p ≤ 0.001.

4. Discussion

Nitrogen supply is a fundamental agronomic practice to guarantee prime growth,
development, and yield of any crop. However, the improper use of nitrogen can determine
environmental repercussions. Concomitantly, the nitrogen supply and its accumulation
in plant tissues are a major issue, especially in vegetables classified as nitrogen iper-
accumulators, such as lettuce. Concomitantly, contemporary agriculture must afford
the dual mission of sustaining the global population and reducing the ecological effect
of the vegetable production sector [38,39]. An innovative agronomic practice to face
these challenges, is the application of biostimulants, including PGPMs, such as plant
growth promoting bacteria (PGPB), which offer an attractive way to substitute chemical
fertilisers [40].

Our study highlighted that both plants inoculated with Azospirillum brasilense and
fertigated with 30 or 60 kg N ha−1 and those inoculated with Pseudomonas sp. and grown
with 120 kg N ha−1, showed the best results in terms of plant vigour traits, yield and head
dry matter percentage. These findings are in accord with those reported by Gravel et al. [41],
who, by studying the effect of two PGPB (Pseudomonas and Trichoderma genus) on growth
and yield of tomato cultivated in greenhouse, found that plants treated with PGPB had
higher shoots and roots fresh weight, plant length and fruit yield. Our outcomes are also in
agreement with those by Bhattacharyya and Jha [42], who reported that PGPB application
significantly enhances plant vigour-related traits and dry matter production in various
crops, such as potato and tomato. Furthermore, Singh et al. [43] revealed a beneficial
effect of Azospirillum PGPB application on broccoli plant growth features and yield. As
reported by Mantelin and Touraine [44], overall, an implementation in N supply leads to a
greater plant N status, corresponding in a low plant N request, which limits both the NO−3
transporters and plant development. The same authors [44] stated that the effects of PGPB
on N absorption and plant growth are comparable to those of low N availability. However,
our data on yield and yield-related traits showed that plants treated with A. brasilense (DSM
1690 and DSM 2298 strains) had the best performance when fertigated with the mild N
dosages. Thus, we may assume that the highest N regime inhibited the A. brasilense activity.
In this respect, we must point out that, currently, the exact mechanisms by which PGPB
elicit plant growth and development are not totally understood. However, Parewa et al. [45]
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reported that PGPB have a direct effect on plant growth via several mechanisms, such as,
nitrogen fixation, solubilisation of inorganic phosphate and the ability to synthesize plant
key hormones.

This study showed that both PGPBs tested exerted a positive effect on SSC. In particu-
lar, plants treated with A. brasilense had a higher SSC when subjected to mild N levels (30
or 60 kg ha−1), whereas plants inoculated with Pseudomonas sp. revealed the highest SSC
when fertigated with 120 kg N ha−1. These findings agree with those of Ordookhani and
Zare [46] who, investigating on the influence of PGPMs on intrinsic fruit quality parameters
in tomato, found a positive effect of the microorganism on fruit SSC. Our data are also in
line with those of Katsenios et al. [47], who studied the impact of different PGPB strains on
growth, yield and quality of industrial tomato. Generally, our results underlined that SSC
parameter is interactively modulated by PGPB application and nitrogen dose.

Vegetable colour is a visual aspect which influences product appeal, as it is directly
related to the consumer’s perceived quality [48]. Thus, agronomic practices causing colour
changes should be taken into consideration, particularly for leafy green vegetables. It is
well documented that leaf colour is chiefly related to its chlorophyll concentration, which
in turn it is affected by nitrogen availability [49]. However, our data showed that plants
cultivated without N supply had a greener leaf colour than plant fertigated with N. This
is related to the fact that ‘Canasta’ lettuce leaves are characterized by an anthocyanin
pigmentation and, consequently, N dose does not reflect the conventional trend reported
for leafy green vegetables.

Our findings indicate that ascorbic acid and total phenolics in lettuce plants were
boosted through PGPB inoculation, particularly in plants inoculated with A. brasilense
DSM 1690. This finding is sustained by Parewa et al. [45], who stated that PGPB en-
hance secondary metabolites production. Similarly, Cappellari et al. [50] found that three
PGPR genus, including two Pseudomonas and one Bacillus, elicit phenolic biosynthesis of
Mentha piperita. Kloepper [51], Van Loon [52] and Babalola [53] reported that numerous
PGPR strains trigger plant tolerance to phytopathogens via modification of the secondary
metabolism, biosynthesizing phenolic compounds. Data on ascorbic acid and total phe-
nols are in accordance with those of Ottaiano et al. [54] who, by appraising the impact of
biostimulant supply under different N regimes on yield and quality of lettuce, found that
ascorbic acid and total phenols contents decrease as N level increases. Our findings are also
supported by Di Mola et al. [55] who, investigating on the interactive effect of seaweed
extract application and N doses, found that ascorbic acid concentration is reduced by a
high N level.

Results revealed that plants treated with A. brasilense DSM 1690 combined with 60 or
120 kg N ha−1 had the highest carotenoids concentration. Similarly, plants treated with
A. brasilense DSM 1690 and fertigated with the highest N level showed the highest total
chlorophyll. Our data fully agree with previous studies by Radhakrishnan and Lee [56]
who, evaluating the influence of PGPB (Bacillus methylotrophicus KE2) on growth and
nutritional metabolites of lettuce, found that PGPB application enhances leaf pigments (total
chlorophyll and carotenoids) concentrations. Pinto et al. [57] underlined that chlorophyll
and carotenoid concentrations are directly associated to mineral elements in plant. In line
to the assumption of Radhakrishnan and Lee [56], the higher pigments concentration in
plants treated with A. brasilense DSM 1690 could be linked to the profuse amount of Mg in
plant tissues, since Mg is a core element in chlorophyll.

Outcomes pointed out that plants colonized by A. brasilense DSM 1690 and associated
with the highest N level (120 kg ha−1) displayed the highest N leaf concentration. The
macronutrients, like N, can directly and/or indirectly affect cellular formations. The
increase of plant N concentration by PGPB inoculation is extensively reported [56]. In this
regard, de Santi Ferrara et al. [58] stated that nitrogen fixation process of microbes in soil is
the main reason for this increase. Particularly, Hungria et al. [59] demonstrated that two
strains of A. brasilense (Ab-V5 and Ab-V6), had similar nif and fix genes that induce the
ability to fix atmospheric N.
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Results showed that PGPB application did not influence P concentration. This finding
is coherent with that of Hungria et al. [60] who, assessing the effect of different strains of
A. brasilense and A. lipoferum on yield and mineral profile of leaves and grains in maize and
wheat, found that PGPB does not significantly affect P concentration in leaves tissue. Data
also showed that plants fertigated with 60 or 120 kg N ha−1 had the highest leaf P concentra-
tion. This agrees with precedent studies evaluating the influence of the combined treatment
of Trichoderma virens and biostimulant on lettuce grown under various N regimes [61].
Findings on K and Mg concentrations revealed that PGPB elicit their accumulation in plant
tissues. These results are totally in accord with those of Radhakrishnan and Lee [56], who
associated these results to a catalysed metabolism of proteins, enzymes, lipids and nucleic
acids. Furthermore, our data displayed that Ca leaf concentration was not affected neither
by PGPB action nor by N level. These findings completely agree with those reported by
Hungria et al. [60] and by Rouphael et al. [61].

Data revealed that plants colonized with PGPB had a higher total sugar concentra-
tion than non-inoculated plants. In this respect, our results are in accord with those of
Sandhya et al. [62] who, by studying the effect of PGPB (Pseudomonas spp.) on compatible
solutes, antioxidant status and plant growth of maize under drought stress, found that
PGPB colonization enhances total soluble sugars. Furthermore, in agreement with our
outcome, Pirlak and Köse [63] reported that PGPR improved total sugars in strawberry
fruits. However, our data highlighted that N dose did not significantly influence total
sugars. These results are coherent with those of Bénard et al. [64] who reported that N
availability does not significantly influence tomato fruit sugars concentration.

Data revealed that the PGPB tested increased NUE indices (NUE and UE) under N
deficit. These data are fully corroborated by Zeffa et al. [65], who found that A. brasilense in-
creases NUE of maize genotypes through an increased plants growth and development. The
beneficial effect of A. brasilense on lettuce, under low N regime, emphasise the importance
of PGPB to overcome plant developmental limits under suboptimal-growth conditions.

5. Conclusions

The use of PGPB to enhance crop yield under optimal or suboptimal growth con-
ditions is acquiring importance in the sector of leafy vegetable production due to PGPB
capacity to increase the business profit and, concomitantly, reduce environmental impact
of the conventional cultivation practices adopted by growers. The inoculation of PGPB,
particularly A. brasilense DSM 2298, boosted plant growth and productivity mainly under
low N doses. The application of both A. brasilense strains was efficient in sustaining better
nutritional and functional status of lettuce in terms of the SSC, ascorbic acid, total phenolics,
carotenoids, total chlorophyll and total sugars. Remarkably, K and Mg concentrations
can be enhanced by PGPB, expressly by A. brasilense DSM 1690. A. brasilense increased N
concentration in lettuce leaves; however, it also enhanced NUE and UE by 47.8% and 78.7%,
respectively, compared with the control. The findings of the present study underline the
advantage of applying PGPB in ‘Canasta’ lettuce plants to increase crop yield and quality
under optimal and suboptimal N levels. This information can be beneficial both to the
growers and the ecosystem sustainability.
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