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Abstract: Crop growth and yield monitoring are essential for food security and agricultural economic
return prediction. Remote sensing is an efficient technique for measuring growing season crop
canopies and providing information on the spatial variability of crop yields. In this study, ten
vegetation indices (VIs) derived from time series PlanetScope and Sentinel-2 images were used to
investigate the potential to estimate corn grain yield with different regression methods. A field-scale
spatial crop yield prediction model was developed and used to produce yield maps depicting spatial
variability in the field. Results from this study clearly showed that high-resolution PlanetScope
satellite data could be used to detect the corn yield variability at field level, which could explain
15% more variability than Sentinel-2A data at the same spatial resolution of 10 m. Comparison of
the model performance and variable importance measure between models illustrated satisfactory
results for assessing corn productivity with VIs. The green chlorophyll vegetation index (GCVI)
values consistently produced the highest correlations with corn yield, accounting for 72% of the
observed spatial variation in corn yield. More reliable quantitative yield estimation could be made
using a multi-linear stepwise regression (MSR) method with multiple VIs. Good agreement between
observed and predicted yield was achieved with the coefficient of determination value being 0.81 at
86 days after seeding. The results would help farmers and decision-makers generate predicted yield
maps, identify crop yield variability, and make further crop management practices timely.

Keywords: corn yield; PlanetScope; Sentinel-2; vegetation index; multi-linear stepwise regression;
random forest regression

1. Introduction

Monitoring and predicting crop phenology, growth, and yield is an important compo-
nent of global food security and plays a key role in domestic and global markets, policies,
and decision-making [1,2]. Yield is commonly measured using manual sampling and
ground-based visits, which are extremely time and labor-consuming, and difficult to pro-
vide information on the spatial variability of crop yield [3]. Due to the lack of a large amount
of input data on management practices, such as variety, sowing date, seed rate, fertilization
schedule, irrigation, etc., it is difficult to use crop growth models to monitor crop growth
and estimate yield at regional scales [4–6]. However, rapid and effective acquisition of
crop yield information, accurate forecast of crop productivity, and understanding of yield
variability at a regional scale are critical to farm management and decision making [7].

Compared to crop growth models, remote sensing (RS) technology provides real-
time and large-area data collection capabilities at a range of spatial scales, which has
already been used to produce numerous agriculture-related parameters [8–10]. Crop yield
estimation has been emphasized as a critical component of RS applications in agricultural
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studies. There have been many attempts in the applications of RS to estimate the final yields
for wheat (Triticum aestivum L.) [9,11,12], barley (Hordeum vulgare. L) [13,14], maize (Zea
mays L.) [15,16], rice (Oryza sativa L.) [10,17,18], potato (Solanum tuberosum L.) [19], cotton
(Gossypium L.) [20–22], and a variety of fruits [23–25]. All the studies indicated that RS
technology was prospective and promising in regional crop yield estimation, monitoring,
and mapping.

Satellite-based RS techniques can obtain satisfactory images at local and regional scales.
Advanced very high resolution radiometer (AVHRR) and Moderate-resolution imaging
spectroradiometer (MODIS) data with coarse spatial-resolutions have been repeatedly
adapted to estimate crop yields at the global and national levels [2,26–28]. Remote sensing
data with medium spatial-resolution provides a guarantee for dynamic monitoring of crop
growth and yield estimation at county-scale with time-efficient surface observations [28–30].
Such as, Landsat 8 (30 m)and coarse spatial-resolution (1/3 km) PROBA-V images were
used together to extract temporal characteristics of alfalfa farms and model alfalfa yield
in the Moghan Plain, Iran [12]. Nevertheless, an accurate crop yield estimation with
sufficient lead time at field scale is more important for farmers in crop management,
resource mobilization, agri-commodity trading, and crop insurance [6,9]. More often
than not, estimating crop yield at the field level has been laborious and complex due
to the difficulty of obtaining actual crop yield data in the field and RS data with high
spatiotemporal and spectral resolution [6,12,31,32]. Skakun’s research showed that moving
to coarser resolution data of 10 m, 20 m, and 30 m reduced the explained yield variability
to 86%, 72%, and 59%, respectively [33]. In recent years, Sentinel-2 satellite imagery has
been successfully used to model crop grain yield at field and within-field scales due to its
spectral bands (visible and near infrared (NIR), red-edge (RE), and short-wave infrared
bands), spatial resolutions (10 m, 20 m and 20 m), and open accessibility [3,7,11,34,35].
Hunt et al. demonstrated accurate verification of within-field variability and relatively high
accuracy of yield estimation and mapping at 10 m resolution using Sentinel-2 data (RMSE
0.66 t/ha) [7]. The increased spatial resolution of satellites provides more granular data
for accurate monitoring of crop status and enables high-precision yield estimation at field
and within-field scales. Recent years, PlanetScope images with spatial resolution of 3 m
provide more detailed surface information in the visible and NIR bands, and have been
shown to outperform in precision agriculture research [36,37]. Skakun et al. showed that
100% of the within-field corn and soybean yield variability could be explained with a 3 m
image (PlanetScope satellite), which was 14% higher than Sentinel-2 (10 m) [33]. On the
one hand, the performance of PlanetScope data in yield estimation needs to be verified. On
the other hand, It is still a challenge to accurately predict yield well ahead of harvest at
field and within-field scales with minimal field input data [6,38,39].

The photosynthesis of green plants is the essence of crop yield. The crop physiolog-
ical factors, such as chlorophyll concentration, leaf area index, the ground biomass, etc.,
influence the crop yield potential, which is defined as the maximum attainable yield per
unit land area that can be achieved without stress factors [40]. Spectral information in
different RS bands, especially optical bands, is optimized for the calculation of relevant
VIs, which are proved to be sensitive to crop physiological parameters and commonly used
to predict crop yields [9,12,41]. Studies have shown that early season VIs have significant
correlations with corn yields [8,42]. Nevertheless, VIs performed differently in crop yield
estimation. While the enhanced vegetation index (EVI) was believed the best predictor for
the Corn Belt [1]. Shanahan et al. suggested that the green normalized difference vegetation
index (GNDVI) had greater potential to estimate final corn grain yields than the normal-
ized difference vegetation index (NDVI) and transformed soil-adjusted vegetation index
(TSAVI) [43]. The perpendicular vegetation index (PVI) provided better average prediction
accuracy than NDVI, green vegetation index (GVI), and soil adjusted vegetation index
(SAVI) in the corn crop yield prediction studied by Panda et al. [44]. Liaqat et al. found
SAVI was better associated with wheat yields when compared to modified soil adjusted
vegetation index (MSAVI), NDVI, and EVI [9]. The wide dynamic range vegetation index
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(WDRVI) demonstrated the highest correlation with county-level statistical corn yields [28].
The sensitivity of VIs to yield estimation remains to be verified.

Empirical methods based on statistical regression between RS derived variables and
crop yield are the most commonly used approaches [11]. The availability of many indices
has led to multiple VIs being chosen and combined with statistical models for more accurate
crop yield estimation [9,45,46]. Recent years have witnessed an emergence of machine
learning (ML) regression models to develop an empirical relationship between crop yield
and crop canopy features, such as random forest regression (RFR) [7,28] because of their
ability to autonomously solve large non-linear problems using datasets from multiple
sources [46].

In this study, actual field-level harvester corn grain yield data, as well as time-series
images from the PlanetScope and Sentinel-2 A satellites, were obtained to develop VIs-
based corn yield estimation models by the comparison of unary linear regression (ULR),
stepwise multiple linear regression (SMLR) and RFR ML methods. The main purposes of
this research were to investigate the sensitivity of VIs derived from high spatial-resolution
images to corn yield prediction, to explore the ability of PlanetScope data to estimate
within-field corn yield variability in comparison to the results with Sentinel-2 data, and to
understand the optimal growth period for corn yield estimation.

2. Materials and Methods
2.1. Field Site and Grain Yield Acquisition

The corn field was located in Wheaton, Minnesota (MN), USA (96.37E, 45.74N), which
comprised an area of approximately 100 ha (Figure 1). The farming in this region is
characterized by one harvest per year, with corn being the prevalent crop. Generally, the
corn crop is typically planted in early to late May and harvested between late September to
early October. The normal annual precipitation in this region ranges from 455 to 635 mm,
and a mean annual temperature of 1.7 to 5.0 ◦C [47]. Soils in this region are primarily
developed in lacustrine parent material with poor drainage, and the dominant type was
silty clay loam soil. Less topographic relief was observed in this field with slope variations
of less than 1%. The corn hybrid 76S92 VT2PRO widely adapted to different environments
was cultivated in this study. It has an excellent vigor early in the season, strong stress
tolerance, very good late season standability, and consistent yielding with fast dry down.
Urea fertilizer was spread prior to planting corn on 6 May 2018. In-season topdressing was
applied with 28% urea ammonium nitrate solution and a Y-DROP system after corn canopy
closure on 26 June 2018. This year was a normal year without extreme weather. Agronomic
management practices were conventional for row crop agriculture in this region of the USA.
By the end of the crop season, the field was harvested with a GPS-referenced 8-row John
Deere rotor combine harvester equipped with optical yield monitors. The combine monitor
was calibrated using the same corn hybrid. The yield was determined as the grain biomass
collected during harvest and recorded in megagram per hectare (Mg·ha−1) on a standard
moisture basis of 15.5%. Due to the cutting width of 6 m of the combine harvester used
in this field, and the the furthest distance of 6 m for the yield points, all the yield points
were resampled to 10 m resolution using the inverse distance weighting (IDW) spatial
interpolation method.
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Figure 1. Location of the study area. (a) Study area and sample dataset distribution; (b) True color
composite red-green-blue of PlanetScope (left) and Sentinel-2 A (right) images on 17 July 2018.

2.2. Satellite Data Collection and Preprocessing
2.2.1. PlanetScope Image Processing

A total of eight PlanetScope surface reflectance (SR) image products (Level 3B) were
collected during the corn growing season from June to middle August. All the images
were orthorectified, atmospherically corrected using the 6SV2.1 radiative transfer code,
scaled, and delivered as analytic 4-band products [48]. PlanetScope satellite imagery has
4 multi-spectral bands including blue (455–515 nm), green (500–590 nm), red (590–670 nm),
and NIR (780–860 nm) with a 3 m resolution. All the bands were resampled to 10 m
resolution to match that of Sentinel-2 data.

2.2.2. Sentinel-2A Image Processing

Six cloud-free Sentinel-2A images (Level 1C) were downloaded from the European
Space Agency (ESA) website (https://scihub.copernicus.eu/dhus/#/home, accessed on
1 March 2020). Radiometric calibration and atmospheric correction were performed in the
Sen2Cor processor released by ESA. The corrected data were resampled to 10 m in the
SNAP processor using the nearest neighbor interpolation method. To be consistent with
PlanetScope data, the blue (458–523 nm), green (543–578 nm), red (650–680 nm), and NIR
(785–900 nm) bands were used to extract VIs. Details of the satellite images used in this
study are shown in Table 1. All the images were projected to a cartographic projection
(WGS84-UTM).

Table 1. Satellite images collected during the corn growing season in 2018.

Image Acquisition Date Days after Seeding (DAS) Growth Stage Product Level

PlanetScope 3 Jun., 18 Jun., 5 Jul., 17 Jul. 29, 44, 61, 73 V6, V10, V17, VT
Level 3B23 Jul., 30 Jul., 8 Aug., 15 Aug. 79, 86, 95, 102 R1, R2, R3, R4

Sentinel-2A 7 Jul., 17 Jul.
22 Jul., 27 Jul., 6 Aug., 11 Aug.

63, 73
78, 83, 93, 98

V17, VT
R1, R2, R3, R3 Level 1C

https://scihub.copernicus.eu/dhus/#/home
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2.3. Vegetation Indices

Numerous VIs have been developed and widely applied in cropland cover changes,
vegetation classification, environmental change detection, crop detection, and yield esti-
mation. In this study, ten commonly used VIs related to vegetation growth and biomass
were calculated from PlanetScope and Sentinel-2A images to evaluate variation in yield,
including SR, MSR, NDVI, GNDVI, SAVI, EVI2, MCARI2, MSAVI, WDRVI, and GCVI (see
Table 2 for expressions).

Table 2. VIs calculated using satellite imagery, where R is the reflectance of each band.

Vegetation Index Equation References

SR (Simple Ratio) RNIR/Rred [49]
MSR (Modified Simple Ratio) (RNIR/Rred − 1)/Sqrt(RNIR/Rred + 1) [50]

NDVI (Normalized Differenced Vegetation Index) (RNIR − Rred)/(RNIR + Rred) [51]
GNDVI (Green Normalized Differenced Vegetation Index) (RNIR − Rgreen)/

(
RNIR + Rgreen

)
[52]

SAVI (Optimized Soil-Adjusted Vegetation Index) 1.5(RNIR − Rred)/(RNIR + Rred + 0.5) [53]
EVI2 (Enhanced Vegetation Index) 2.5(RNIR − Rred)/(RNIR + 2.4∗Rred + 1) [54]

MCARI2 (Modified chlorophyll absorption reflectivity index) 1.5[2.5(RNIR−Rred)−1.3(RNIR−Rgreen)]√
(2RNIR+1)2−(6RNIR−5

√
Rred)−0.5

[55]

MSAVI (Modified soil-adjusted vegetation index) 0.5
[

2RNIR + 1−
√
(2RNIR + 1)2 − 8(RNIR − Rred)

]
[56]

WDRVI (Wide dynamic range vegetation index) (0.2RNIR − Rred)/(0.2RNIR + Rred) [57]
GCVI (Green chlorophyll vegetation index) RNIR/Rgreen − 1 [58]

2.4. Data Analysis

Based on the ten VIs, ULR and SMLR were adopted to establish the corn yield estima-
tion equations in a linear relationship. In SMLR, the best yield model at each growth stage
was chosen according to the Akaike Information Criterion (AIC), which was computed
with the stepAIC function from the MASS library in R Studio [59].

RFR algorithms have been widely employed to relate remotely sensed data to crop
physicochemical parameters [7,28]. It is one of the representatives of ensemble learning
algorithms that integrate many decision trees and outputs results by voting. A group of
decision trees are independently trained in regression problems, and their predictions are
averaged as the final output [60]. In this study, a RFR algorithm was performed to test
the utility of the generated VIs in predicting corn yield in a nonlinear regression model.
The optimal random forest model was built using the 5-fold GridSearchCV method in
the Scikit-learn library in Python 3.8. The algorithm uses each set of hyperparameters
to train the model within the specified parameter range and selects the combination of
hyperparameters with the minimum error of the verification set. The approximate range
of the optimal parameters for RFR model was obtained through repeated attempts, and
then the optimal solution was specified under the small range for the obtained results. The
number of decision trees in the study was set to 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 50,
100, 150 and 200, respectively. The randomly selected feature numbers of each decision
tree were set to 60%, 70%, 80% and 100% of the total feature numbers, respectively. The
maximum tree depth was set to 3, 5, 7, 9, 10, 15 and 20, respectively. In addition, RFR
enables feature screening, in which the importance of a variable in estimating crop yield
can also be evaluated, indicating the contribution of this feature to model construction.

2.5. Calibration and Validation Datasets

A total of 174 equally spaced sample points in the corn field were selected to extract
yield data from the IDW-interpolated yield maps and the VI values from PlanetScope
and Sentinel-2 images. It was cross divided into 87 calibration sets and 87 validation
sets (Figure 1). The coefficient of determination (R2) and root mean square error (RMSE)
of measured and predicted yields in the validation sets were used to evaluate model
performance to validate the accuracy and robustness of the derived yield estimation models.
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3. Results
3.1. Description of the Yield Data

The raw yield data outside the field mean ±3 sd were cleaned to remove inaccurate
grain yield measurements. The cleaned corn yield data of 64,803 yield points were measured
and resampled to 10 m resolution using the inverse distance weighting (IDW) spatial
interpolation method. IDW-interpolated yield showed a minimum yield of 3.82 Mg·ha−1

and a maximum yield of 15.90 Mg·ha−1 in this field. The mean corn yield in this field was
12.33 Mg·ha−1 and the standard deviation was 2.03 Mg·ha−1.

3.2. Correlation between Yield and Environment Variables

It is generally considered that environmental factors have a certain degree of influence
on the formation of yield, and are potential factors affecting spatial distribution of yield.
At within field level, the spatial variation of weather is relatively uniform. Topographical
features, such as altitude, slope, and aspect have certain impacts on grain yield, especially
at the regional scale [11]. Most of the study area is fairly flat, with an altitude difference of
less than 3 m. In total, 76.3% of the area had a slope of less than 1 degree (Figure 1). The
correlation coefficients between corn yield with altitude, slope, and aspect did not pass the
significance test (p > 0.01), indicating that topographical features were unsuitable to be used
as influencing factors in crop yield estimation in this study. Under 150 randomly generated
points in each soil textures, the ANOVA analysis revealed no significant difference in corn
yield among clay loam, Loam, Sandy loam, silt loam, and silty clay loam soil types.

3.3. Correlation between Yield and Vegetation Index

Correlation analysis was conducted between corn yield and VIs in each growth period
based on PlanetScope images and Sentinel images, respectively (Figure 2). All the VIs were
significantly and positively correlated with corn yield (p < 0.01) except for the stage DAS29.
As the corn growth period progressed, the correlation between PlanetScope-based VIs
and yield increased first and then decreased (Figure 2a). The inflection point appeared on
DAS86. The Coefficient of determination (R2) ranged from 0.56 (MCARI2) to 0.72 (GCVI)
on DAS86. Figure 2b shows a similar correlation trend with Sentinel images. All the highest
correlations appeared on DAS93 except for GCVI (0.64) and GNDVI (0.63) on DAS98.
The R2 ranged from 0.42 (MCARI2) to 0.61 (GCVI) on DAS93. The correlation analysis
demonstrated that GCVI and GNDVI outperformed other VIs in corn yield prediction.

Figure 2. Coefficient of determination (R2) between VIs and corn yield at different growth stages
based on (a) PlanetScope images and (b) Sentinel-2 images.
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3.4. Yield Estimation and Validation
3.4.1. Yield-ULR Model

According to the correlation analysis results above, the Yield-ULR model at each
growth stage was built based on the VI with the highest correlation as the independent
variable. All VIs were linearly correlated with corn yield. The performance of each
estimation model was summarized in Table 3. Almost all the best Yield-ULR models
were obtained by the GCVI at each growth stage except for DAS29 (MCARI2) and DAS44
(GNDVI). Much lower correlations were found between the yield and VIs at the early
growth stage before V10 (DAS29 and DAS44). At these stages, the plant was in the
early vegetative period and its future growth could be largely uncertain due to various
environmental stresses or different field management strategies, resulting in less accurate
predictions of corn grain yield. Field topdressing was carried out after this growth period.
The GCVI derived from PlanetScope images could explain 72% variability in corn yield on
DAS86, which is also the best estimation accuracy for yield prediction across the 8 growth
stages. while the best yield estimation model constructed with Sentinel images was on
DAS98, which explained 63.9% of the corn yield variability. During such stages from R2
(blistering) to R3 (milking), corn is in its early reproductive period having almost maximum
plant greenness and photosynthetic capacity, thus indicating the potential yield.

Table 3. The best Yield-ULR models constructed with PlanetScope and Sentinel-2 images.

Yield-ULR Model Based on PlanetScope Images Yield-ULR Model Based on Sentinel-2 Images

Growth Stage Models R2 RMSE Growth Stage Models R2 RMSE

DAS29 −11.06MCARI2 + 16.15 0.03 2.27
DAS44 34.68GNDVI − 9.40 0.32 1.91
DAS61 1.99GCVI − 4.99 0.61 1.45 DAS63 1.46GCVI + 1.10 0.56 1.53
DAS73 1.69GCVI − 5.44 0.60 1.46 DAS73 2.76GCVI − 1.28 0.48 1.65
DAS79 1.69GCVI − 493 0.64 1.38 DAS78 1.54GCVI − 1.03 0.58 1.49
DAS86 2.20GCVI − 6.78 0.72 1.22 DAS83 1.32GCVI + 0.31 0.57 1.51
DAS95 1.81GCVI − 3.85 0.65 1.37 DAS93 1.27GCVI + 1.64 0.61 1.45

DAS102 2.21GCVI − 4.71 0.64 1.39 DAS98 1.01GCVI + 3.06 0.64 1.39

3.4.2. Yield-SMLR Model

The ten VIs were used to construct the Yield-SMLR models by SMLR according to
the AIC and significance test. The model accuracy and other details are shown in Tables 4
and 5. Yield-SMLR models performed better than the Yield-ULR ones. The coefficient of
determination values ranged from 0.29 (DAS29) to 0.81 (DAS86) with PlanetScope images,
and 0.57 (DAS63) to 0.66 (DAS98) with Sentinel-2 images. In the early growth stage (DAS29
and DAS44) for PlanetScope iamges, the indices related to soil background removal (SAVI
and MSAVI) had a greater impact on the yield model due to the lower coverage. In the
reproductive growth stage, VIs sensitive to the chlorophyll concentration in a wide range
of chlorophyll variations, such as GCVI, GNDVI, and WDRVI contributed more to the
yield estimation. However, maybe due to the coarse resolution of Sentinel data, yield could
be well interpreted by combining MCARI2 and WDARVI (responsive to leaf chlorophyll
concentration) with the SAVI and SAVI (sensitive to ground reflectance). In general, the
PlanetScope-based Yield-SMLR models had lower AIC value than that of the Sentinel-
based ones in a similar growth period. All the coefficients of the best PlanetScope-based
Yield-SMLR on DAS86 passed the significance test (p < 0.01) and could be expressed as,
Yield = 7595.13 − 43,343.22 EVI2 − 53.88 GCVI + 29,035.99 GNDVI + 43,528.09 MCARI2 −
81.58 SR + 38,108.57 WDRVI.



Agronomy 2022, 12, 3176 8 of 18

Table 4. The accuracy of the PlanetScope-based Yield-SMLR model in each growth period.

Growth Stage Independent Variables AIC R2 RMSE

DAS29 GCVI, GNDVI, MCARI2, SAVI, SR, WDRVI 129.97 0.29 1.95
DAS44 MSAVI, NDVI, SAVI, SR, WDRVI 101.10 0.48 1.67
DAS61 EVI2, GCVI, GNDVI, MCARI2, NDVI 69.20 0.64 1.39
DAS73 EVI2, GCVI, GNDVI, MCARI2, SR, WDRVI 70.48 0.64 1.38
DAS79 EVI2, GCVI, GNDVI, NDVI, SR, WDRVI 35.79 0.76 1.13
DAS86 EVI2, GCVI, GNDVI, MCARI2, SR, WDRVI 15.51 0.81 1.01
DAS95 EVI2, GCVI, GNDVI, NDVI, SR, WDRVI 56.52 0.69 1.28
DAS102 EVI2, GCVI, GNDVI, MCARI2, SR, WDRVI 61.24 0.68 1.31

Table 5. The accuracy of Sentinel-based Yield-SMLR model in each growth period.

Growth Stage Independent Variables AIC R2 RMSE

DAS63 MCARI2, MSR, SAVI, SR, WDRVI 83.33 0.57 1.51
DAS73 EVI2, GCVI, GNDVI, MCARI2, MSAVI, NDVI, SAVI, SR, WDRVI 83.36 0.61 1.44
DAS78 EVI2, MCARI2, NDVI, SAVI, WDRVI 73.00 0.62 1.43
DAS83 EVI2, GCVI, GNDVI, MCARI2, MSAVI, NDVI, SAVI, SR, WDRVI 78.20 0.63 1.40
DAS93 EVI2, GNDVI, MCARI2, MSR, SAVI, SR, WDRVI 75.13 0.63 1.41
DAS98 EVI2, MCARI2, MSAVI, MSR, SAVI, WDRVI 54.51 0.66 1.26

3.4.3. Yield-RFR Model

The ten VIs were also adopted to construct corn yield estimation models based on
the RFR algorithm. Table 6 clearly showed that Yield-RFR models captured the variability
in corn yield over the growing season well, compared with Yield-ULR and Yield-SMLR
models. The R2 was improved from 0.81 to 0.90 at DAS86 for PlanetScope-based Yield-RFR
model and 0.63 to 0.89 at DAS93 for sentinel-based ones (Table 6).

Table 6. The Yield-RFR model constructed with PlanetScope and Sentinel images (Parameters
represented the n-estimations, max-features, and depth in RFR).

Yield-RFR Model with PlanetScope Images Yield-RFR Model with Sentinel Images

Growth Stage Parameters R2 RMSE Growth Stage Parameters R2 RMSE

DAS29 10, 70%, 5 0.75 1.10
DAS44 10, 80%, 8 0.82 0.96
DAS61 7, 70%, 6 0.85 0.86 DAS63 9, 90%, 3 0.81 1.01
DAS73 3, 60%, 10 0.79 1.05 DAS73 5, 100%, 4 0.78 1.07
DAS79 5, 80%, 7 0.86 0.84 DAS78 7, 50%, 3 0.82 0.97
DAS86 9, 100%, 10 0.90 0.73 DAS83 5, 50%, 10 0.85 0.86
DAS95 3, 100%, 12 0.80 1.05 DAS93 9, 70%, 12 0.89 0.75
DAS102 3, 50%, 7 0.78 1.09 DAS98 7, 50%, 3 0.85 0.88

3.4.4. Model Comparison and Validation

The validation datasets were input into the optimal models above to assess the accu-
racy of each yield model. The performance of each model with PlanetScope images was
summarized in Figure 3 based on R2 and RMSE measurements. As shown in Figure 3, the
performance of the RFR method was evidently lower than that of the ULR and SMLR ap-
proaches in each growth stage, which was contrary to the prediction results in Section 3.4.3
and may indicate overfitting problems in the ML modeling. Overall, among the three
regression methods, the SMLR method performed the best, with the highest R2 and lowest
RMSE across the growing season. Significant increases in R2 were observed across all yield
prediction methods on DAS86, with the RMSE values of 0.98, 0.94, and 1.2 Mg·ha−1 for
Yield-ULR, Yield-SMLR, and Yield-RFR, respectively.
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Figure 3. Model validation in each growth stage based on PlanetScope images. (a) R2 and (b) RMSE.

For the Sentinel-based models, similar results were presented (Figure 4). Figure 4
clearly showed that the SMLR method outperformed the ULR and RFR in corn yield
prediction. The best prediction timing by the Yield-SMLR model was on DAS93, with the
maximum correlation (R2 = 0.77) and the minimum RMSE value of 0.99 Mg·ha−1. This
was followed by the DAS83, with the R2 and RMSE values of 0.74 and 1.07 Mg·ha−1,
respectively.

Figure 4. Model validation in each growth stage based on Sentinel images. (a) R2 and (b) RMSE.

Overall, results based on both satellite image sources showed that the best performing
approach for corn yield estimation was SMLR. The highest R2 and lowest RMSE values
in validation sets were observed during the R2 to R3 stages (DAS86 for PlanetScope data
and DAS93 for Sentinel data), which could explain 79% and 77% variability in corn yield.
The optimal time to predict yield was later with Sentinel data than with PlanetScope data.
Imagery was collected from both sensors on DAS73. The models could explain up to 73%
of within-field yield variability with PlanetScope data, whereas, 68% with Sentinel-2 data.
This was contributed to the different spatial resolutions. High spatial resolution imagery
can more accurately reflect the crop growth status and capture the within-field variability
of crop growth conditions (Figure 1b).

When comparing the corn yield prediction and validation results of both images
together, it was observed that the Vis of PlanetScope images resulted in better performance
in corn yield estimation than Sentinel images at similar growth stages both in the calibra-
tion and validation datasets (Figure 5). The prediction ability increased with the growth
period before the vegetative growth stage, stabilized in the reproductive growth stage, and
decreased slightly in the later stage after R3.
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Figure 5. R2 difference between PlanetScope images and Sentinel images based on SMLR method.
(a) Calibration set and (b) Validation set.

The scatter plots in Figures 6 and 7 showed how well the predicted corn yields fitted
the actual yields under different regression methods and growth stages. The predicted
yield values were linearly correlated with the observed values (demonstrated by the dashed
lines), while the correlation was less consistent in RFR. The larger deviations of the predicted
corn yield from the 1:1 line indicated that all the estimation methods experienced higher
levels of overestimation of corn yields at lower actual yields. The models gave the best
estimation results when the corn yield was greater than 10 Mg·ha−1, especially at the R2
and R3 growth stages.

3.4.5. Corn Yield Mapping on Key Growth Stages with SMLR Method

Vegetation index matrices were substituted into the optimal Yield-SMLR models
on DAS86 and DAS93 to map the corn yield. The field was symbolized by nine yield
categories using an equal interval strategy based on the predicted grain yield (Figure 8).
The prediction results were generally in good agreement with the actual distribution of
corn yield. The loss of correlation might be due to different ground resolutions beween
yield data (even after resampling) and actual satellite image ground resolution. Resampling
from 3 m to 10 m of PlanetScope data caused a loss of spectral information, but it was still
more informative than the 10 m sentinel data. The pattern observed confirmed that the
resampled PlanetScope data outperformed Sentinel data for corn yield estimation. These
results also highlighted the ability of the SMLR method to estimate corn grain yield before
harvest at the field scale.

Figure 6. Cont.
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Figure 6. Scatter plots of the measured versus predicted corn yields with different regression methods
in each growth stage based on PlanetScope images. (Dashed red line, green line, blue line and black
solid line are the regression line of Yield-ULR, Yield-SMLR and Yield-RFR, and1:1 line, respectively).

Figure 7. Scatter plots of the measured versus predicted corn yields with different regression methods
in each growth stage based on Sentinel images. (Dashed red line, green line, blue line and black solid
line are the regression line of Yield-ULR, Yield-SMLR and Yield-RFR, and1:1 line, respectively).
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Figure 8. Maps of simulated grain yield by the proposed regression models.

4. Discussion
4.1. Vegetation Index for Corn Yield Estimation

Spectral VIs provide composite properties of leaf chlorophyll, leaf area, optical mea-
sures of canopy greenness, and canopy structure, which lay a theoretical foundation for
using VIs to estimate crop yield. RS methods for crop yield prediction currently rely on
broadband VIs, such as the NDVI, EVI, SAVI, etc. [46]. Due to the different growth statuses
and cultivars of crops, there were significant differences in VI selection and yield estimation
accuracy [9]. Skakun et al. argued that the most important spectral bands explaining corn
and soybean yield variability were green, RE, and NIR [33]. We computed 10 VIs from
time-series of PlanetScope and Sentinel-2 data and analyzed the correlation between VIs
and corn grain yield. It clearly showed that the GCVI captured the variability in corn
yield well over the growing season except for DAS29 and DAS44, having the highest R2

values in Yield-ULR models (Table 3), followed by GNDVI (Figure 2; Table 3). GCVI,
GNDVI, EVI2, and WDRVI entered almost all Yield-SMLR models at each growth stage
(Table 4). The variable importance measure of the RFR model illustrated the effects of each
VI on the estimation of corn yield. We made statistics on the order of variable importance
entering each RFR model (eight models with PlanetScope images and six from Sentinel
images). Figure 9a showed the order statistics for each VI in all models. For example, GCVI
appeared four times in the first importance (VIP1) of 14 models. Figure 9b showed the
accumulated count for each importance. The variable importance statistics also confirmed
the performance of GCVI and GNDVI, which appeared nine and six times, respectively,
ranking in the top two positions in the variable importance lists for all models. Specific
absorption coefficients of chlorophylls in the green spectral regions are much smaller than
in the red region, which does not saturate at moderate to high chlorophyll contents. The
GCVI and GNDVI were proposed by replacing the original red band with green band,
which enabled more precise estimation of chlorophyll concentration in a greater dynamic
range of chlorophyll variations, and were more sensitive to green crop LAI and biomass
than the VIs calculated with red band, such as NDVI, SAVI, EVI2 and SR [33,52,58,61].
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Figure 9. Variable importance for modelling corn yield with random forest regression. (a) The order
statistics for each VI in all RFR models (eight models with PlanetScope images and six from Sentinel
images). (b) The statistics of accumulated count for VIs in all RFR models.

The results were consistent with reported studies. Based on Sentinel-2 images, Kayad
et al. illustrated that GNDVI could provide the highest R2 value of 0.48 for monitoring
the within-field variability of corn grain yield [31]. Shanahan et al. compared NDVI,
TSAVI, and GNDVI in estimating final grain yield for corn and indicated that GNDVI
acquired during mid-grain filling was highly correlated with grain yield and could be
used to produce relative yield maps depicting spatial variability in fields [28]. The Yield-
ULR models showed a weak correlation with a single VI for evaluating grain yield, while
Yield-SMLR and Yield-RFR models constructed through multiple VIs could enhance the
prediction ability of corn yields. The Yield-SMLR model could explain 81% variability in
corn yield on DAS86 with PlanetScope images, while Sentinel images could explain 66%
variability on DAS98. In this study, since the within-field environmental variables such
as topographical and meteorological conditions were relatively uniform and stable, the
yield level could be indicated by crop growth status, which could be monitored by VIs
sensitive to chlorophyll and biomass, especially the GCVI and GNDVI. In summary, this
study demonstrated that it was feasible to monitor corn yields with VIs during a suitable
growth period.

4.2. Model Selection for Corn Yield Estimation

VIs could be especially beneficial for corn yield estimation when used together. The
RFR method did not achieve the expected accuracy perhaps due to the small dataset in this
study [12,34]. Although RFR had a slightly higher R2 and lower RMSE compared to other
algorithms in the calibration models, better performance was achieved for corn yield using
a SMLR method for the validation sets, which implied a better generalization capability of
the SMLR than RFR and ULR. The RFR method incorporating various variables did not
always show the highest estimation accuracy [28]. In Sakamoto’s study, the performance of
the proposed RFR method was about the same or slightly worse, with a higher RMSE than
the conventional polynomial regression model for corn grown in Iowa and Illinois [28].
This was probably because of an overfitting issue that caused accuracy deterioration against
expectations [62]. In addition, at a regional scale, the cropland ecosystem was complex and
many of the processes involved were nonlinear, which made the ML algorithm possible [63].
However, the analysis in this field-scale study revealed a linear correlation relationship
between the VIs and corn yield, which may imply corn yield prediction within-field was
not best represented in nonlinear models in this study. The SMLR method has been widely
investigated to determine the best feature subsets for crop yield prediction [64] and had
acceptable corn yields estimation capability in this study. This method selected more
important VIs according to the AIC to build a yield estimation model. When a VI had an
insignificant effect on the output, the model after removing this variable would still show
high correlation and low RMSE. The superiority of the SMLR could be attributed to its
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ability to detect all possible combinations between input variables and gave the optimal
subset of input variables.

4.3. Remote Sensing Data Selection for Yield Estimation

RS is an attractive tool for monitoring spatiotemporal patterns of vegetation growth,
which enhances the process of monitoring the development of agricultural crops and
estimating their yields. The relatively high yield estimation accuracy was obtained using
high resolution satellite images. At present, Sentinel-2 imagery was considered the most
suitable remotely sensed data for crop yield estimation at field level [11]. Al-Gaadi et al. [65]
revealed that Sentinel-2 images enabled the reduction in the generalization in crop spectral
reflection and delineation of sharp field boundaries so that the relationship between actual
and predicted potato yield values produced an R2 value that increased from 0.39 for
Landsat-8 images to 0.47 for Sentinel-2 images. Hunt et al. [7] demonstrated that Sentinel-2
data was more accurate at 10 m resolution than 20 m for within-field wheat yield in the
UK. When compared Landsat data with Sentinel-2 and PlanetScope, only 59% of yield
variability could be explained with 30 m image data. They thought the rest was lost
because of coarsening and mixture effects inside the 30 m pixel [33]. This study compared
Planetcsope and Sentinel-2 satellite images for corn yield estimation, and the resampled
PlanetScope data explained 15% more corn yield variability than the Sentinel-2 data at the
same spatial resolution of 10 m (Table 4). Although PlanetScope images were resampled to
the resolution of 10 m, they still had relatively detailed and accurate canopy information
than the Sentinel data. This may imply that high spatial-resolution satellite data has the
potential to provide relatively accurate estimates of yield variability at the field scale.

4.4. Timing for Corn Yield Estimation by Remotely Sensed Data

Identifying the best timing will be beneficial to farmers and crop management to
accurately predict yield well ahead of harvest time with minimal remotely sensed data.
The growth characteristics of corn in the vegetative growth stage may not fully reflect the
accumulation of organic matter in yield organs at the late mature stage, resulting in poor
prediction accuracy of corn grain yield. The tasseling stage is a critical transition period for
corn from vegetative growth to reproductive growth. It is believed that the fastest matter
accumulation and the most fertilizer absorption stage occur from 10 days before tasseling
to 25 to 30 days after tasseling. The corn growth from the tasseling stage to silking stage
directly determined the dry matter accumulation of crop yield organs.

Unganai and Kogan found that a corn yield estimation model could be constructed
with VIs approximately 6 weeks prior to harvest time from the 1.1 km spatial-resolution
AVHRR Data in southern Africa [45]. Results from MODIS data and county-level statistical
yields revealed that the optimal time was typically in the late vegetative growing season,
13 days before the silking stage for corn in the USA [28]. The best time for wheat yield
prediction with the 30 m spatial-resolution Landsat 8 was found to be the beginning of the
full biomass period from the 138th to 167th day of the year [66]. Based on field measured
corn yield, the precision of the Yield-SMLR model increased over time (Table 4) with
sentinel-2 images in this study, reflecting that it was more accurate to predict corn yield
near the harvest than in the earlier growth stages. This result was consistent with the
findings by Kayad et al. [34]. Their study demonstrated that Sentinel-2 images could
provide a clear description of the corn grain yield at the within-field scale during the
physiological maturity stages (R4–R6), crop ages of 105 to 135 days from planting in North
Italy. The results with PlanetScope images indicated that corn yield could be accurately
estimated when high spatial-resolution satellite data was available during the crop growing
period between the R2 (blistering) and R3 (milking) stages with prediction accuracy above
81%. It is not surprising that this stage could be used to estimate the corn yield. At the end
of silking stage, the maximum plant height is achieved, and the potential kernel number is
determined. After this stage, the nutrients in corn are transferred to grains in the maturity
stage and the chlorophyll content in leaves decreases. Therefore, the correlation between
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the VI and crop yield decreases, which leads to a low yield estimation accuracy. Our
results suggested that R2 (DAS86) was the most suitable phenological stage for corn yield
estimation in this study area using PlanetScope images.

The digitization footprint estimation indicated that the total amount of field data
accumulated by farmers increased to over 768 MB/ha in 2020 [67]. Among them, remotely
sensed data from different platforms played a major contribution. In terms of digitization
footprint contribution, the image data storage of 6.5 KB/ha (PlanetScope image on DAS86)
would be used instead of 76.6 KB/ha (8 PlanetScope and 6 Sentinel 2A images) for corn
yield estimation in this study. According to the best yield prediction model, the storage
of VIs used for yield estimation at DAS86 is about 8.4 KB/ha. Yield prediction during the
optimal growth period can greatly reduce the storage of remote sensing data.

4.5. Research Challenge

Although satellite RS data are very valuable due to their large-scale coverage, spatial
resolution is still a concern in yield estimation at the field and within-field scales. This
study demonstrated that it was possible to predict the corn grain yield at the field level
with VIs based on PlanetScope images during R2 to R3 growth stage. Certainly, more
studies are needed to further evaluate the SMLR and ML models using larger datasets.
Years of yield data and more fields are needed to verify the estimation accuracy. In addition,
averaging 6 m yield values to the 10 m resolution reduces the variance of yield that could
be explained with satellite data, therefore increasing the coefficient of determination [33].
Further research is needed to explore the 6 m yield estimation ability with 3 m Planetscope
data only.

5. Conclusions

Vegetation indices derived from PlanetScope and Sentinel-2 images were employed to
investigate the potential of estimating corn yield with regression methods. Results from
this study clearly showed that high spatial-resolution PlanetScope satellite imagery could
be used to detect the corn yield variability at the field level, and it could explain 15% more
variability than Sentinel-2 data at the same spatial resolution of 10 m. The green chlorophyll
vegetation index (GCVI) values consistently produced the highest correlations with corn
yield, accounting for 72% of the observed spatial variation in corn yield. More reliable
quantitative yield estimation could be made using a SMLR method with multiple VIs. Good
agreement between the observed and predicted yields was achieved with the coefficient of
determination value being 0.81 at 86 days after seeding. More studies are needed to further
evaluate the SMLR and ML models using larger datasets.
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