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Abstract: Legumes are essential foods for man and animal. They contribute to food security globally.
However, they are negatively affected by Sclerotinia diseases caused by Sclerotinia sclerotiorum, which
infects over 600 plant species. There is a limited number of review studies on the management of the
Sclerotinia sclerotiorum disease in legume crops. Here, we explore earlier studies on the occurrences,
yield losses, and other negative effects caused by Sclerotinia spp. in legumes. Additionally, we
studied the various strategies used in controlling Sclerotinia sclerotiorum diseases in legume crops.
We conclude that the impact of Sclerotinia diseases on legume crops causes an economic loss, as
it reduces their quality and yield. Among the management strategies explored, genetic control is
challenging due to the limited resistance among germplasm, while biological agents show promising
results. Fungicide application is effective during outbreaks of Sclerotinia diseases. Lastly, this review
has uncovered gaps in the current knowledge regarding the alleviation of Sclerotinia diseases in
legume crops.

Keywords: Sclerotinia pathogen; sclerotial formation; legume disease; biological control; chemical
control; plant resistance

1. Introduction

Legumes are ranked third among flowering plants, and they cover 800 genera con-
sisting of 20,000 species [1]. Legumes play central roles largely in food security, ecological
sustainability, and crop diversification [2–8]. Hence, the role of grain legumes in ensuring
global food and nutritional security cannot be underestimated, as they serve as food and
feed, and are rich sources of protein. Specifically, legumes such as cowpea, jack bean, and
soybean are insinuated as the meat for the poor, are substituted as protein sources for the
rural poor, and are substantial sources of protein (ranging from 20 to 30% dry weight), vita-
mins, and minerals [9–11]. In other parts of the world, legumes such as cowpea and soybean
are used for fortifying babies’ food to improve nutritional levels in diets [12–15]. Several
clinical studies have been conducted on the intake of legumes [16–18], with data show-
ing declines in cholesterol, threats related to coronary heart disorder, and type 2 diabetes.
Moreover, secondary metabolites are produced by grain legumes, which promote human
health [19]. Although legume consumption promotes health, its recommended levels per
day have been questioned. Current research establishes that an intake of 50 g per day in
adults results in reducing occurrences of coronary heart diseases while saving on cost [20].
Similarly, an intake of 55–70 g per day reduces the risk of hypertension [21]. Hence, it is
recommended that we integrate reasonable quantities of legumes into our diet. Also, in
farming, legume crops are essential in cereal cropping systems for destroying pathogen in
soils while ensuring nitrogen fixation, which accounts for over 70% of the nitrogen required
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of the plants [22,23]. Thus, it reduces the need for fertilizer application, resulting in a
decrease of greenhouse gas emissions [24]. The current agricultural production demand
for low input couples with sustainable production systems that support the environment
and economies [25]. Specifically, legumes accounts for nearly half of the world’s nitro-
gen fixation, averaging 20–2000 kg N fixed ha−1 year −1 [26]. Recent studies call for the
reintroduction of integrating legumes into crop rotations, based on the positive effects on
yields and the quality of features on succeeding crops [27,28]. The yield of wheat was
found to be increased after growing legumes, compared to those that were grown after
wheat [29]. Consequently, legumes are an ideal crop to be integrated into crop rotation
systems, since they promote the growth of other crops such as cereals [30]. Nevertheless,
conservation rotation promotes the occurrence of Sclerotinia sclerotiorum in common beans
compared to conventional rotation [31]. Sclerotinia disease can cause serious yield loss
and seed quality problems. However, there is limited literature on the S. sclerotiorum in
legume crops. Specifically, this review seeks to provide detailed information on Sclerotinia
sclerotiorum development, its infection, and its effects on the yield of legume crops. Also, it
presents the response characters of legume crops to S. sclerotiorum infections. Ultimately,
this study aims to provide a comprehensive update on managing S. sclerotiorum in legumes.

2. Sclerotinia sclerotiorum Development and Infection Process
2.1. Sclerotia, Its Development and Survival

Sclerotia formation has been designated three discrete periods (initiation, develop-
ment, and maturation), and the later stages have been broadened into four categories
(condensation, enlargement, consolidation, and pigmentation) [32–34]. These various
stages embrace biochemical, metabolic, physiological, and morphological transformations,
and are influenced by both endogenous and exogenous challenges—for example, ultra-
violet radiation, temperature, toxic metals, microbial rivals, and competitors [35,36]. A
number of factors, such as temperature, humidity, and wet incubation, are implicated in
the germination of sclerotia, as well as the development of ascospore [37–39].

The development of sclerotia in S. Sclerotinia is accompanied by the formation of liquid
droplets [40] that are seen on the surface of the aerial hyphae, and progress as the sclerotia
grow. At the development stage, the exudate droplets are visible by the naked eye on the
surface of the hyphae, alongside maturity features such as pigmentation [32]; once the
droplets attain maximum capacity, they cease to cultivate. The decrease of moisture, gelling,
and the desiccation of the cell walls may involve condensing water from the exudates of
the surface of the sclerotia [41]; however, they are only found in the culture due to soil
absorption, air-drying effects, and reutilizing sclerotia development [42]. Sclerotial growth
is hindered by non-nutritional elements, such as environmental fluctuations (humidity,
temperature, light, pH), the metabolites’ organic compounds, metabolism, and organic
compounds [32]. For instance, the growth and pathogenicity of S. Sclerotinia are influenced
by lower temperatures [43].

The survival of S. Sclerotinia in the soil varies, and is influenced by floods, drought,
burial in soil, and excessive soil moisture [44,45]. Also, several other features, such as
excessive soil moisture associated with high temperatures and reduced oxygen, limit the
existence of sclerotia. Flooding is most essential to sclerotia survival, and it can lead to its
decay within 14–45 days [46,47]. The depth at which the sclerotia is placed in the soil affects
its survival. Several research studies have demonstrated that sclerotia placed in the upper
layers (5 cm) survive less than those placed at a deeper depth (10–30 cm) [47,48]. However,
they can improve survival for several years (above five) because they have special abilities
that make them resistant to hostile environmental conditions and chemicals [44]. The
formation of apothecium and its infection is influenced by the degree of ploughing, and
deeper ones decrease sclerotia density [49]; however, this is in contrast to soybean stem rot
caused by S. sclerotiorum [50]. In summary, the survival period of sclerotia has been known
to range from 1 to 5 years [51–53], and even from 5 to 11 years [54–56]; this makes it more
challenging to control S. sclerotiorum.
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2.2. Sclerotinia sclerotiorum Infection Process

The infection process of S. sclerotiorum is determined by the host, the pathogen, and
the environment (Figure 1). However, the role of the environment is crucial in disease
establishment and progression. For instance, sclerotia will yield apothecia when conditions
(moisture and light) are met. Again, S. sclerotiorum ascospore will germinate and cause
infection under leaf wetness [39]. The spores released by the apothecia infect the flowers,
and the infection is promoted by the plant’s canopy [57]. Later on, the infection may
be noticed on the leaves and petioles or blossoms, and then spread to the stems. The
stem turns greyish-white and soft. The disease progression results in stems becoming
bleached as a result of the stem girdle with lesions, resulting in the wilting and death of
the plant [58,59]. Usually, pods of legume plants show whiteness in colour, with a smaller
size and few seeds, and they may contain sclerotia. Again, plants may also show signs
of stunted growth, premature ripening, and lodging [60]. A high effect of the disease is
recorded during the critical stages of blossoming, pod development and grain filling, and
symptoms become obvious after flowering. Heavily affected leaves progressively become
yellow and brown, and finally drop. Infection on the stems leads to dark brown or pale,
water-soaked lesions closer to the soil line. Conversely, different symptoms of the fungus
are exhibited by different legume crops.

Figure 1. Infection process of S. sclerotiorum.

3. Sclerotinia Disease Occurrence and Yield Losses Caused in Legume Crops
3.1. Pathogens and Host Species

Sclerotiniaceae is a family of the genus sclerotinia. The genus Sclerotinia sclerotiorum
(Lib.) de Bary is efficient in colonizing a diverse host range of over 600 plant species [61],
attracting over 60 different names [62]. Sclerotinia species attack a wide range of field crops,
fruits crops, vegetables, trees, shrubs, ornamental types, and weeds, accounting for yield
reductions globally. Sclerotinia spp. are mostly labelled as causing white mold, crown rot,
and stem rot in grain legumes, depending on the crop infested [63,64]. The species have
been narrowed to three, viz Sclerotinia sclerotiorum, Sclerotinia minor Jagger, and Sclerotinia
trifoliorum [65], as supported by other researchers [66,67]. The data on genetics, variation,
and anatomical and cultural features make the concept of the three species valid [62]. Out
of these types, S. sclerotiorum is noted as the most economically harmful [56,61].
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Several pathogens attack legume crops worldwide, including fungi belonging to the
genus Sclerotinia, with a wide host variety. Legumes are not spared the negative consequences
of Sclerotinia disease. It is known for causing disease among legumes such as groundnut
(Arachis hypogaea L.), soybean (Glycine max L.), common bean (Phaseolus vulgaris L.), faba bean
(Vicia faba L.), alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), chickpea (Cicer
arietinum L.), and lupin (Lupinus albus L.) [64,68–74]. These common legumes are known as
grain or food legumes [75]. Sclerotinia sclerotiorum causes a huge economic loss, specifically
in legume crops [76]. For example, S. sclerotiorum causes yield reduction, accounting for
over USD 200 million every year in soybean in America [77]. Usually, it reduces crop yield,
and the seed price is reduced as there are high levels of contamination in the harvested
seeds due to the presence of sclerotia [60,72,78].

3.2. Yield Losses and Other Negative Effects by Sclerotinia spp.

The general impacts of S. sclerotiorum on plant growth have been observed. For
instance, S. sclerotiorum on plants results in the reduction in the fresh and dry weight of
the plant’s shoot and root, with increases in inoculum levels [79]. Similarly, when plants
are infected with S. sclerotiorum, it results in the reduction of its chlorophyl content [79].
This is attributed to the degeneration of the chloroplast, as the sclerotinia infection is linked
to the secretion of the oxalic acid (OA) by the pathogen which causes the rupturing of
the chloroplast membrane. The seed viability and its vigour are negatively affected by
S. sclerotiorum, and it is progressive and depends on the inoculum pressure.

Sclerotinia species affect several crops, including legumes such as groundnut, soybean,
common bean, faba bean, alfalfa, red clover, and chickpea. These legumes are affected by
either one or two of the Sclerotinia species, with varying degrees of yield losses (Table 1).
Yield losses due to Sclerotinia diseases in grain legumes vary depending on the prevailing
environmental condition; however, more than 50% losses have been recorded (Table 1).
Yield losses caused by the disease are within 147–355 kg/ha [78]. It also causes indirect
losses, such as reducing the dry weight and oil content of groundnut kernels, and reducing
the quality of the pod and fodder. S. sclerotiorum leads to a decrease in their yield compo-
nents (number of seeds per pod, number of pods per plant, and the 100-seed weight) while
affecting their seed quality [62,76]. There is a linear relationship between the degree of
infection of S. sclerotiorum and the yield reduction for affected crops [60]. Several attempts
have been made to develop and release cultivars exhibiting enhanced resistance [80,81].

In summary, Sclerotinia species cause a serious economic loss to legumes, by reducing
their yields and seed quality. The effects of the Sclerotinia species are largely established by
the ecological circumstances (humidity, pH, temperature), biological elements (parasitism,
host susceptibility), and soil elements (depth). Sclerotinia disease in plants is considered a
key problem of concern globally as it reduces yields by 50% [82]. However, there is limited
information as to the economic loss and the global spread of Sclerotinia species in lupins,
faba beans, and red clover.
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Table 1. Sclerotinia spp. disease cause and yield losses estimated in legumes.

Crop (Species) Name Sclerotinia spp. Disease Name Yield Loss (%) Reference

Alfalfa (Medicago sativa L.) Sclerotinia sclerotiorum Blossom blight Up to 100% [83]
Sclerotinia trifoliorum Erikss Sclerotinia crown and stem rot (SCSR) 2–30% [84]

Chickpea (Cicer arietinum) Sclerotinia sclerotiorum Stem rot up to 100% [85,86]
Common bean (Phaseolus vulgaris L.) Sclerotinia sclerotiorum (Lib.) de Bary Stem rot/White mold 30–100% [73,87,88]

Faba bean
(Vicia faba L.)

Sclerotinia trifoliorum Eriks Stem rot Up to 100% [70]
Sclerotinia sclerotiorum White mold - [89]

Groundnut (Arachis hypogaea L.) Sclerotinia minor Jagger/S.
sclerotiorum/Sclerotium rolfsii Sacc Sclerotinia blight Over 50% yield losses [68,90]

Lupin (Lupinus angustifolius L.)
Lentil (Lens culinaris)

Sclerotinia sclerotiorum
Sclerotinia sclerotiorum

Stem rot
Sclerotinia white mold 16 and 35% [91]

Pea (Pisum sativum L.) Sclerotinia sclerotiorum White mold - [92]
Red clover (Trifolium pratense L.) Sclerotinia trifoliorum Sclerotinia crown and stem rot Huge loss to foliage and seeds [71]

Soybean (Glycine max L.) Sclerotinia sclerotiorum (Lib.) de Bary Sclerotinia stem rot >60% yield losses [72]
Sword bean (Canavalia gladiate L.) Sclerotinia sclerotiorum Sclerotinia rot [93]
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4. Response of Legume Crops to Sclerotinia sclerotiorum Infection
4.1. Plant Symptoms

The symptoms observed on infested legume plants vary, subject to the host plant,
prevailing environmental conditions, and infection pathways. The symptoms shown by
the plants are uneven, and are usually evident at the flowering stages [58,76]. Different
symptoms are observed by different plants infected by S. sclerotiorum [94]. However, the
leaves of most infected plants are water-soaked, spreading towards the petiole and towards
the stem as a result of cell death [55]. As the disease progresses, the infested plant develops
a white cottony growth on the stem, followed by sclerotia development [54,59].

4.2. Physio-Biochemical Performance to Sclerotinia sclerotiorum Infection

The physiology and central metabolism of legume crops are crucial for their response
to S. sclerotiorum. They respond to the attack of the pathogen by slowing down or impeding
the possible damage. Once legume crops are infected by S. sclerotiorum, it triggers the crop
defense system to reduce damage by upregulating the pathways of defense-related genes
and downregulating the genes linked to metabolic pathways [95,96]. At this stage, the
legume crop’s energy is geared towards identifying the S. sclerotiorum and signaling its
defense [56]. Secondary metabolites, such as phenolic and phytoalexins [96], and signaling
compounds [97,98], are then produced.

The secondary metabolites (SMs) are involved in a number of processes, such as plant
defenses and the termination of infections [99,100]. Legumes have SMs such as phytoalexin,
saponins, polyphenolic, and alkaloids in varying content among plant species [101,102].
These SMs gather temporarily at diverse parts of the legume plant, subject to the nature of
the stress. To illustrate, there is a high presence of phytoalexins in the leaves when there is
a need for antimicrobial action against the phytopathogens [103]. The metabolite oxalic
acid also appears to be employed by S. sclerotiorum as a broad-spectrum pathogenicity
factor. Infection assays of OA-deficient S. sclerotiorum strains on a range of hosts including
G. max, P. vulgaris, Solanum lycospersicum, Brassica napus, Helianthus annuus, and A. thaliana
resulted in substantially reduced virulence, demonstrating that OA plays an important
role in the infection strategy of S. sclerotiorum across a wide range of host species [104].
These broad-spectrum pathogenicity factors may contribute to the ability of S. sclerotiorum
to infect a wide range of plant hosts.

Other studies endorse that in legumes (common bean and soybean), genes of enzymes
and non-enzymes including peroxidase (POX), glutathione peroxidase (GPx), polyphenol
oxidases (PPO), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase
(APX) are linked to the metabolism of ROS, and regulate the formation and performance
of the cell wall [97,105]. Thus, they influence the occupancy of the pathogen on the
host (legumes).

5. Control Strategies for Managing Sclerotinia sclerotiorum Infection
5.1. Biological Control of Sclerotinia Diseases in Legumes

Biocontrol presents an alternative for the management of S. sclerotiorum by microbes,
due to the quest for environmentally friendly options for chemical pesticide usage [106,107]
in the absence of host resistance. Strains of bacteria, fungi, nematodes, viruses, and insects
are used as biological control agents (BCAs) for managing pathogens. Thus, BCAs are
integral components of sustainable agriculture [108,109]. A number of BCAs are identified
to control S. sclerotiorum, thus leading to a substantial volume of study on the possible
biocontrol for S. sclerotiorum. For instance, BCAs such as Trichoderma spp. [110–112] and
Coniothyrium minitans [112] are known to control S. sclerotiorum in legume crops (Table 2).

Specifically, Coniothyrium minitans is effective in controlling S. sclerotiorum in soybean
(Table 2). It is commercially available globally in the formulation of Contans WG. In
soybean plants, the application of Coniothyrium minitans effectively limits apothecia and
sclerotia formation by 81% and 50%, respectively [113], while in common beans it reduces
the incidence of S. sclerotiorum by 90% [114] (Table 2). The spraying of C. minitans conidia
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(5 × 106 mL−1) on alfalfa plants for three conservative years resulted in a percentage of
diseased pods from 42–72% to 29–38% [115] (Table 2).

Several species of Bacillus are implicated in plant growth-promoting rhizobacteria,
and are utilized as BCAs [116] while improving the nutritional properties of Amaran-
thus hypochondriacus Linn [117]. Similarly, these bacteria have been proven by some re-
searchers [112,118] to have antagonistic effects on the incidence of S. sclerotiorum in some
legume crops (Table 2). For instance, Bacillus sp. B19 and Bacillus sp. P12, under a growth
chamber, promoted germination ability by 15% while increasing the root and stem length
of common beans [118]. Under a growth chamber, Bacillus subtilis impeded the formation
of apothecia and sclerotia by 91% and 30%, respectively [113].

Again, Trichoderma, a soil-borne fungus, plays a key role in anti-phytopathogen-
employing mechanisms such as antibiosis, induced systematic resistance, mycopara-
sitism, and competition [119]. Most of the Trichoderma spp. exhibit the parasitism of S.
sclerotiorum sclerotia and decrease apothecia mass [120]. This is achieved by suppress-
ing S. sclerotiorum by interfering with the growth of hyphal, parasitising the sclerotia
and limiting the formation of apothecia [121,122] without affecting the microbial com-
munity [123]. Trichoderma asperellum reduces the apothecia quantity and severity of S.
sclerotiorum in common beans at rate of 2 × 1012 spores mL−1 per plot for 2 years during
field experiments [120]. Moreover, in chickpeas, T. hamatum and T. koningii resulted in
a grain yield of over 50% [124] (Table 2). A strain of T. harzianum T-22 saved soybean
plants in the field from S. sclerotiorum, and reduced its severity by 38.5% [112]. How-
ever, the commercialization of Trichoderma bioproduct is challenged by inconsistent
performance under field conditions and controlled environments [125]. There is a huge
amount of data on the use of biological agents in controlling S. sclerotiorum in legumes.
On the contrary, there is limited information as to how S. sclerotiorum interacts and resists
biocontrol agents. The antifungal action of propolis extract and oregano essential oil
declines disease severity by 40% and 60%, respectively, highlighting the potential of
biofungicides in controlling S. sclerotiorum [126].
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Table 2. Biocontrol agents used in controlling S. sclerotiorum in crops.

Species Environment Effects Tested Crop/Pathogens Reference

Streptomyces albulus CK-15 In vitro Inhibits germination and formation of sclerotia and
the growth of mycelia Sclerotinia sclerotiorum [127]

Streptomyces species (S. griseus, S. rochei & S. sampsonii) In vitro & In vivo Controls the disease by reducing the viability and
germination of sclerotia Green bean [128]

Bacillus sp. FSQ1 In vivo Inhibits the growth and infection Common bean [129]
Trichoderma harzianum ESALQ-1306 & Trichoderma
asperellum BRM-29104 Field Controls S. sclerotiorum Common bean [123]

Trichoderma hamatum & T. koningii Improves grain yield by 50–100% by controlling
Fusarium wilt Chickpea [124]

Bacillus velezensis Greenhouse Inhibit disease growth Lettuce [130]
Arthrobacter FP15 Diminishes disease symptoms Lettuce [131]
Bacillus amyloliquefaciens In vitro & Greenhouse Impedes mycelium growth and limits lesion size Tomatoes [132]

Bacillus sp. B19 & Bacillus sp. P12 Growth chamber Improves crop germination potential by 15% and
increases root and stem length Common bean [118]

Pseudomonas cholororaphis PA-23 Greenhouse & In vitro Suppresses S. sclerotiorum Lettuce [133]
Coniothyrium minitans Growth chamber Reduce disease incidence by 90% Common bean [114]
Pseudomonas aeruginosa; Bacillus subtilis; &
Trichoderma harzianum Greenhouse Induced systematic resistance, and suppression of

oxalic acid production Pea [134]

Bacillus amyloliquefaciencs In vitro Limits the effects of pathogens Fungal pathogens [135]

Trichoderma asperellum Field Reduction of S. sclerotiorum apothecia number
and disease severity Common bean [120]

Bacillus subtilis Growth chamber Limit formation of apothecia by 91% and sclerotia
by 30% Soybean [112]

Coniothyrium minitans Growth chamber Lower apothecia and sclerotia by 81% and 50%
respectively Soybean [112]

Streptomyces lydicus Growth chamber Decrease apothecia by 100% and sclerotia by 30% Soybean [112]
Trichoderma harzianum T-22 Field Decrease the disease severity index (DSI) by 38.5% Soybean [112]
Pseudomonas brassicacearum DF41 Greenhouse & In vitro Suppresses S. sclerotiorum Canola [136]
Pseudomonas cholororaphis sp. PA-23 Greenhouse Suppresses S. sclerotiorum Canola [113]
Trichoderma asperellum & Clonostachys rosea Greenhouse Reduction in apothecium counts Common bean [121]
Mycotoxins (roridin A & roridin D) In vitro Inhibitors of S. sclerotiorum Sclerotinia sclerotiorum [137]
Coniothyrium minitans Field Suppress pod rot from 42–72% to 29–38% Alfalfa [115]
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5.2. Genetic Improvement of Host Resistance to S. sclerotiorum

The identification of resistance source in legumes to S. sclerotiorum is urgent to ensure
the progress of the legume industry. Attempts have been made to develop protocols to
screen gene pools (cultivars, landrace and plant introductions) under different environ-
ments, to identify resistant genotypes [88,138–140]. Unfortunately, a low level of resistance
is exhibited by legumes to S. sclerotiorum. For instance, in soybeans, a total of 285 out of
8596 lines were identified as resistant [74], whereas 12 accessions out of 519 common bean
germplasm were resistant [141]. Molecular markers have aided in identifying legumes
exhibiting partial resistance [141,142].

Analyses of the tolerance of legumes to S. sclerotiorum have shown partial resistance
among legumes such as common bean [142] and soybean [143]. A number of previous re-
searchers have reported on mapping quantitative trait loci linked to S. sclerotiorum resistance
among legume crops, including common bean [144,145], groundnut [146], chickpea [86],
and soybean [147,148]. However, some legume crops, such as faba bean, lentil, and lupin,
have their transcriptome available publicly, but there is limited information on studies
carried out to elucidate the quantitative trait locus linked to S. sclerotiorum resistance.

With the nature of the pathogen, the breeding programs have low success rates,
with no commercial variety available for legume crops (such as soybean, alfalfa, red
clovers and faba beans) being resistant to S. sclerotiorum [59,149–153]. On the contrary,
groundnut has a commercial variety resistant to the disease, saving the United Sates
USD 5 million yearly [154]. Recent studies have identified resistant genes GmGST of
glutathione transferase and GmCH1 of chitinase via cloning, which increase resistance to
S. sclerotiorum in soybean [155,156]. Similarly, the silencing of the endo-polygalacturonase
gene (SsPG1), cellobiohydrolase gene (SsCBH), and oxaloacetate acetylhydrolase gene
(SsOAH1) in B. napus led to a reduction in disease by 40%, showing the path in managing
the disease via host-induced gene silencing [157]. In common bean, genomic regions
WM2.2a and WM2.2b are linked to playing a role in resistance, of which the latter triggers
physiological resistance and the former with avoidance mechanisms [158]. Thus, the genes
serve as a ground to assist marker-assisted breeding against the disease. The use of cultivars
resistant to S. sclerotiorum will reduce dependence on fungicide application [159].

5.3. Chemical Control of Sclerotinia Diseases in Legumes

Fungicides are widely used to manage S. sclerotiorum [160]. This has resulted in a
range of fungicides—such as demethylation inhibitors, anilinopyrimidines, benzimidazoles,
triazole, strobilurin, pyridine-carboxamide, dicarboxamides, iprodione, and succinate de-
hydrogenase inhibitors (SDHIs)—on the market, in an attempt to reduces its associated
effects on crop yield and quality [160–165]. The fungicides’ active ingredients are picoxys-
trobin, fluazinam, tetraconazole, pyraclostrobin, boscalid, penthiopyrad, trifloxystrobin,
fluxapyroxad, prothioconazole, thiophanate methyl, and prothioconazole [76,166–171].
The most frequently used fungicides in controlling S. sclerotiorum are dicarboximides and
benzimidazoles, with countries reporting some strains showing resistance [172]. In legume
crops, a number of fungicides are recommended to manage S. sclerotiorum. For example, in
groundnut dicarbixamides, SDHIs and aminipyridines are recommended [173,174]. Chem-
ical fungicides do pose a threat to humans and the environment; hence, there is a search for
more safe chemicals which has resulted in a ban on thiophanate methyl and prothiocona-
zole in Europe. Other researchers confirm that the resistance of S. sclerotiorum isolates to
these fungicides is seen only in laboratory-induced variants [175]. However, it is advisable
to rotate fungicides with diverse ways of actions such as fluazinam and procymidone, since
they did not lose the sensitivity until now [176]. The decision on fungicide application is
dependent on the economic analysis between its cost and the menace of the disease. To
achieve a high impact of the fungicide application, it is required that the moisture level
in the field, crop stage, canopy thickness, and the weather forecast for a week ahead be
studied. For example, applying fungicides during the bloom period offers the best result.
It limits the spread of infection by ascospores in fields. Hence, the time in the flowering
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periods of legume crops is critical. Others have observed inconsistent results on fungicide
efficiency by varying the application time and the type of the fungicides [159,177,178].

Chemicals have been applied to avoid the presence of the disease, and are considered
uneconomical by farmers [174,178]. For instance, to achieve a lower rate of disease incidence
in soybeans, after the application of thriophanate methyl at either R1 (beginning flower)
or R2 (full flowering) there is a need to do a second application two weeks later [179].
Also, they increase farmers’ production costs, as well as cause negative consequences on
the ecology as a result of their toxic remains [107,178]. Notwithstanding this, fungicide
application is successful and effective in managing S. sclerotiorum [76,180], especially during
a disease outbreak in the field. Moreover, the application of machine learning could aid to
estimate the S. sclerotiorum disease threshold, to inform spraying decisions [39].

6. Conclusions and Future Perspective

In this review, we provided a comprehensive overview of S. sclerotiorum and its impact
on legume crops. Much has been unveiled for the pathogen’s sclerotia, its development,
and its survival. We highlighted the strategies available to mitigate the effects of Scle-
rotinia diseases on legume crops. We conclude that the successful control of the disease
demands execution, and a combination of multiple methods largely depending on chemical,
biocontrol and genetic resistance.

The harm caused by S. sclerotiorum on legumes are huge, requiring that new, efficient
and effective control measures need to be developed against the pathogen. Hence, an
effective control strategy needs to be adopted, with an increased display of preventive
action against yield loss while promoting crop quality and avoiding resistance to fungicides.
In-depth knowledge of the formulation, delivery, and efficient screening protocols under
different environments (growth chamber, green house, and field) with consistent results is
essential for adopting commercial products for fungicide and biocontrol. Moreover, it is
essential to categorize S. sclerotiorum strains during trials, so as to foster the development
of resistant cultivars. Future work could provide a detailed understanding of the use of
BCAs and the reduced quantity of fungicides, to study their synergistic effects. These
approaches could be integrated into cultural practices in an attempt to mitigates the effects
of Sclerotinia diseases in legumes. Lastly, advanced breeding techniques could be explored
for accelerating the development of legume crops resistant to S. sclerotiorum.
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