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Abstract: Secondary metabolites of aromatic plants are used in many health applications as drugs,
pheromones, insecticides, fragrances, and antioxidants. Due to the huge commercial demand for
these secondary metabolites, the need to overcome the insufficient productivity of aromatic plants has
become a significant challenge. Plant breeding is a traditional, labor-intensive, and limited method
to improve the ability of aromatic plants to produce secondary metabolites. Modern methods of
biotechnology, including genetic engineering and genome editing, can be useful and cost-effective
in improving aromatic plants, as they can increase the efficiency of obtaining plants with high
productivity and the creation of resistant forms and breeding lines. This review illustrates the
importance of developing methods for the modification of aromatic plants belonging to different
families, with a predictable quality, resistance to adverse factors and pests, and intensive growth
and high yields and productivity of valuable essential oils. Particular attention is paid to successful
examples of the modification of aromatic plants, applied methods, and principal approaches

Keywords: essential oil; transgenic plants; metabolic engineering; plant protection; abiotic stresses;
pathogen resistance

1. Introduction

Plants produce thousands of different terpenes and terpenoids, which are the largest
and most structurally diverse classes of secondary metabolites. These compounds are
present in the essential oils (EOs) produced by plants. EOs are obtained from plants
by steam distillation or extraction with organic solvents [1]. However, most terpene
compounds are present in plant tissues in limited quantities. Plant seeds, flowers, stems,
and roots most often contain 0.1–10% EOs in fresh weight [2]. Approximately 3000 different
plant species are known, from which various EOs have been isolated. EOs have been
widely studied in only 300 plant species, and only approximately 20 plant species have
been recognized as valuable for commercial use as sources of EOs that are used regularly
and in large volume [3,4]. In nature, EOs play an important role in plant protection as
antibacterial, antiviral, and antifungal agents and insecticides. At the same time, they
protect plants from herbivores, reducing their appetite for such plants [5,6]. They can also

Agronomy 2022, 12, 3131. https://doi.org/10.3390/agronomy12123131 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12123131
https://doi.org/10.3390/agronomy12123131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0003-2011-6054
https://orcid.org/0000-0001-8169-9228
https://orcid.org/0000-0003-4399-2903
https://doi.org/10.3390/agronomy12123131
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12123131?type=check_update&version=2


Agronomy 2022, 12, 3131 2 of 17

attract certain insects by scattering pollen and seeds, while they repel others. In addition,
they are known for their antiseptic, antiviral, fungicidal, and medicinal properties. EOs
isolated from plants are also used in embalming and food preservation, and as antimicrobial,
analgesic, sedative, anti-inflammatory, antispasmodic, and local anesthetic agents [7].

In most cases, EO compounds are formed only in certain plant tissues, such as in-
florescences or seeds, which constitute a small percentage of the entire plant biomass in
one harvesting season [8]. Therefore, the extraction of useful compounds from the EOs
of aromatic plants can be an expensive procedure. Although the chemical synthesis of
individual organic compounds is often cheaper, and the natural product has a small market
share, consumer preference for natural essential oils over synthetic compounds is becoming
increasingly widespread. This is mainly due to people’s opinions that natural EOs do
not contain harmful industrial impurities and often have higher natural taste quality that
cannot be achieved via the chemical synthesis of these compounds [9]. The EO industry
generates billions of dollars in revenue each year, as they have a wide range of applica-
tions in various fields, such as pharmaceuticals, aromatherapy, healthcare, cosmetics, food
flavoring, food preservation, and perfumery [10,11]. Therefore, there is a need to reduce
the costs of natural products so that they become available to a wider range of consumers.
From an ecological point of view, the production of useful compounds by non-chemical
environmentally friendly methods is always the preferred and necessary alternative.

Modern biotechnological techniques make it possible to facilitate production and
therefore reduce the market value of natural EOs through the use of various environmen-
tally friendly methods. The development of genetic engineering has led to the development
of large-scale biosynthesis of natural products, and advances in tissue culture of aromatic
plants have opened up new avenues for the large-scale and high-efficiency production of
desirable bioactive compounds. Plant tissue culture (including suspension cell cultures
and “hairy root” cultures) is a promising alternative for the production of rare and high-
value secondary metabolites to traditional approaches (e.g., harvesting wild plants), and is
more cost-effective for mass production of plant-derived substances due to a number of
advantages [12,13]. Firstly, such a bioprocess is completely independent of any seasonal
and geographical conditions. Second, genetic modifications including gene overexpression,
RNA interference, and the gene/genome editing due to CRISPR/Cas technique can be
easily applied without encountering the regulatory barriers associated with plants growing
in the field [14].

Another example of an increase in the productivity of the EOs synthesis by aromatic
plants can be an increase in the number or size of cells and groups of cells in which these
compounds are produced, or by regulating ploidy, increasing division, and rising the
proportion of specialized cells in the tissue [15] (Supplementary Materials Figure S1). In the
last decade, more and more efforts have been invested in genetic and metabolic engineering
in order to increase the production of key metabolites in plants. However, as attempts
to increase the production of individual metabolites progress, it becomes clear that this
effect cannot be achieved by direct gene overexpression. To improve the control over the
accumulation of natural products, a deep understanding of the genetic, molecular, and
biochemical processes occurring in situ and leading to the synthesis of desired compounds
is required [16]. Knowledge of the complex network of metabolic pathways for the synthesis
of secondary compounds is a crucial initial step.

This review discusses recent biotechnological approaches that have received spe-
cial attention in the last 12 years (2010–2022) and whose main goal was to increase the
productivity and resistance of aromatic plants to abiotic and biotic stresses.

2. The Specifics of Biotechnology Application in Improving the Quality of Aromatic Plants

The use of biotechnological methods, of course, can significantly increase the produc-
tion of EOs and improve their quality and the predictability of a given composition in
specialized cells in aromatic plants, by changing or regulating the biogenesis of related
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compounds, introducing missing enzymes, creating optimal conditions for cultivation, or
increasing the biomass of valuable plant organs. (Figure 1).
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Figure 1. The scheme illustrates those physiological processes in aromatic plants that could be
modified (improved) through the application of genetic engineering.

However, even those technologies that are currently well known and repeatedly
utilized have significant limitations when dealing with aromatic plants. One such obstacle
may be that a number of valuable aromatic plants are perennials and woody plants. This
complicates the evaluation of newly modified plants, since the production of complex
compounds, where various metabolic enzymes are involved in sequential stages, requires a
rather long period [17]. In addition, in such plants, flowering occurs only when a certain
stage of development is reached, and often flowers are the main source of EOs [18]. In
this case, to assess the potential properties of such plants, the technology of grafting the
obtained modified regenerants onto a rootstock of the same species can be used, followed
by an assessment of the qualitative and quantitative yield of the product [19].

It is known that regenerants obtained in vitro are often tender plants, poorly adapted
to ex vitro conditions, especially in the presence of difficulties with rhizogenesis; the
regenerant is first grafted onto a stable root system in vitro, after which acclimatization
and plant cultivation take place. Another significant problem when working with aromatic
plants is their ability to accumulate a significant amount of phenols, the presence of
which greatly complicates the purification of the product of interest. This creates the
problem of limiting the availability of explants for transformation, since the protocols for
the maceration, cultivation, and transformation of cells or tissues of such plants, produced
from mature tissues, are problematic and inefficient [20]. Varietal specificity may even limit
the possibility of obtaining the required modifications of especially valuable screeds of
various cultivars. To solve such problems, various methods are used to achieve a higher
yield of regenerated products using complex protocols for multicomponent nutrient media,
a special lighting regime, drugs that reduce the rapid “aging” of cells and the excessive
accumulation of harmful secondary metabolites that affect the production of regenerated
shoots (roots), and the release of protoplasts, depending on the chosen method. The
most commonly used are various phytohormones, synthetic regulators, osmotically active
substances, altered temperature conditions (usually lower temperatures), amino acids, and
peptides, as well as vitamins, activated charcoal, and antioxidants [21].
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2.1. Specialized Metabolites of EOs and Their Biosynthesis

Today, terpenes or terpenoids, which are components of essential oils, represent a
large and structurally diverse class of compounds, numbering more than 80,000 names [22].
The basic structures of all terpenes are synthesized as a result of two alternative and
independent biosynthetic pathways located in different subcellular compartments from
the universal five-carbon precursors, isopentenyl diphosphate (IPP) and its dimethylallyl
diphosphate (DMAPP) all isomer (Figure S2) [23]. The classic mevalonic acid pathway
includes six enzymatic steps, starting with acetyl-CoA and ending with the formation of IPP.
The MVA pathway is commonly known as the cytosolic one, where the enzymes are located
in the cytosol [24]. The second pathway, which includes seven enzymatic steps, also results
in the formation of IPP and DMAPP from pyruvate and glyceraldehyde-3-phosphate in
plastids [23]. It is known that the enzymes of the MEP pathway are encoded by the nuclear
genome and imported into plastids, where certain types of terpenoids are produced [25].

Recent studies have shown that in addition to the classical synthesis of IPP and
DMAPP using enzymes in cytosol (MVA pathway) and plastids (MEP pathway), their
synthesis is possible in both locations. Plant genomes contain the isopentenyl phosphate
kinase (IPK) gene, which expresses the IPK protein found in the cytoplasm, where it
converts isopentenyl phosphate (IP) and possibly dimethyl allyl phosphate (DMAP) into
IPP and DMAPP via ATP-dependent phosphorylation [26].

In a number of aromatic plants, the gene clusters involved in the biosynthesis of
specialized terpenoids have been studied and have provided the means to enhance the
biosynthesis of some specialized terpenoids (Table 1) [27–35].

Table 1. The genes encoding some of the enzymes involved in the synthesis of EOs.

Artemisia annua L. AaβFS1 (an EβF
synthase gene)

The CTP + AaβFS1 transgenic tobacco plants could emit
EβF what enhanced repellence to green peach aphid

(Myzus persicae)
[27]

Citrus sinensis L.
Osbeck

Linalool synthase
(CuSTS3-1)

Transgenic sweet orange plants showing the highest
linalool content, demonstrated strong resistance to cancer

in citrus (Xanthomonas citri subsp. citri)
[28]

Eucalyptus
Camaldulensis

Dehnh.

“Mangrin”
gene-homolog of the
allene oxide cyclase

(AOC) gene

The mangrin gene is one approach to safely enhance salt
tolerance in Eucalyptus camaldulensis. Salt-tolerant

transgenic eucalyptus plants had somewhat less α-pinene
in their essential oil and in the case of 1,8-cineole no
differences were observed between transgenic and

non-transgenic genotypes.

[29]

Lavandula spp. AG-like and
SEP3-like genes

Study of genes regulating flowering time in commercial
lavender species [30]

Matricaria recutita (E)-β-farnesene
synthase gene

The expression pattern of the gene encoding βFS, which is
involved in chemical communication, has been studied,
which provides the basis for the subsequent increase in

crop resistance to aphids.

[31]

Mentha piperita L.
Mitogen-activated

protein kinase
(MAPK)

Data demonstrated the MAPK-dependent regulation
mechanism of EOs biosynthesis in the

salt-tolerant peppermint
[32]

Ocimum basilicum L.
ObDMR1

Editing of the ObDMR1 gene was tested, the mutation of
which gives resistance to the causative agent of

downy mildew
[33]

β-glucuronidase
(GUS)

The GUS expression is induced and up-regulated by
increasing of water deficit stress. [34]

Pelargonium graveolens cv.
Hemanti ACC deaminase

Transgenic P. graveolens expressing ACC deaminase
showed immense tolerance to salinity and drought stress.
Additionally, expression of ACC deaminase enhanced the

total biomass under normal conditions, important in
increasing the productivity of the rose-scented

geranium oil.

[35]
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Studies conducted in the last few years in the field of genomics and metabolomics
were reflected in a series of review papers [36–40]. Some studies have shown the presence
of non-canonical pathways and gene clusters involved in the formation of precursors, as
well as the following terpenoid compounds in certain plant species [39]. Regulatory factors
and gene clusters involved in the biosynthesis of specialized terpenoids in various plant
species have been identified. It has been shown that the subcellular localization of the
precursors pool and introduced enzymes are the crucial factors for increasing the specific
terpenoid production in plants [40]. Additionally, if at present, the enhanced synthesis of a
particular terpene compound was due to the overexpression of a single introduced gene,
then future studies may focus on the delivery of several genes comprising several stages
in the metabolic pathway of the biosynthesis of the target compound (Figure 2). Further
understanding of the fine regulation of already known and lesser understood biosynthetic
pathways, identification of new genes or gene clusters in selected species of industrially
important aromatic plants, may lead to the production of commercially significant amounts
of valuable terpene compounds in host plants.

Currently, there are only a few examples of the production of specialized terpenoids in
host plants due to advances in metabolic engineering. Thus, the development of a pathway
for the biosynthesis of menthol in peppermint (Mentha x piperita L.) made it possible, as
a result of the suppression of the menthofuran synthase gene, to increase the yield of EO
with a reduced amount of undesirable (+)-menthofuran in the MFS7A transgenic line [41].
Moreover, the overexpression of DXR led to an increase in the yield of EO in transgenic
plants grown in a greenhouse by more than 50% at a low level of (+)-menthofuran (≤1.9%
in EO) and (+)-pulegone (approximately 0.2% in essential oil) [42]. Field trials of these
transgenic peppermint lines showed similar results in terms of EO yield and composition
to those observed in greenhouse-grown lines [41]. Another example of the successful
metabolic engineering of specialized terpenoids is the genetic engineering of sweet worm-
wood (Artemisia annua L.), in which the combined expression of the HMGR, FPPS, and
DBR2 genes resulted in the more than three-fold higher accumulation of artemisinin [43].
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However, so far, engineering with the introduction of foreign genes for the biosynthesis
of specialized terpenoids using a transgenic approach has been successful in producing
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commercially advantageous amounts of specialized terpenoids in only a few plant species.
It involves manipulation via the relevant pathways for the synthesis of many metabolites;
although it requires great effort, it would allow us, in the future, to better understand both
already known and less studied pathways and regulatory mechanisms, and to identify
new genes or gene clusters involved in the biosynthesis of specialized terpenoids. The
understanding of biosynthesis and its regulation can be used to develop homologous
or heterologous transgenic systems to obtain higher amounts of commercially valuable
terpenoids, as well as to increase plant yields and improve the quality of their EOs in
industrial production.

2.2. Diseases of Aromatic Plants

Thus far, the focus has been on diseases affecting agricultural plants, and diseases
affecting aromatic plants have been largely ignored. The cultivation of aromatic plants
faces serious threats from various groups of phytopathogens (bacteria, fungi, viruses,
phytoplasmas, nematodes), which reduce the yields of these crops and the quality of the
crude materials obtained [44].

The main pests that cause serious damage to aromatic plants are various types of
nematodes, they damage the roots of the host plant and reduce their productivity and
yield [45–48]. Some of them are carriers of viruses for these plants, such as Arabis mosaic
virus, Strawberry latent ring spot virus and Tobacco ring spot virus). Other pests also
carry viruses. So, aphids are intermediate hosts of such viruses as Alfalfa mosaic virus,
Cucumber mosaic virus and Mint vein banding associated virus, thrips carry Impatiens
necrotic spot virus and Tomato spotted wilt virus, whitefly-Tomato leaf curl Pakistan
virus, and unknown vectors-Tobacco mosaic virus and Lychnis ringspot virus [49,50].
Various fungal pathogenic invasions of these species are also observed in aromatic plants:
Puccinia menthae (rust), Rhizoctonia solani (air rot), Rhizoctonia solani/bataticola (root and
stolon rot), Verticillium dahliae (wilt), Phoma stasseri (stem rot), Alternaria alternata (leaf rot or
leaf spot) and Erysiphe cischoracearum (powdery mildew) [51,52].

At present, the use of the possibilities of bioengineering of aromatic plants makes
it possible to increase plant resistance to diseases [53,54]. For example, genes encoding
proteins capable of degrading mycotoxins can be introduced into plants [55]. Plant protein
baits that serve to capture pathogens can be modified to avoid the specificity of pathogen
recognition [56,57]. The mechanism of RNA interference to provide robust viral immunity
by targeting the degradation of viral RNA can also be used [58]. Natural or engineered
immune receptors that recognize different pathogen strains can be introduced singly or in
combination to provide reliable resistance to broad-spectrum diseases [59].

Phytoplasmas are a fairly large group of pathogens of aromatic plants. They cause
changes in the amount and composition of secondary metabolites in diseased plants, which
greatly affects the concentration of valuable phytochemicals [60,61]. Thus, in St. John’s
wort (Hypericum perforatum) infected with phytoplasma 16SrVII, the EO yield significantly
decreased (0.11 vs. 0.75% in healthy plants), and the content of sesquiterpenes increased in
their composition, while the content of monoterpene hydrocarbons (and aliphatic compounds)
decreased [61]. As one of the mechanisms by which phytoplasma spreads, several proteins
secreted by phytoplasma in host plants have been identified and named as effector molecules,
namely SAP54, SAP11, TENGU, SAP21, etc., which ensure its colonization and survival in
the host plant [62]. Recent molecular studies of phytoplasma effector proteins and host plant
microRNAs have shed light on the complex mechanisms underlying the development of
phytoplasma infection symptoms. TENGU-induced dwarfism and infertility in plants are
associated with the altered biosynthesis of auxin and jasmonic acid. SAP 54 plays a significant
negative role in the degradation of transcription factors involved in flower development. The
role of another effector molecule, SAP11, is manifested in the proliferation of axillary shoots
and symptoms of hairy root [62]. Although the mechanisms by which phytoplasma infections
spread remain a complex issue, studying the processes involved will provide a platform for
developing measures to control phytoplasma-related diseases.
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Despite the fact that biotic stress entails an increase in the production of secondary
metabolic products, since they perform protective functions in plant organisms, the pen-
etration of pathogens into the host plant is nevertheless a major obstacle to obtaining
high-quality products. The development of the resistance of the main plants to unfavorable
conditions of cultivation, and to diseases and pests, also makes it possible to increase the
yield of the final product and increase their commercial value.

2.3. The Biotransformation of Aromatic Plants

Genetic engineering of aromatic plants has continued to develop over the past decade,
both in the biotransformation of secondary metabolic pathways in general and in individual
terpene pathways.

Microorganisms, particularly E. coli, continue to be the main objects of metabolic and
combinatorial engineering experiments. Advances in genome sequencing and transcriptome
and proteome analysis have created more suitable starting platforms for the development
of secondary metabolite production. Genetic manipulation of bacteria and yeast makes it
possible to use them as an alternative host for the production of plant EO components and
to obtain valuable substances in commercially viable quantities. One such example is the
production of cis-abienol, a bicyclic tertiary labdanoid diterpene alcohol, which is obtained
by extraction from Abies balsamea and Nicotiana tabacumum [63]. This compound is the flavor
precursor of most oriental tobaccos and is commonly used in cigarette extracts. In addition,
cis-abienol is used as a precursor for the semi-synthesis of succinic compounds, which is
a substitute for natural ambergris and is widely used in industry. However, the existing
method of isolating cis-abienol from a plant is inefficient, and it requires a significant amount
of natural resources and many chemicals that are hazardous to the environment; meanwhile,
microorganisms provide a sustainable and environmentally friendly alternative to cis-abienol
production [64]. Another example is the large-scale cultivation in bioreactors of geraniol,
an acyclic monoterpene alcohol, which is the main component of the EOs of plants such as
geranium, lemongrass, and rose [65–67]. Recently, it has become possible to obtain, in cell
cultures, the compounds that are present in the EOs of especially valuable and endangered
plants, such as Ajuga bracteosa, Nepenthes khasiana, and Zataria multiflora [68,69].

Another popular strategy for obtaining biologically active compounds continues to be
the cultivation of specialized organs, such as shoots or hairy roots [70,71]. Along with a
high growth rate, genetically transformed roots (hairy roots) can be cultivated on hormone-
free media while maintaining their genetic stability. Therefore, hairy root cultures have a
significant advantage in obtaining these metabolites in significant amounts, comparable to
their amounts in intact plants [72–74].

In addition, hairy roots are used as an important research tool to elucidate pathways
for the biosynthesis of secondary metabolites, as well as the expression, function, and
regulation of key genes. In recent years, studies in this direction have been carried out on a
number of aromatic crops, such as Mentha spicata L. [75], Artemisia spp., Salvia spp. [72,76].

Recent progress in transgenic research has offered the possibility of metabolic en-
gineering to study biosynthetic pathways to produce valuable secondary metabolites.
Identification of metabolic genes/pathways and their engineering has become common
practice. Some results of EOs metabolic engineering in aromatic plants is presented
in Table 2.

Metabolic engineering offers a promising tool to increase yields. In addition, a trans-
genic approach can be used to increase the production of endogenous secondary metabo-
lites in the plant system. The isolation and expression of such genes using transgenic
approaches in intact and cultivated aromatic plants can lead to the synthesis of these
secondary metabolites. For example, overexpression of the AaWRKY1 and TfGA20ox2
genes in Artemisia annua resulted in the increased yield and accumulation of artemisinin
(an important antimalarial drug) in this plant [79,81]. Manipulations with the expression
(reduced/over-) of the MsYABBY5 and R2R3-MYB, MsMYB genes in Mentha spicata lead to
an increase/decrease in the level of monoterpenes in the composition of mint EO [99,100].
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In addition, transgenic ObCAAT1-RNAi Ocimum basilicum lines with suppressed expression
of the BACDH acyltransferase gene, which is involved in the synthesis of eugenol, showed
a decrease in the level of volatile organic compounds, eugenol, and the accumulation of
coniferous alcohol [102].

Another direction of molecular research is the identification of genes that regulate the
size and density of glandular trichomes responsible for the biosynthesis and secretion of
plant EOs. The overexpression of genes under the control of trichomospecific promoters in
most cases leads to an increase in the size and density of trichomes in transgenic species
such as Artemisia annua [77], Mentha piperita L. [98], and Salvia fruticosa [110].

Table 2. Results of experiments on transgenesis with aromatic plants.

Species Gene Result of Transgenesis Reference

Artemisia annua L.

trichome-specific LTP genes
(AaLTP3 and AaLTP4)

Overexpression of AaLTP3 or AaLTP4 in transgenic A.
annua plants resulted in enhanced production of
sesquiterpene lactones (arteannuin B, artemisinin,
dihydroartemisinic acid and artemisinic acid)

[77]

TLR1 and TLR2 TLR1 and TLR2 negatively regulate trichome density and
reduces production of sesquiterpene (artemisinin) [78]

TfGA20ox2 enhances production of essential oil yields and
sesquiterpene (artemisinin) [79]

Five sesquiterpene synthases
(ADS, GAS, CPS, ECS and FS

GAS, ECS or CPS genes not improve artemisinin
production; ADS and FS genes have an effect on the yield
of artemisinin.

[80]

AaWRKY1 (expression of
ADS) The regulation (increase) of artemisinin production [81]

Monoterpene synthase
linalool synthase (LIS)

The expression of LIS not influence artemisinin
production [82]

cyp71av1 and cpr genes Overexpressing cyp71av1 and cpr is an effective means
for increasing artemisinin content [83]

valencene synthase (VS)
valencene oxidase (VO)

Transgenic Artemisia annua coexpressing VS and VO in the
cytosol ans farnesyl diphosphate synthase (FPS), VS, and
VO in plastids produced a valuable sesquiterpene
noocatone

[84]

Cinnamomum
osmophloeum Kaneh

CoPAL, Co4CL1,
Co4CL4 and CoCCR

Identification of four genes (CoPAL, Co4CL1, Co4CL4 and
CoCCR) involved in the cinnamaldehyde biosynthesis
pathway.

[85]

Cuminum cyminum L. GUS The first report on Agrobacterium-mediated genetic
transformation in cumin. [86]

Eucalyptus grandis ×
E. urophylla GFP and GUS

There were no significant differences in leaf essential oil
content or chemistry between transgenic (to improve
wood production, wood quality and disease resistance)
and non-transgenic eucalyptus trees.

[87]

Eucalyptus polybractea
R.T. Baker mgfp6 and hpt genes Developed a system that can be used as an efficient

protocol for the genetic transformation of E. polybractea. [88]

Lavandula spp.

Linalool synthase (LIS) Increased linalool synthesis and EO yield [89]

LiGPPS, LiGGPPS, LiFPPS
The work functionally characterized cDNAs encoding the
main short-chain trans-IDS genes of Lavandula x
intermedia.

[90]

HMGR

Overexpression of HMGR did not have significant impact
upon the crosstalk between the MVA and MEP pathways
for the synthesis of C5 monoterpene precursors in
lavender.

[91]

DXR Characteristics of the lavender DXR gene and assessment
of its effect on EO biosynthesis are presented [92]

CINS and LIMS The composition of the EO of transgenic regenerants has
been changed. [93,94]

GFP and GUS Transformation protocol developed L. iberica [95]
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Table 2. Cont.

Species Gene Result of Transgenesis Reference

Lallemantia iberica
(M.Bieb.) Fisch.&
C.A. Mey.

NtLTP1
Overexpression of NtLTP1 gene in transgenic orange mint
resulted in enhanced accumulation of monoterpenes in
the glandular trichomes

[96]

Mentha citrata
L.(Mentha × piperita
f. citrata)

IPP, DMAPP Data on the development of pathways for the biosynthesis
of isoprenoids in glandular trichomes are presented [97]

Mentha piperita L.

DXPS, IPPI, GPPS, MFS

The overexpression of DXR led to oil yield increases, the
expression of MFS in transgenic peppermint plants (elite
line MFS7A) resulted in desired decreases in the relative
amounts of (+)-menthofuran and (+)-pulegone.

[98]

MsYABBY5
MsMYB

The reduced expression of MsYABBY5 led to increased
levels of terpenes and that overexpression decreased
terpene levels.
MsMYB is a novel negative regulator of monoterpene
biosynthesis.

[99,100]

IPP isomerase, limonene
synthase

It was found that overexpression of the IPP isomerase and
limonene synthase genes can lead to the synthesis of more
terpenoids in transgenic plants.

[101]

Mentha spicata L. ObCAAT1 The BAHD ObCAAT1 acyltransferase gene has been
isolated, which is involved in eugenol synthesis. [102]

Ocimum basilicum L.

β-glucuronidase (GUS) The GUS expression is induced and up-regulated by
increasing of water deficit stress. [34]

β-glucuronidase (GUS) A protocol for obtaining a transgenic plant has been
developed [103]

β-glucuronidase (GUS) An effective protocol for the regeneration and
transformation of P. gravolens was developed [104–106]

Pelargonium
graveolens
cv. Hemanti

GUS
The developed transformation method should provide
new opportunities for the genetic improvement of
patchouli according to the desired trait

[107]

RrAADC, RrAAAT, RrPPDC1,
RrNUDX1

The overexpression of genes responsible for the synthesis
and accumulation of the main components of rose EOs
has been studied

[108,109]

Pogostemon cablin
(Blanco) Benth SfCinS1, SfCinS2 and SfBPPS

The analysis of gene expression in trichomes of transgenic
Salvia fruticosa was carried out according to the glandular
trichome library

[110]

Rosa rugosa Thunb. terpene synthase (TPS)

The identification of genes encoding enzymes involved in
the biosynthesis of terpenoids was carried out, a
relationship was found between the levels of expression of
TPS genes and end products.

[111]

Salvia fruticosa Mill. SaDXR

The role of SaDXR in the biosynthesis of photosynthetic
pigments has been studied. SaDXR expression has been
shown to enhance the biosynthesis of sandalwood-specific
sesquiterpenoids.

[112]

Salvia guaranitica
A.St.-Hill ex Benth. Bisabolene synthetase (SaBS)

The mechanism of transcription regulation of the SaBS
gene, which is a key enzyme in the synthesis of bisabolene
in the EOs of S. album, was studied.

[113]

Santalum album L.

Terpene synthase (TPS) Increase in thymol content [114–116]

IPT

The quality of the EOs has been modified by the
introduction of the IPT gene. The amount of oxygenated
sesquiterpenoid compounds in transgenic lines was
15–21% higher than in wild type plants.

[117]

Metabolic engineering in aromatic plants that synthesize a sufficient amount of sec-
ondary metabolites in their organs and tissues makes it possible to develop resistance to a
number of diseases and pests. Thus, transgenic lines of Citrus sinensis with overexpression
of the linalool synthase gene (CuSTS3-1) and with the highest content of linalool showed
strong resistance to cancer of citrus Xanthomonas citri subsp. citri [28]. Gene expression
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in Matricaria recutita resulted in the increased release of (E)-beta-farnesene, a compound
that helps the plant to attract natural enemies to repel aphids [31]. In addition, due to the
expression of interspecies metabolites, the positive resistance activity of essential oil plants
to adverse growing conditions, such as salinity, water deficiency, and temperature, has
been developed. Thus, in the EO of salt-tolerant transgenic eucalyptus, the content of most
components is at the level of non-transgenic genotypes [29]. Meanwhile, the expression of
the β-glucuronidase gene in Ocimum basilicum largely induces water deficiency [34].

The production of transgenic citrus trees to improve their properties using ballis-
tic [118] and agrobacterial transformation is currently a widely used, routine procedure [119].
The regulation of fruit development and engineering protection against pathogens showed
the promise of this approach [120,121]. Another method for the genetic modification of
citrus plants is the method of genome editing [122]. Although significant changes in the
timing of development and features of ontogeny can significantly affect the quality of EOs
in transgenic citrus plants, neither the composition nor the quality of oils were studied in
such research due to the laboriousness and difficulties in testing these parameters in adult
woody plants [123,124].

At present, the possibility of modifying lavender essential oil is being most intensively
studied [125]. Switching the attention of researchers to the more difficult-to-produce EOs of
tree crops can significantly accelerate progress in the production of these valuable products
for perfumery, medicine, and household needs or the use of genes in other plants as
biofactories [126].

For aromatic plants, there are additional obstacles in obtaining transgenic and modified
plants associated with the difficulties of growing them in an in vitro system, as a result
of the rapid accumulation of specialized metabolites, as well as the peculiarities of the
interaction of agrobacteria and viruses with plant cells and tissues, in which the effective
operation of the antioxidant system and inhibition functions of agrobacteria are a result of
the antibacterial action of the metabolites of EOs [20]. For this reason, research with aromatic
plants is limited and less common than with typical crops, for which such processes are
not typical.

2.4. Prospects for the Development of Biotechnological Approaches for Large-Scale Cultivation of
Aromatic Plants

The significant demand for aromatic plants provides great prospects for the further
development of biotechnological approaches for the large-scale production of biologically
active compounds. Various in vitro cultivation techniques (callus cultivation followed by
organogenesis, somatic embryogenesis and cultivation of genetically modified cells/plants,
micropropagation, hairy root culture) have proven to be important tools for the rapid
propagation of selected plant species and in increasing the yields of secondary metabo-
lites [127]. The most preferred systems for obtaining some secondary metabolites remain
the cultivation of tissues with epigenetic changes, such as DNA methylation [128], or the
expression of certain miRNAs [129], in suspension cultures, which allows one to regulate
the transcription of enzymes of the secondary metabolite biosynthesis pathway. Ultimately,
this leads to the accumulation of secondary metabolites in high concentrations in special-
ized cells or in specific intracellular organelles. At the same time, the development of
simpler and faster methods for transforming the culture of hairy roots continues due to
their similarity in productivity with intact aromatic plants [130].

Another potential approach to the production of natural bioactive compounds is the
modification of aromatic plants in order to increase their yield and increase the content of
EOs. The creation of plants with a predominance of one or more components in the EO,
allows one to expand the scope of the final product and increase the market potential of
aromatic plants. A strong example of such an approach is the development of an envi-
ronmentally friendly production method for Artemisia annua essential oil, which contains,
along with artemisin, another commercially valuable compound—sesquiterpene nootka-
tone [131]. The development of resistance in aromatic plants to unfavorable conditions of
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cultivation, and to diseases and pests, also makes it possible to increase the yield of the
final product and increase their commercial value (Figure S3) [132].

The use of natural bioactive compounds produced by plants can be a potential solution
to reduce the consumption of chemical compounds currently used as substitutes for EOs
in various industries. Therefore, their production should be encouraged. However, many
issues, especially those related to toxicity, need to be addressed in order to encourage
farmers to accept the use of biotechnologically modified aromatic plants.

3. Conclusions

The EOs of aromatic plants are a source of many valuable products, along with
traditional uses such as perfumery and cosmetics. EOs have also long been used as safe and
effective plant protection products, as well as in food preparation and as an alternative to
expensive drugs. With the ever-growing demand for EOs, the industry’s limited ability to
meet it necessitates a corresponding increase in production. This is due to the complexities
of agricultural technologies, low productivity and the lack of an efficient growing model,
seasonality, limited available growing areas, and climate change, as well as increasing
drought and salinity in traditional growing regions.

Currently, biotechnology offers several options through which the secondary metabo-
lites in aromatic plants can be transformed in innovative ways to produce sufficient quanti-
ties of marketable phytochemicals. Previously developed methods of suspension cultures,
organ cultures, or transformed hair roots continue to develop; these, in many cases, can
successfully increase the production of secondary metabolites. The use of the expression of
genes for the biosynthesis of secondary metabolites of aromatic plants in microorganisms
continues to help to elucidate their functions in biosynthesis and allows the production
of plant metabolites of interest in microbes. One of the major achievements of the last
decade can be considered the development of the possibility of modifying the enzymatic
pathway for the conversion of metabolites, achieving an improvement in the quality of
the EO and neutralization of the undesirable characteristics of its composition, making the
EO better and safer, with predictable properties. Significant progress has also been made
in obtaining more resistant forms and lines of aromatic plants through the use of various
genetic modification approaches that can reduce losses and increase productivity while
using the capabilities inherent in plant systems to form protective mechanisms.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/agronomy12123131/s1, Figure S1: An increase in volatile
compound productivity can be achieved by increasing the number or size of cells and groups of
cells, in which compounds are produced, or due to regulating ploidy, increasing divisions, and
increasing the proportion of specialized cells in the tissue. Figure S2: Two independent pathways
for the biogenesis of secondary metabolites: precursors and EOs in plant cells. Figure S3: The use of
heterologous genes of various organisms in genetic engineering makes it possible to protect the plant
from adverse environmental factors of both biotic and biotic nature [133,134]. Epigenetic regulation
and genetic modification of the regulatory sequences of cultivated plants allows expanding the
range of adaptability and productivity in a wide range [135,136]. Abbreviations: WT-wild type;
GMP-genetically modified plant; GEP-genetically edited plant.
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