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Abstract: Kiwifruit harvesting with robotics can be troublesome due to the clustering feature. The
gripper of the end effector will easily cause unstable fruit grasping, or the bending and separation
action will interfere with the neighboring fruit because of an inappropriate grasping angle, which will
further affect the success rate. Therefore, predicting the correct grasping angle for each fruit can guide
the gripper to safely approach, grasp, bend and separate the fruit. To improve the grasping rate and
harvesting success rate, this study proposed a grasping detection method for a kiwifruit harvesting
robot based on the GG-CNN2. Based on the vertical downward growth characteristics of kiwifruit, the
grasping configuration of the manipulator was defined. The clustered kiwifruit was mainly divided
into single fruit, linear cluster, and other cluster, and the grasping dataset included depth images,
color images, and grasping labels. The GG-CNN2 was improved based on focal loss to prevent the
algorithm from generating the optimal grasping configuration in the background or at the edge of
the fruit. The performance test of the grasping detection network and the verification test of robotic
picking were carried out in orchards. The results showed that the number of parameters of GG-CNN2
was 66.7 k, the average image calculation speed was 58 ms, and the average grasping detection
accuracy was 76.0%, which ensures the grasping detection can run in real time. The verification
test results indicated that the manipulator combined with the position information provided by
the target detection network YOLO v4 and the grasping angle provided by the grasping detection
network GG-CNN2 could achieve a harvesting success rate of 88.7% and a fruit drop rate of 4.8%; the
average picking time was 6.5 s. Compared with the method in which the target detection network
only provides fruit position information, this method presented the advantages of harvesting rate
and fruit drop rate when harvesting linear clusters, especially other cluster, and the picking time was
slightly increased. Therefore, the grasping detection method proposed in this study is suitable for
near-neighbor multi-kiwifruit picking, and it can improve the success rate of robotic harvesting.

Keywords: kiwifruit; harvesting robot; grasping angle; GG-CNN; deep learning

1. Introduction

Kiwifruit has an average vitamin C content of 70 mg per 100 g, and is considered
a highly nutritious product [1]. China is the origin of kiwifruit and the largest kiwifruit
producer in the world. The planting area in 2020 was 1.85 × 105 hectares, and the yield
was 2.23 million tons [2]. Kiwifruit orchards need to be carefully managed throughout the
year. In particular, fruit harvesting in autumn is labor-intensive work, accounting for more
than 25% of the production costs [3]. In order to overcome the growing labor shortage, the
development of efficient and adaptable kiwifruit harvesting robots has become a research
hotspot [4–7].

Fruit target detection is one of the important steps to perform robot harvesting. Robots
working in orchards with complex lighting conditions require reliable information from
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visual perception systems. In recent years, due to the strong adaptability of deep-learning
technology to orchard scenes, it has been widely used in the field of agriculture [8]. The
kiwifruit target-detection method based on deep learning has been widely studied by
scholars. The mAP (mean average precision) is up to 93%, and the average time for single
image processing is 34 ms, which basically meets the accuracy and speed requirements of
the kiwifruit target-detection task [9–12]. However, the success rate of the most advanced
kiwifruit harvesting robot is less than 80% [5,13], and the two main problems are fruit reten-
tion and fruit dropping. Fruit retention occurs because of unsuccessful grasping or unstable
grasping causing the fruit to slip out of the gripper. At the same time, approximately 87%
of the kiwifruit is distributed in clusters in canopies [14] and the gripper will interfere with
the adjacent fruit due to the improper bending direction, which causes the fruit to drop.
The reason for these two problems can be attributed to the improper grasping pose of the
gripper [13]. However, the target detection only obtains the fruit position information, and
does not involve the grasping pose of the manipulator. Therefore, we consider combining
the target-detection method and the grasping-detection method to improve the grasping
rate and harvesting success rate.

The shape of the kiwifruit’s bottom is circular, and the fruit axis is approximately
vertically downward. Therefore, the six-dimensional position and pose of the fruit can be
reduced to four dimensions. Since the manipulator approaches and grasps the fruit verti-
cally from bottom to top, and the growth height of the fruit in the cluster is not significantly
different, the grasping process is regarded as planar grasping. Grasp-detection methods
are divided into traditional methods [15], point-cloud segmentation methods [16,17], and
deep-learning methods [18,19]. GG-CNN (generative grasping convolutional neural net-
work) is a deep-learning-based planar grasping-detection algorithm. Compared with other
algorithms, this algorithm is several orders of magnitude smaller, and achieves better
performance in cluttered scenes. However, the GG-CNN network has a simple structure
and takes a single channel depth image as the input; it only uses the depth prior knowledge
and discards the color and other advanced prior knowledge, which makes it difficult for
the algorithm to effectively learn the significant features related to grasping. The authors
achieved a grasping rate of 84% on a group of unknown objects with adversarial geometric
shapes and a grasping rate of 94% on household items [19]. Therefore, we consider adopt-
ing GG-CNN2 for transfer learning and applying the algorithm to grasping detection for
kiwifruit harvesting.

In this study, the clustered kiwifruit was mainly divided into three categories: single
fruit, linear cluster, and other cluster. The grasping-detection network GG-CNN2 was
used to predict the grasping angle of the gripper. The rest of this paper is structured as
follows: Section 2 introduces the definition of the grasping configuration, image acquisition,
grasping dataset, GG-CNN2 network architecture, and the improvement in loss function
based on focal loss. Section 3 analyzes and discusses the network training results, grasping
prediction results, and robotic-harvesting verification test results. Finally, Section 4 outlines
the conclusions obtained from this work.

2. Materials and Methods
2.1. Description of Kiwifruit in Orchard

The kiwifruit orchard is scaffold-cultivated in Meixian County, Shaanxi Province,
China (108.00◦ E, 34.13◦ N). The average row width is 4 m, and the average plant space is
3 m. The branches and leaves form a dense canopy by fixing and extending the branches
with steel wires. The fruits are naturally drooping, and distributed in the spatial range of
1.5 m–1.8 m above the ground [20,21]. Figure 1 shows the distribution characteristics of
kiwifruit. The outline and calyx characteristics of kiwifruit are obvious. The fruits grow
in clusters and are adjacent to each other. The clusters include single fruit, linear cluster,
and other cluster, and the number of fruits in a single cluster is approximately 2–10 [14,22].
A single fruit is defined as one fruit with no adjacent fruit around it. A linear cluster is
defined as the number of fruits being more than or equal to two, with the fruits distributed
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in chains; each fruit has at most two adjacent fruits, and there is only one adjacent fruit at
the beginning and end of the chain. Approximately 87% of the fruits within the canopy
only have two adjacent fruits [14]. The other cluster is defined as the number of fruits being
more than or equal to four, with the fruits distributed in an irregular regional shape, and
with some fruits having more than or equal to three adjacent fruits.
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Figure 1. Distribution characteristics of kiwifruit.

2.2. Description of the Grasping Pose of Manipulator
2.2.1. Grasping Pose

The world coordinate system {W} is set as the robot base coordinate system {B}. The
positioning information of the target fruit (xk, yk, zk) is obtained by the deep-learning
algorithm YOLO v4. The robotic arm moves to the canopy underside corresponding to the
axis of the target fruit based on the target pose represented by Equation (1), as shown in
Figure 2a.

E1 =
[

xk, yk, 500 mm, Rx1 =
π

2
, Ry1 = 0, Rz1 =

π

2

]T
(1)

Robotic arm grasping pose E2 =
[
xk, yk, zk, Rx, Ry, Rz

]T is equivalent to the transfor-
mation matrix of the end effector coordinate system {E} relative to the robot base coordinate
system {B}. TB

E can be expressed as Equation (2) [23].

TB
E = TB

K TK
E RE1

E2 (2)

where TB
K is the transformation matrix of the fruit coordinate system {K} relative to the robot

base coordinate system {B}, TK
E is the transformation matrix of the end-effector coordinate

system {E} relative to the fruit coordinate system {K}, and RE1
E2 is the rotation matrix of

the end effector around the y-axis of its own coordinate system {E}. TB
K can be calculated

by combining the internal- and the external-parameters transformation matrices of the
camera [7]. TK

E can be expressed as Equation (3).

TK
E =

[
R(z, π

2 )R(y, 0)R(x, π
2 )

[
0 d 0

]T
01×3 1

]
(3)

d = zk − 500 mm (4)
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where d is the grasping distance (mm). Therefore, the problem of grasping pose detection
can be transformed into finding the optimal rotation matrix RE1

E2; it can be expressed as in
Equation (5).

RE1
E2 =

[
ry(θ) 03×1
01×3 1

]
(5)

where θ is the grasping angle (◦), ry(θ) is the Rodrigues-transformed 3 × 3 rotation matrix
rotated by θ around the y axis. As shown in Figure 2b, the effective range of the grasping
Euler angle Rz is [0, 2π]. Since the gripper is a two-finger gripper with rotational symmetry
on the central axis (y axis), the value range of the Euler angle Rz is [0, π] ∪ [−π, 0]. At the
same time, due to the initial Euler angle being Rz1, the Euler angle Rz can be expressed as
Equation (6).

Rz =

{
Rz1 + θ, Rz ∈ [0, π]

θ − Rz1, Rz ∈ [−π, 0]
, −π

2
≤ θ ≤ π

2
(6)
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Robotic-arm grasping pose E2 can be expressed as Equation (7).

E2 =
[

xk, yk, zk,
π

2
, 0, Rz

]T
(7)

Based on the above analysis, the detection problem of the grasping pose is finally
transformed into the calculation of the grasping angle θ.

2.2.2. Grasping Angle

In Figure 3, the planar grasping configuration g is defined as Equation (8).

g = {q, u, v, θ, w} (8)

where q represents the grasping quality, (u, v) represents the grasping point of the pixel
coordinates, and the grasping angle θ is defined as the angle between the opening–closing
direction of the gripper (green line) and the horizontal axis of the camera (sky blue line),
and w represents the grasping width in the image. Since the gripper spacing can adapt
to the maximum diameter of the kiwifruit [6], we do not make strict requirements for the
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prediction accuracy of the grasping width. In Figure 3, the black fruit area indicates that
the gripper cannot touch other fruits except the current fruit, and the white background
area is regarded as the free area, which represents the area that the gripper can reach. The
bending normal vector is perpendicular to the opening–closing direction of the gripper.
The gripper rotates by 60◦ to be able to safely separate the fruit from the stalk [6].
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Figure 3. Schematic diagram of grasping-angle definition.

2.3. Image Acquisition

The images of kiwifruit clusters were collected at the kiwifruit experimental station in
Meixian County, Shaanxi Province, China, during the daytime from August to October in
2022, as shown in Figure 4. The images were acquired by a depth camera (RealSense D435i,
Intel Corporation, Santa Clara, CA, USA). The image resolution was set to 640 × 480. The
depth camera was placed approximately 30 cm below the canopy for image acquisition
from bottom to top. The color and depth images were saved in PNG and TIFF formats.
Backlighting did not affect the quality of the depth images of kiwifruit. The effective filling
rate of the fruit area was above 95% [24]. A total of 360 original images were obtained,
including 50 single-fruit images, 220 linear-cluster images, and 90 other-cluster images.
All images were collected at different locations to ensure that there were no overlapping
regions in the images.
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2.4. Grasping Datasets

The Connell grasping dataset can be used for the training of the grasping-detection
network [25], which is mainly used for the two-finger gripper or sucker. In this paper, we
refer to the AFFGA-Net annotation method to construct a grasping dataset [26], including
depth images, color images, and grasping labels in MAT format. Figure 5 shows the visual-
ized results of the grasping labels. According to the kiwifruit distribution characteristics
of each cluster, a specific positive-sample labeling method was used. The grasping label
of a single fruit (referred to as SF) is shown in Figure 5a. The blue area in the figure is the
grasping point, corresponding to the kiwifruit calyx area, and the green circles indicate that
the fruit can be safely grasped by the gripper at any grasping angle. The grasping label of a
linear cluster (referred to LC) is shown in Figure 5b. Since the fruits of the linear cluster are
distributed in a chain shape, there is only one adjacent fruit along the chain. The green lines
in the figure represent the opening–closing direction of the gripper. Each grasping point on
the blue line corresponds to a grasping angle indicated by a green line. The grasping label
of other cluster (referred to OC) is shown in Figure 5c. Since there are three or more fruits
adjacent to the central fruit, there is no continuous free area of approximately 180 degrees,
and it is difficult for the gripper to approach the fruit at a safe grasping angle; therefore,
there may be unlabeled fruits in the other cluster. For the peripheral fruit of the other
cluster, there are two fruits adjacent to it, and the blue line is approximately perpendicular
to the line connecting the two adjacent fruits calyxes. The grasping dataset was divided
into the training set and the test set at a ratio of 4:1. In order to expand the number of
samples in the training set, the images and labels were simultaneously enhanced by scaling,
rotating, and flipping.
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2.5. Grasping Detection Network
2.5.1. Network Structure

The grasping configuration is predicted based on the grasping-detection network
GG-CNN2 [19], and the network architecture is shown in Figure 6. First, the depth image
is scaled to 300 × 300 pixels and sent to the network. Then, the image feature extraction is
performed by stacking four standard convolutions of different sizes and two maximum
pooling to generate a low-resolution feature map. Then, the feature map is restored in the
scale space by stacking two bilinear interpolation up-sampling and standard convolutions.
Finally, the maps of three-channel grasping pose Gθ are output, including the map of
grasping quality Qθ , the map of grasping width Wθ and the map of grasping angle Φθ . The
map of grasping quality Qθ describes the grasping feasibility of each pixel in the depth
image. The closer the value is to 1, the higher the grasping quality and the darker the
color appears in figure. The method for generating the optimal grasping configuration g* is
based on the heatmap maximum value strategy [27], in which the position parameters of g*
depend on the peak-point coordinates of Qθ , and the angle and width parameters are the
peak-point coordinates of Φθ and Wθ , respectively. The formula is defined as follows:

g∗ = max
Qθ

Gθ = {q, u, v, θ, w} (9)
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Normalization of input features can speed up convergence of the model. The grasping
width divides the maximum width value of 250 pixels. The cosine and sine prediction
maps of the grasping angle are obtained by linear regression, and then Φθ is obtained by
solving Equation (10) [19].

Φθ =
1
2

arctan
sin(2Φθ)

cos(2Φθ)
(10)

In order to prevent the network from generating the optimal grasping configuration
in the background or at the edge of the fruit due to the imbalance of positive and negative
samples, the original loss function of mean squared error (MSE) is improved based on
the focal loss [28] with binary cross entropy (BCE) to improve the learning efficiency and
generalization ability of the network. Predicting the grasping region is a binary classification
problem. The sigmoid function is used to normalize the prediction results, and the focal
loss is used to calculate. The grasping quality loss Lqua is defined as Equation (11).

Lqua = −
1
N

N

∑
n=0

[
(1− α) · yn

q ·
(

pn
q

)γ
· log

(
pn

q

)
+ α ·

(
1− yn

q

)
·
(

1− pn
q

)γ
· log(1− pn

q )
]

(11)

where N is the size of the feature map, pn
q is the predicted probability, yn

q is the sample label,
α is the balance factor, and γ is the regulatory factor. Predicting the grasping angle is a
regression problem. First, the sigmoid function is used to normalize the output of the angle
head, and then the BCE function is used to calculate the loss. The grasping angle loss Lang
is defined as Equation (12).

Lang = − 1
N

N

∑
n=0

[yn
l · log(pn

l ) + (1− yn
l ) · log(1− pn

l )] (12)

where pn
l is the predicted probability, and yn

l is the sample label. Predicting the grasping
width is a regression problem. The BCE function is used to calculate the loss, and the
grasping width loss Lwid is defined as Equation (13) [26].

Lwid = − 1
N

N

∑
n=0

[yn
w · log(pn

w) + (1− yn
w) · log(1− pn

w)] (13)

where is pn
w the predicted grasping width, and yn

w is the sample label. In order to balance
the loss of each branch, the total loss is used to optimize the network by calculating the loss
of the output of each head, and the multi-task loss Ltotal is defined as Equation (14).

Ltotal = Lqua + Lang + Lwid (14)
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2.5.2. Evaluation and Hyperparameters

In this paper, the Jaccard index of the grasping rectangle [29] is used to determine
whether the grasping estimation is effective. Specifically, the grasping prediction needs to
meet two conditions at the same time: (1) the difference between the predicted grasping
angle and the labeled grasping angle is less than 15◦; and (2) the Jaccard index of the
predicted grasping frame and the true grasping frame is not lower than 0.25. The Jaccard
index is calculated by Equation (15).

J(GP, GT) =
GP ∩ GT
GP ∪ GT

(15)

where GP represents the area of the predicted grasping frame, GT represents the area of
the true grasping frame, GP ∩ GT represents the intersection, and GP ∪ GT represents the
union. The accuracy of the test set data is used as the evaluation index, and the accuracy is
calculated according to Equation (16).

accuracy =
Ncorrect

Ntotal
× 100% (16)

The network is implemented based on the PyTorch deep-learning framework. The
operating environment is Ubuntu 16.04, CPU, AMD Ryzen 7 pro 4750U with Radeon
Graphics. The network uses the Adam optimization function. The initial learning rate is
set to 0.001, the weight attenuation coefficient is set to 0.01, and the batch size is set to 2; a
total of 2000 epochs were trained.

3. Results and Analysis
3.1. Network Training Results

The network training process data was downloaded from the TensorBoard. Figure 7a
shows that the curve of the loss function gradually decays with the number of iterations.
The loss function decays quickly in the early iteration stage, then it starts to converge and
stabilizes at approximately 1.8 after 1000 iterations of training. Figure 7b shows the gras-
pable curve gradually increases with the number of iterations, and the graspable converges
to approximately 80%. This curve indicates that the GG-CNN2 network can effectively
predict the grasping configuration and the generalization ability is gradually improved.
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3.2. Grasping Detection Results

In order to evaluate the generalization ability of the algorithm in the orchard scenario,
we take the clustered kiwifruit scenarios at random locations in the orchard as the test
environment, and carry out the detection test of the grasping configuration based on
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the grasping-detection algorithm. Figure 8 shows the results of the grasping detection.
The results of grasping angle were annotated in the figure, which is the most important
parameter in grasping configuration. The results show that for different fruit-distribution
scenarios, the grasping algorithm can generate an optimal grasping configuration with the
highest grasping quality while meeting the requirements. Although the background in the
figure shows different lighting conditions—some features of the fruit are lost due to the
backlight—the network can still rely on the depth prior information provided by the depth
image to complete the prediction of the grasping configuration.
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Figure 8. Test results of grasping detection.

Figure 9 shows the process of detecting the grasping angle. The depth image generated
candidate grasping areas through the grasping-detection network (Figure 9b), then the
candidate grasping angles were selected corresponding to the grasping-quality peak pixels
in the region (Figure 9c); the final grasping angle was selected based on the principle of
maximum grasping quality (Figure 9d). As the fruit depth information on the left side
of the depth image (Figure 9a) was incomplete, the fruit was not detected as a candidate
grasping area.
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Figure 10 shows the case of a false-positive prediction. As the leaf outline around the
fruit in the depth image is clear, the shape is approximately circular, and the leaf depth
value is close to the fruit, which leads to a false-positive prediction. Therefore, the grasping
prediction will be affected by the interference of leaves and the depth filling rate in the
actual orchard environment if it only depends on the depth image.
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Figure 10. Detection process of the grasping angle.

Table 1 shows the performance results of the gasping-detection network in different
scenarios. The results show that the number of parameters of GG-CNN2 was 66.7 k, the
average image calculation speed was 58 ms, and the average grasping-detection accuracy
was 76.0%, which ensures the grasping detection can run in real time. The algorithm shows
better grasping-prediction ability for single fruit and linear cluster compared with other
cluster. It can complete the grasping-prediction task for most fruits. At the same time, the
lightweight feature of the network is deployed in the portable graphics processing unit,
which can realize the application in the real scene.

Table 1. Performance results of grasp network.

Algorithm Parameters Clusters Samples Average Accuracy Speed (ms)

GG-CNN2 66.7 k
SF 25 80.3%

58LC 25 77.7%
OC 25 70.0%

3.3. Verification Test of Robotic Picking

In order to verify whether the robot can improve the fruit-grasping rate and harvesting
success rate under the condition of combining the information of the position and grasping
angle of the target fruit, a picking experiment was conducted in the Yangling International
Kiwifruit Innovation and Entrepreneursnip Park’s kiwifruit orchard trellis-cultivation
environment.

3.3.1. Overall Structure

As shown in Figure 11, the overall structure of the kiwifruit picking robot consists
of five parts: robotic arm, end effector, vision system, fruit-collection device, and mobile
platform. The robotic arm (UR5, Universal Robots, Odense, Denmark) is a multi-joint
robotic arm with the characteristics of being lightweight and having high flexibility. The
robotic arm is composed of six rotating joints, with a repeatability of ±0.1 mm, a working
radius of 850 mm, and an effective working load of 5 kg. The end effector is composed of
two 3D-printed lightweight grippers, photoelectric sensors and pneumatic components.
The inner curved surface of the grippers is designed to adapt to the shape of the kiwifruit,
thereby reducing fruit damage during the picking process. The total weight of the end
effector is 3.5 kg, and the separation force between the stalk and fruit is 3–10 N [6], which
meets the requirement that the effective load of the robotic arm be less than 5 kg. The vision
system includes an RGB-D camera (RealSense D435i, Intel, Santa Clara, CA, USA) and an
image-processing unit (Jetson Nano, NVIDIA, Santa Clara, CA, USA). The camera detects
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and locates the target kiwifruit in a bottom-up direction through the arrangement of the
eyes on the hand [10]. The fruit collection device includes a bellows and a box, and the
harvested fruits slide into the box by the buffering effect of the bellows. The mobile platform
(Safari-880T, Guoxing Intelligent Technology, Shenzhen, China) is a crawler chassis with
good trafficability in the orchard.
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3.3.2. Control System

The picking-robot control system is developed based on the ROS-MoveIt (Robot
Operation System Motion Planning Framework) [30], as shown in Figure 12. The RGB-D
camera captures fruit color images and depth images and transmits the images to the
image-processing unit. The image-processing unit first performs fruit target detection
and grasping detection based on the deep-learning model, and then obtains the pose
information of the target fruit relative to the robot base coordinate system based on the
internal and external parameter matrices of the camera. The fruit-pose information is
sequentially published in the form of topics and the robotic-arm control node subscribes
to the topic. The rapidly exploring random trees (RRT) algorithm in the Open Motion
Planning Library (OMPL) is used for path planning. The inverse kinematics solution is
solved by calling the inverse solver IKFast to form the dynamic trajectory of the robotic-arm
kinematics group and drive the robotic arm to arrive at the target pose. After the robotic
arm completes the current target-fruit picking task, the image-processing node updates the
fruit-pose information until all fruit-picking tasks are completed.
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3.3.3. Test Method

We implemented two methods for harvesting clustered kiwifruit. Method I is the
original method, which is described as follows: the fruit target detection is performed
based on the YOLO v4 network, and then the picking order is determined according to the
principle of the shortest spatial distance; the manipulator combines the current-pose and
fruit-position information to perform motion planning to complete all the fruit-grasping
and picking tasks one by one. Method II is specifically described as follows: fruit target
detection and grasping detection are performed based on the YOLO v4 network and the
GG-CNN2 network, respectively, and then the manipulator performs motion planning
under the condition of combining the information of the fruit position and the grasping
angle, and, finally, the manipulator completes all fruit-picking tasks one by one. During
the test of Method II, the robot removes the fruit associated with the optimal grasping
configuration from the scene after each prediction, and the fruit is removed one by one,
finally forming the picking sequence. The manipulator picking the fruit includes three
steps. First, the manipulator receives the instruction to move to the canopy underside
corresponding to the axis of the target fruit. Then, the end effector moves vertically upward
to the fruit positioning point, and the photoelectric sensor signal controls the gripper to
close to complete the fruit grasping. Finally, the separation of the fruit and the peduncle
is completed by rotating the wrist joint of the robotic arm to a certain angle. During the
second step of the picking, the manipulator adjusts the gripper according to the predicted
grasping angle to safely approach and grasp the target fruit. In this test, the kiwifruits
located in different positions in the canopy were randomly selected, and clustered fruits.
Such as single fruit, two-fruit linear cluster, three-fruit linear cluster, and other cluster, were
tested. The number of fruits picked in the fruit box and the number of fruits unseparated
from the branches and the number of fruits dropped on the ground were counted. The
harvesting success rate and the fruit drop rate were calculated. In addition, a phone timer
was used to record the total time from the initial position of the end effector to the end
of a cluster being picked, and the total time was divided by the number of kiwifruits in
each cluster; the average value of several groups of mean times was taken as the average
picking time.

3.3.4. Results and Analysis

Figure 13 shows the picking process of the manipulator in the kiwifruit orchard. As
shown in Figure 13a, the deep learning based target detection network obtains the position
information of all fruits in the color image. Figure 13b shows changes in acquired depth
images. As shown in Figure 13c, the deep-learning-based grasping detection network
obtains the grasping angle information corresponding to the current fruit depth image with
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the highest grasping quality. Figure 13d shows that the manipulator combines the target
position and pose information to complete motion planning and executes grasping. As the
fruits were separated and dropped into the box along the bellows, the distribution charac-
teristics of the fruits in the depth image also change accordingly. Therefore, the grasping
network needs to evaluate the grasping quality and grasping angle of the remaining fruits
in the current depth image, and determine the next fruit to be grasped.
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The robotic-picking test results are shown in Table 2. The single fruit, linear cluster,
and other cluster were used to perform grasping tests 10, 25, and 27 times, respectively.
The results show that the grasping rate of single fruit and linear cluster are both higher
than other cluster. This is because the free area around the other cluster is relatively
small. Method II, combining with target-detection and grasping-detection information, can
achieve a fruit-harvesting success rate of 88.7% and a fruit drop rate of 4.8%. Compared with
Method I, the harvesting success rate increased by 8.1%, and the fruit drop rate decreased
by 4.9%; the average picking time was 6.5 s, which was a slight increase. There was no
obvious difference in the grasping rate between two methods for single-fruit picking, but
for the linear cluster, especially the other cluster, there was an obvious difference, indicating
that Method II would be effective when the robot was facing the clustered fruit-picking
tasks. It is a safe method which can effectively improve the success rate and drop rate of
clustered fruit. In addition, the small number of the fruits left on the branches was mainly
due to unsuccessful detection caused by environmental factors such as leaf occlusion and
backlighting; the picking sequence of clustered fruit is also an important influencing factor.

Table 2. The results of robotic picking test in kiwifruit orchard.

Method
Grasping Rate Unseparated Dropped Harvesting

Success Rate
Average Picking

Time (s)SF LC OC

Method I
9/10 21/25 20/27 6 6

80.6% 5.890.0% 84.0% 74.1% 9.7% 9.7%

Method II
9/10 23/25 23/27 4 3

88.7% 6.590.0% 92.0% 85.2% 6.5% 4.8%

Several kinds of fruit and vegetable picking robots using multi-joint manipulators
were compared and analyzed, as shown in Table 3. For greenhouse vegetables, such as
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tomato and sweet-pepper picking robots, the picking efficiency is relatively lower than
for fruit picking robots. Most of these robots need to cut stalks and pick a single target
selectively with requirements on positioning accuracy. The harvesting rate of our kiwifruit
picking robot is 80.6%, and the picking time is 5.8 s. However, there is an obvious difference
between robot and manual picking in operating efficiency; we need to further optimize the
perceptual and planning algorithms.

Table 3. Comparison of different fruit harvesting robots.

Objects Harvesting Rate Picking Time (s)

Ola Ringdahl, et al. [31] sweet pepper 61% 24
Hiroaki Yaguchi, et al. [32] tomato 60% 23
Pengbo Wang, et al. [33] cherry tomato 72% 14
Abhisesh Silwal, et al. [34] apple 84% 6.0
Ours kiwifruit 80.6% 5.8

4. Conclusions

(1) In this study, a grasping-detection method for a kiwifruit harvesting robot was pro-
posed based on the GG-CNN2, which enables the gripper to safely and effectively
grasp the clustered fruits and avoid the interference of the bending action on the neigh-
boring fruits. We mainly divided the clustered kiwifruit into three types, including
single fruit, linear cluster, and other cluster.

(2) The performance test results of the grasping-detection network showed that the
number of parameters of the GG-CNN2 was 66.7 k, the average image calculation
speed was 58 ms, and the average accuracy was 76.0%, which ensures that the grasping
prediction can complete the most tasks and run in real-time.

(3) The verification test results of robotic picking showed that the manipulator combined
with the position information provided by the target-detection network YOLO v4 and
the grasping angle provided by the grasping-detection network GG-CNN2 achieved a
harvesting success rate of 88.7% and a fruit drop rate of 4.8%; the average picking time
was 6.5 s. Compared with the method which was only based on the target-detection
information, the harvesting success rate of this method was increased by 8.1%, and
the fruit drop rate was decreased by 4.9%; the picking time was slightly increased.
The grasping-detection method is suitable for near-neighbor multi-kiwifruit picking.
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