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Abstract: Soil determines the degree of water infiltration, crop nutrient absorption, and germination,
which in turn affects crop yield and quality. For the efficient planting of agricultural products, the
accurate identification of soil texture is necessary. This study proposed a flexible smartphone-based
machine vision system using a deep learning autoencoder convolutional neural network random
forest (DLAC-CNN-RF) model for soil texture identification. Different image features (color, particle,
and texture) were extracted and randomly combined to predict sand, clay, and silt content via RF
and DLAC-CNN-RF algorithms. The results show that the proposed DLAC-CNN-RF model has
good performance. When the full features were extracted, a very high prediction accuracy for sand
(R2 = 0.99), clay (R2 = 0.98), and silt (R2 = 0.98) was realized, which was higher than those frequently
obtained by the KNN and VGG16-RF models. The possible mechanism was further discussed.
Finally, a graphical user interface was designed and used to accurately predict soil types. This
investigation showed that the proposed DLAC-CNN-RF model could be a promising solution to
costly and time-consuming laboratory methods.

Keywords: soil texture; identification; DLAC-CNN-RF model; accuracy

1. Introduction

In recent decades, new techniques have resulted in significant progress in agriculture.
Precision agriculture has become increasingly important in agricultural cultivation and
management. Soil is the fundamental productive resource that provides a suitable envi-
ronment for seed germination and root growth. Soil texture is one of the most important
and fundamental parameters to consider when it comes to soil because it greatly influences
its physical, chemical, and biological properties [1,2], such as the degree of water and air
penetration, nutrient absorption, susceptibility to erosion, and germination. Thus, exact
soil texture identification is required for precise agriculture and soil management. A thor-
ough grasp of soil textural heterogeneity can benefit sound agricultural practice in various
growing situations.

Conventional mechanical methods used for soil texture analysis entail numerous
complex steps, such as drying, crushing, and sieving [3]. Hydrometers and pipettes are
extensively used mechanical methods [4]. Although these techniques provide accurate
soil textural analysis results, they are time-consuming. Moreover, these methods use
H2O2 as a corrosive reagent, which is harmful to the environment. The soil textural
report can be produced with a large dynamic range and flexibility using an advanced
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laser diffraction particle size analyzer, but it induces high costs and sampling errors [5,6].
Therefore, new techniques are urgently needed for rapid, cheap, and sophisticated soil
texture measurement [7].

Currently, the approaches used for the fast and low-cost measurement of the soil
textural parameters rely on extracted texture and color features for further prediction and
classification. Recent evidence suggests that the particle size also can be used to identify
soil texture using X-ray [8], laser [9], infrared spectroscopy [10], and gamma radiation [11].
For instance, Vohland et al. [12] reported an environmentally friendly method of predicting
sand and clay contents using diffuse reflectance infrared Fourier transform spectroscopy
(DRIFS) without any chemical agents. Nevertheless, the above-mentioned approaches have
not been recognized as standard methods because precise and complicated equipment is
required. Furthermore, the particle size distribution should be predetermined before the
measurement [13].

With the development of digital technology, cameras and smartphones are gaining
popularity in predicting soil parameters, particularly in developing countries with lim-
ited budgets. Smartphones have many advantages, including portability, low-cost, and
good image acquisition capability. Furthermore, modern digital technology promotes the
development of computer vision and deep learning, which are increasingly used for soil
image prediction and classification [14]. However, the complex preprocessing steps for
preparing soil thin sections remain a problem. A method that combines microscopic image
capturing with a continuous wavelet transform (CWT)-based computer vision algorithm
has been proposed by Sudarshan et al. [15] to predict soil texture both in situ and ex situ.
In those smartphone-based soil image identification studies, soil profile [16], digital RGB
photography (combined with neural network modelling) [17], and digital image processing
and multivariate image analysis [18] have been explored. Nevertheless, high accuracy is
still difficult to realize. There is a lack of comprehensive methods in which soil images can
be effectively exploited for soil texture prediction.

As a powerful ensemble learning, random forest (RF) is attracting considerable interest
for classification and regression by constructing a multitude of decision trees. Scientists
have already proven that RF ensemble exhibits superior prediction than a single tree [19].
For instance, Dornik et al. [20] performed a successful classification of soil types using
geographic object-based image analysis. Convolutional neural network (CNN) is also a
powerful algorithm widely used in image sensing and object detection [21,22]. A large
amount of data from soil images can be successfully processed by CNN. For example,
Swetha et al. realized a high prediction accuracy for clay (98%) and sand (98%) and
moderate prediction accuracy (75%) for silt using CNN algorithms [23]. Rahim Azadnia
et al. [24] predicted soil images at a distance of 20, 40, and 60 cm with an accuracy of 99.89%,
99.81%, and 99.58%, respectively, via a CNN model. However, only 11 soil textures were
considered in this work, and the prediction accuracy of the proposed CNN model for the
remaining soil texture is unknown.

In this study, a low-cost image acquisition system was constructed, and a method
combining the DLAC, CNN, and RF algorithms was established to predict all the soil
textures. Image features (color, particle, and texture) with random combinations were
extracted. An environmentally friendly graphical user interface has been designed to
generate the results. Surprisingly, the proposed DLAC-CNN-RF model obtained a very
high average prediction accuracy (99.67% for all the soil textures). This approach provides
a promising solution for the accurate identification of soil texture.

2. Materials and Methods
2.1. Sample Preparation

Soil samples were extracted from different areas in Guangzhou City, Guangdong
Province (22.26◦ N~23.56◦ N, 112◦57 E~114.3◦ E), including the Panyu, Huadu, Conghua,
Haizhu, Nansha, Huangpu, and Zengcheng districts (See Figure 1). These regions have
the required conditions for growing agricultural products due to their suitable climate
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and abundant water resources. A total of 1000 samples were taken from the 50 locations
distributed in the different city districts. The locations include paddy fields, vegetable
gardens, dry land, cane land, and plantain land. Various depths of the soils were collected
by a standard shovel, and the depth varied within a range of 0–15 cm from the ground
soil surface. To guarantee the purity of the samples, after each sampling, the shovel was
cleaned before taking the next sample. The locations of the collected samples were input
into a global positioning system receiver (Garmin eTrex 20×) for geolocation analysis. All
the samples were collected in a sealed pocket with a label and then shipped back to the
Solar Energy Intelligent Irrigation Equipment Technology Innovation Center Laboratory of
Guangzhou University for processing.
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Additionally, natural light and a LEICA standard filter were used to increase the contrast. 

Figure 1. The location where the sample was collected.

All the samples were initially air-dried for 24 h with a light intensity of 1.5 × 104 Lux
and a wind speed of 16 m/s. Then, the samples were run through a 2 mm sieve to eliminate
plant debris and tiny particles. A hydrometer (ASTM mode 152H) method was utilized
to measure the average percentage of the sand, silt, and clay particles in each soil texture,
mainly because this method gives the benefits of simplicity, reasonable price, and rapid
detection. Finally, 12 soil texture types, consisting of clay, silty clay, silty clay loam, sandy
clay, sandy clay loam, clay loam, silt, silty loam, loam, sandy, loamy sand, and sand loam,
were prepared for imaging.

2.2. Image Acquisition

To alleviate ambient light interference, an image acquisition device was designed
and fabricated for imaging the soil samples (See Figure 2). A smartphone holder was
constructed at the top of the box, and a circular window was opened to hold the camera
for taking images. A black chamber (12 cm × 8 cm × 5 cm) was designed to prevent
reflection light from entering the box. A rectangular-shaped holder was installed on the
bottom of the box to hold the soil samples. Two LED strips with a total lumen of 80 were
mounted on both sides of the box to illuminate the surrounding environment and prevent
shadows. The light intensity can be adjusted by the outside button of the box. A Huawei
Mate 40 Pro smartphone with a DXOMARK camera was employed to capture the images
(8192 × 6144 pixels, f/1.9,f/1.8,f/3.4 in). The images were taken using the high dynamic
range (HDR) mode and a landscape scene mode, which helps to capture more details in
the shadows. Additionally, natural light and a LEICA standard filter were used to increase
the contrast. The distance between the camera and the sample was set at 4.5 cm. All the
captured images were saved as PNG files and cropped by a coded python programming
language for further processing.
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(b) 3D view of the complete assembly.

2.3. Image Feature Extraction

The physical properties of soil are typically characterized by colors and textures in
the images. However, the particle features can also reflect the physical properties that
need to be better investigated. In this work, a random combination of particle (Threshold
binarization), color (HSV (hue, saturation, and value) and Hu moments), and textures
features (Local binary patterns (LBP) and Haralick features) was extracted for soil image
identification and classification, including particle, color, texture, particle + color, particle +
texture, color + texture, and color + particle+ texture. Figure 3 reports the extracted particle,
color, and texture features for silt, clay, and sand, respectively.
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Figure 4 reports the flowchart of the processing of the extracted features for image
identification. For threshold binarization, the OTSU threshold segmentation method was
adopted; a threshold value of 120 and 2 channels were adjusted to transfer original soil
particles to red in the images, which helps to calculate the soil particles area by reading
the number of pixels. The RGB color of the sample images was converted into HSV
components and reflected by a 512-dimension feature vector in HSV components. In
addition, Hu moments are a set of 7 numbers calculated utilizing central moments that
are constant under picture modifications. The LBP algorithm was used to characterize the
texture feature of the soil images because it has been found to be an efficient approach to the
traditional structural models of texture analysis. A ‘skimage’ package was used to generate
the LBP histogram values through the texture, with a fixed number of 24 for circular
symmetric neighbor set points and a radius of 8 pixels for each circle, producing 26 texture
features. The Haralick feature algorithm was used to quantify an image according to its
texture, and a total of 7 textural features were calculated for the following global features.
Before particle, color, and texture features extraction, all the cropped soil images were
processed into a grayscale image. A total of 554 global features were produced by particle
(2 features), color (519 features), and texture (33 features), which were then imported into
the proposed DLAC-CNN-RF model for further analysis.
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2.4. Developing a DLAC-CNN-RF Model

The DLAC is an excellent autoencoder that can be used for determining image prop-
erties since it incorporates probabilistic index extraction and process quantification in a
general-purpose prediction system. A traditional autoencoder (AE) is trained to encode the
input vector of image parameters x∈[0, 1], into a hidden representation y∈[0, 1]. The image
characteristics are denoted as unlabeled data.{

Id

[(
N f x

k, N f y
k
)

; µ, σ2
]}Mk ,Nk

f x=1, f y=1
(1)

so that the input can be reconstructed from that representation.

y = fθ (x) = σ1(Wx + b) (2)
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where fθ(x) is called the encoder, θ = [Wx, b], Wx is a weight matrix, and b is a bias vector;
σ1 is a nonlinear activation function for the encoder. The resulted hidden representation y
is then mapped back to a reconstructed vector z∈[0, 1]:

z = gθ′ (y) = σ2(W′y + b′) (3)

where, gθ′ (y) is called the decoder of the image parameters, θ′ = [W′, b′] with appropriately
sized parameters, σ2 is a nonlinear activation function for the decoder. Here, DLAC takes
the parametric input and encodes it to a linear representation of the soil characteristics. On
the other side, the decoder takes hidden representations, passes them into nonlinearity, and
generates the output of the probabilistic indexes.

L(x, z) = −
D

∑
k=1

(xk log zk − (1− xk) log(1− xk)) (4)

DLAC tries to encode the parametric input stochastically applied to the input of the
traditional autoencoder. It first uses a stochastic mapping x̃ ∼= qD(x̃|x ) to encode the
parametric input into a hidden representation y = fθ(x̃) = σ1(Wx̃ + b) from which we
reconstruct z = gθ′(ỹ) = σ2(Wỹ + b′). Similar to a traditional autoencoder, the network
weights are trained to minimize the average computation error, but the key difference
is that z is now a deterministic function rather than x. Each layer of DLAC captures the
complicated, higher-order correlations between the activities of the hidden features so
that the input initialization can be utilized for the initial training of the input layer of the
DLAC network.

Besides, the monitoring variables are divided into N labeled datasets: (x(1), y*(1)),
(x(2), y*(2)), . . . , (x(N), y*(N)) and M unlabeled datasets: x(N + 1), x(N + 2), . . . , x(N + M),
where M >> N, y is identified by the initial grinding or optimal soil value determinations.
The correlation function of the intelligent prediction is defined as follows:

x̃, z̃(1), . . . , z̃(L), ỹ = gθ′(x̃)
x, z(1), . . . , z(L), y = gθ(x̃)
_
x ,

_
z
(1)

, . . . ,
_
z
(L)

,
_
y = Wθ′(

_
z
(1)

, . . . ,
_
z
(L)

)

(5)

In the forward path, individual layers of DLAC are formalized into linear transforma-
tions, then the nonlinear activation function is applied as

h̃(l) = Activation(γ(l)(z(l) + β(l))) (6)

Here, h(l) is the postactivation function and W(l) is the weight matrix. The γ and β
are the shifting and scaling parameters used before applying the nonlinearity function.
The batch normalization is used to accelerate deep-learning network training. Finally, the
prediction cost of DLAC is defined as

C(z(l), ẑ(l)) =

∥∥∥∥∥ ẑ(l) − µ(l)

σ(l)
− ẑ(l)

∥∥∥∥∥
2

(7)

where µ(l) and σ(l) are the mean and standard deviation of the encoder samples. This
encoder is optimized by the objective correlation function to improve the accuracy of the
intelligent prediction. In order to model each computation neutron coming out of the
prediction network, generative adversarial network is used with competing behaviors for
minimizing the training error and improving computational reliability. A successful DLAC
training is one that gets to the same predictive cost and encoding function fθ′ (y). There is
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an error signal checking the similarity rate y = fθ(x̃) = σ1(Wx̃ + b). The training function
for this network can be formulated as follows:

C(z, ρ(z)) = −Ex∼PR(x)[log γ(l)]− Es∼Pg [log(1− σ(z(l))] (8)

Equally, the training function for E with setting parameters ρ(G) would be as follows:

C(ω, ρ(G)) = ES∼PR(S)[log(1− ρ(λlC(z̃(l)n)))] (9)

Combining these functions into a single frame, both λl and z(l)n would be trained
and converge to a stable state of a Nash equilibrium. This means that the most optimal
networks (generator and discriminator networks) could be reached as follows [25]:

Cost = −
N

∑
n=1

log P(ỹ(n) = y ∗ (n)|x(n) ) + ω
M

∑
n=N+1

L

∑
l=1

λlC(z(l)n, ẑ(l)n) (10)

Here ỹ is the error output, y* is the true target, λl is the cost multiplier, which rep-
resents the weight of DLAC loss function for each decoding layer, and ω is a weight to
balance different losses. This network illustrates different operational levels and data
transmission in the architecture of DLAC. It could be learned that DLAC ranges across
the measurement, calculation, and prediction levels. After training the first level of DLAC,
the learned encoding function fθ(y) is used on image parametric input x. Furthermore, a
logistic regression layer can be added on the top of encoders to achieve a set of supervised
network learning.

The established DLAC-CNN-RF model is shown in Figure 5. Soil images (256 × 256)
are given as the inputs to the network and reconstructed by the autoencoders. Two
convolution layers and three Maxpool layers were constructed to extract the image features.
A flattened layer was used to transfer the 2D outputs of the max-pooling layer into 1D
outputs. The convolution layers were connected to the Maxpool layers and attached to the
full connected layers. Convolution 1 and 2 have a filter length of 48 and 128, respectively.
A kernel function (11 × 11) was used for the layer of Convolution 1, while the remaining
layers adopted the kernel function of 3 × 3. In particular, two max-pooling layers and two
full connected layers were employed before and after the flattened layer to classify the
extracted features. Finally, an RF model was employed to predict the soil types according to
the random combination of image features. Among the 1000 soil image samples, 700 were
used for training, and 300 samples were used for testing the network.
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2.5. Developing a Graphical User Interface

An image recognition system named “Soil type identification” was developed based
on basic Java programming language (JDK 1.8), where the pretrained DLAC-CNN-RF
and RF model was deployed. A user-friendly interface was designed using Visual Studio
Code software, as depicted in Figure 6. First, an account should be registered before
logging into the system. After logging in, Baidu map was connected through an application
programming interface, which helps to identify the geographical location of the input
images. The input images can be selected from the camera or album. Once the image
has been confirmed, the proposed DLAC-CNN-RF model responds quickly, as shown in
Figure 5. The percentage of sand, clay, and silt was clearly presented in the interface, and
the soil identification records were saved.
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ferent provinces in China, and the used Baidu map in this research only supports Chinese; (c,d) image
selection; (e) DLAC-CNN-RF model predicted soil textural values; (f) identify records.
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3. Results and Discussion

Figure 7 reports the average percentage of sand, silt, and clay in the prepared samples,
which was measured via a hydrometer. The relationship of soil texture and the percentage
of sand, silt, and clay was determined according to Stoke’s law [26]. The soil classification
was based on USDA soil taxonomy [27]. It can be seen that the sand samples have the
lowest silt and clay values, as well as the highest sand values with 3.5%, 6.1%, and 91.4%,
respectively. The lowest sand values (10.3%) were obtained in the silt samples. Also, the
sand, clay, and silt percentage dominated in the sand, clay, and silt samples, respectively.
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Figure 7. (a) The measured average percentage of clay, silt, and sand particles for clay, silty clay,
silty clay loam, sandy clay, sandy clay loam, and clay loam, respectively; (b) the measured average
percentage of clay, silt, and sand particles for silt, silty loam, loam, sand, loamy sand, and sandy loam,
respectively; the number of samples counted for clay, silty clay, silty clay loam, sandy clay, sandy clay
loam, clay loam, silt, silty loam, loam, sand, loamy sand, and sandy loam are 84, 79, 74, 75, 84, 102, 74,
97, 79, 87, 89, and 76, respectively.

Table 1 reports the RF and DLAC-CNN-RF model validation statistics for predicting
clay, silt, and sand using different extracted features. Obviously, the DLAC-CNN-RF model
shows better performance in predicting soil textures due to a higher value of R2. When the
color feature is extracted, the RF and DLAC-CNN-RF model almost reach an agreement
in predicting sand (i.e., R2 0.95 and 0.96) and clay (i.e., R2 0.93 and 0.94), while when
predicting silt, a significant improvement was obtained in R2 using the CCN-RF model. The
value of R2 improves from 0.79 to 0.96. Similarly, the DLAC-CNN-RF model gives obvious
benefits to silt prediction when the texture and particle features were extracted; an R2 value
of 0.94 was obtained, while RF only realized an R2 of 0.73. It’s noted that both the RF and



Agronomy 2022, 12, 3063 10 of 16

DLAC-CNN-RF models show better performance in predicting sand and clay when a single
image feature is extracted. This can be attributed to the fact that the average percentage
of sand and clay in these samples is much more than that of silt. When multiple features
were extracted, both the RF and DLAC-CNN-RF models showed progress in predicting
all the soil textures. For sand and clay prediction, both the RF and DLAC-CNN-RF model
show good performance when two features were extracted, although the DLAC-CNN-RF
model is a little bit superior, while for silt prediction, the DLAC-CNN-RF model results in a
higher R2 value, with a 12~15% improvement in comparison to the RF model. Surprisingly,
when the full features were extracted, the DLAC-CNN-RF mode exhibited an R2 value of
approximately 99% for all the soil textures. The better performance of the DLAC-CNN-RF
model can be interpreted as a deeper study of the various edges, lines, and corners of the
image. Notably, the validation RMSEs for predicting clay ranged from 3.71–3.86% among
all the tested DLAC-CNN-RF models, which is a greater performance since clay typically
shows a higher uncertainty in traditional measurements. This is mainly due to the use of
extremely higher resolution cameras in smartphones. In addition, the established optimal
networks (eq 10) offer a more quick and more efficient way than traditional autoencoders,
which significantly reduce the noise of input data. Thus, the RMSEs values become lower.

Table 1. The RF and DLAC-CNN-RF model validation statistics for predicting clay, silt, and sand by
using different combinations of image features. The number of the clay, silty clay, silty clay loam,
sandy clay, sandy clay loam, clay loam, silt, silty loam, loam, sand, loamy sand, and sandy loam
samples used for training were 58, 56, 53, 51, 56, 72, 53, 58, 57, 61, 61, and 54, respectively, and a total
number of 700 was used.

Extracted Feature Model MAE RMSE R2

Sand

Color
RF 3.67 4.44 0.95

DLAC-CNN-RF 3.45 3.81 0.96
Texture RF 3.69 4.45 0.95

DLAC-CNN-RF 3.48 3.85 0.96

Particle
RF 3.74 4.53 0.94

DLAC-CNN-RF 3.49 3.86 0.96

Color + Texture
RF 3.58 4.35 0.96

DLAC-CNN-RF 3.39 3.73 0.98

Color + Particle
RF 3.62 4.37 0.96

DLAC-CNN-RF 3.42 3.78 0.97

Particles + Texture
RF 3.64 4.39 0.95

DLAC-CNN-RF 3.44 3.80 0.97

Color + Particle + Texture
RF 3.55 4.24 0.97

DLAC-CNN-RF 3.37 3.71 0.99

Silt

Color
RF 3.81 4.46 0.79

DLAC-CNN-RF 3.58 3.89 0.96

Texture
RF 3.83 4.49 0.78

DLAC-CNN-RF 3.59 3.94 0.94

Particle
RF 3.89 4.57 0.73

DLAC-CNN-RF 3.61 3.96 0.94

Color + Texture
RF 3.73 4.40 0.85

DLAC-CNN-RF 3.51 3.81 0.97

Color + Particle
RF 3.74 4.43 0.82

DLAC-CNN-RF 3.52 3.85 0.97

Particles + Texture
RF 3.77 4.44 0.81

DLAC-CNN-RF 3.55 3.88 0.96

Color + Particle + Texture
RF 3.70 4.37 0.88

DLAC-CNN-RF 3.48 3.79 0.98
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Table 1. Cont.

Extracted Feature Model MAE RMSE R2

Clay

Color
RF 3.68 4.68 0.93

DLAC-CNN-RF 3.55 3.93 0.94

Texture
RF 3.70 4.72 0.91

DLAC-CNN-RF 3.48 3.84 0.97

Particle
RF 3.74 4.75 0.90

DLAC-CNN-RF 3.49 3.85 0.96

Color + Texture
RF 3.63 4.61 0.97

DLAC-CNN-RF 3.51 3.88 0.96

Color + Particle
RF 3.64 4.65 0.95

DLAC-CNN-RF 3.41 3.77 0.97

Particles + Texture
RF 3.67 4.66 0.95

DLAC-CNN-RF 3.45 3.81 0.98

Color + Particle + Texture
RF 3.59 4.57 0.97

DLAC-CNN-RF 3.46 3.83 0.98

Compared with the traditional method of predicting sand, soil, and clay, the proposed
DLAC-CNN-RF model produces a better performance than that of Qi et al. [28] (R2 values
of 0.77, 0.68, and 0.71 for sand, silt, and clay, respectively) and Swetha et al. [23] (R2 values
of 0.97–98, 0.96–98, and 0.62–0.75 for sand, silt, and clay, respectively). The proposed
method also exhibited a better prediction performance than Aitkenhead et al. [17] (R2

values of 0.25, 0.19, and 0.18 for sand, silt, and clay, respectively). Additionally, this study
showed a lower RMSE than Minasny et al. [29] (RMSE values of 6.31% and 6.23% for sand
and clay, respectively).

Figure 8 reports the RF and DLAC-CNN-RF model predicted plots using full image
features. In general, the proposed DLAC-CNN-RF mode shows higher accuracy in pre-
dicting all the soil types; the measured and predicted values are closer compared to the
distribution in the RF models, especially for sand prediction, where the DLAC-CNN-RF
model predicted value and measured value almost reach an agreement. Thus, the proposed
DLAC-CNN-RF model appears to be preferable for predicting soil types.

The confusion matrix used for evaluating the performance of the DLAC-CNN-RF
model is shown in Figure 9. The elements on the diagonal indicate that the predicted values
equal the actual values, and these samples are classified correctly. The nonzero elements
on the off-diagonal part of the matrix demonstrate a wrong classification. In most cases,
the proposed model performs well in soil type identification. However, six images were
classified incorrectly. For example, images in the clay, loam, sand, sandy clay loam, silt,
and silty clay loam class were classified as loam, sandy loam, silty loam, loamy sand, clay
loam, and silty loam, respectively.

Table 2 shows the mean values of the classified performance parameters, including
accuracy, precision, sensitivity, specificity, and area under the curve (AUC). An average
accuracy of 99.67% was obtained using the proposed DLAC-CNN-RF model. The key
parameters that determine the accuracy are sensitivity and specificity. Generally, the
sensitivity parameter denotes how a model detects a positive sample, while specificity
parameters show how a model detects negative samples. AUC describes an efficient
relationship for evaluating the performance of the proposed DLAC-CNN-RF classifier
model. A higher AUC value illustrates a better performance from the model. It is noted
that the silty loam and sand clay were classified 100% correctly, and the ACU value for all
predictions is over 97.5%.
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Table 2. Performance parameters of the proposed DLAC-CNN-RF model for classification and
prediction using full features. The number of the clay, silty clay, silty clay loam, sandy clay, sandy clay
loam, clay loam, silt, silty loam, loam, sand, loamy sand, and sandy loam samples used for testing
were 26, 23, 21, 24, 28, 30, 21, 29, 22, 26, 28, and 22, respectively, and a total number of 300 samples
was employed.

Soil Textures Accuracy Precision Sensitivity Specificity AUC

Clay 99.67% 100% 96.3% 100% 98.15%
Clay loam 99.67% 95.65% 100% 99.64% 99.82%
Silty loam 100% 100% 100% 100% 100%

Loam 99.33% 95.65% 95.83% 99.64% 97.74%
Loamy sand 99.67% 96.43% 100% 99.63% 99.82%

Sand 99.67% 100% 96.77% 100% 98.39%
Sandy clay loam 99.67% 100% 95.45% 100% 97.73%

Silt 99.67% 100% 96.67% 100% 98.34%
Sandy clay 100% 100% 100% 100% 100%
Sandy loam 99.67% 96.15% 100% 99.64% 99.82%
Silty loam 99.33% 92.86% 100% 99.28% 99.64%

Silty clay loam 99.67% 100% 95.65% 100% 97.83%
average 99.67% 98.06% 98.06% 99.82% 98.94%

Figure 10 reports the loss function of the proposed DLAC-CNN-RF model for training
and testing the soil images. An epoch represents one cycle of updating the weights through
the complete training soil image dataset. The loss value shows how well our model reacts
after each iteration of optimization. A downward trend in the loss curves was observed,
indicating the proposed model performs well for soil image classification.
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Table 3 shows the accuracy of the clay, sand, and silt soil image classifications of the
proposed DLAC-CNN-RF model and other machine learning methods, including KNN
and VGG16-RF. The full features of the prepared soil images were extracted in these models
to evaluate their performance. As shown in Table 3, the conventional KNN model realizes
an accuracy of 95% for clay image classification, which is relatively higher than the VGG16-
RF models, but in terms of sand and silt classification, it is worse than the VGG16-RF
model. In contrast, the proposed DLAC-CNN-RF model shows very good performance in
classifying all the soil textures, exhibiting the highest R2 and the lowest RMSE, which can
be interpreted as the convolutional networks automatically and simultaneously extracting
and selecting the features and reducing data over-fitting and complex computation.

Table 3. The comparison between the proposed DLAC-CNN-RF model and other models.

Model Soil Types Feature
Test

R2 RMSE

KNN
Clay Color + particle + texture 0.95 4.59
Sand Color + particle + texture 0.85 4.62
Silt Color + particle + texture 0.94 4.60

VGG16-RF
Clay Color + particle + texture 0.85 4.23
Sand Color + particle + texture 0.93 3.85
Silt Color + particle + texture 0.97 3.95

Proposed
DLAC-CNN-RF

model

Clay Color + particle + texture 0.99 3.76
Sand Color + particle + texture 0.99 3.71
Silt Color + particle + texture 0.98 3.79

4. Conclusions

This study demonstrated a cheap and environmentally friendly image acquisition
system consisting of a smartphone, a customized chamber, and a mobile application for pre-
dicting soil images. The particle (threshold binarization), color (HSV (hue, saturation, and
value) and Hu moments), and texture features (local binary patterns (LBP) and Harallick
features) were extracted and used in random combinations to predict clay, silt, and sand
content via RF and DLAC-CNN-RF algorithms. The results indicated that the proposed
DLAC-CNN-RF model has better performance. Particularly, when the full features were
extracted, an average accuracy of 99.67% was obtained when predicting all the soil textures.
A user-friendly interface based on the calibrated DLAC-CNN-RF model has been designed,
which clearly presents the prediction results. When compared with other commonly used
models, the proposed DLAC-CNN-RF model is a promising solution that benefits from
rapid and low-cost soil identification and classification. Our research may have two limita-
tions. The first is that the used algorithm cannot predict soil moisture and organic carbon
content. The second is the distance between the camera and the sample, which cannot be
moved freely within the image acquisition system. Future research will study the effect of
soil moisture and imaging distance on the prediction performance of the proposed model.
Over the past few years, an unmanned aerial system (UAS)-based soil image acquisition
method has received much attention due to its simple and fast implementation and the
ability to take images with multiple elevation points in remote areas. Many UAS-based
soil texture identification works have been reported [30–32]. Therefore, it is also worth
exploring the classification and prediction performance of the proposed model by imputing
images taken by the drone.
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