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Abstract: Plant disease management is key to sustainable production of staple food crops. Calcium
(Ca2+) signal and phytohormones play critical roles in regulating plant defense responses against
pathogens. The Ca2+ signals are sensed, decoded and transduced by calmodulin and other Ca2+

-binding proteins, followed by interaction with and modulation of activities of target proteins such
as calmodulin-binding proteins (CBPs). Members of the Arabidopsis CBP60 gene family, AtCBP60g
and AtSARD1, have emerged as major regulators of immune responses. In this study, we identified a
15 member CBP60 gene family in rice (Oryza sativa) of which OsCBP60g-3, OsCBP60g-4, OsCBP60a
and OsSARD-like1 genes were consistently upregulated in rice seedlings in response to infection
with both fungal (Magnaporthe oryzae) and bacterial (Xanthomonas oryzae) pathogens as well as by
salicylic acid (SA). OsCBP60g-4 and OsCBP60g-3 were induced maximally by SA and brassinosteroid
(BR), respectively, and OsCBP60g-4 was expressed at 3-fold higher levels in the M. oryzae resistant
rice genotype (IC-346004) as compared to the susceptible rice genotype (Rajendra Kasturi). The
considerable expansion of the immunity clade and the up-regulation of several OsCBP60 genes
in response to pathogens and defense hormones supports the importance of further investigating
OsCBP60 genes as targets for increasing disease resistance in rice.

Keywords: calmodulin-binding protein 60 (CBP60); AtCBP60; OsCBP60; Xanthomonas oryzae pv.
oryzae; Magnaporthe oryzae; brassinosteroid; salicylic acid; jasmonic acid

1. Introduction

Rice, as a staple food of more than half of the world’s population, is key to food
security in most Asian countries. The global demand for rice will continue to increase
due to the predicted population growth to 9 billion by 2050 [1]. As with other crops, both
biotic and abiotic stresses constrain the production of rice, and with the emergence of new
diseases and pests associated with global warming, the situation is likely to be further
exacerbated. Rice yield losses due to pests and pathogens at a global scale range from 20 to
40% [2]. Of the nearly 70 diseases that can occur in rice, losses due to bacterial blight caused
by Xanthomonas oryzae pv. oryzae, and blast caused by Magnaporthe oryzae, are paramount [3].
The study of the molecular interactions between rice and X. oryzae and M. oryzae has made
rice a model monocotyledonous plant in understanding pathogen-associated molecular
pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) [4,5].
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Phytohormones and a variety of secondary messengers play key roles in mediating cel-
lular responses to various stress stimuli [6,7]. Of the known phytohormones, salicylic acid
(SA), jasmonic acid (JA) and ethylene (ET) have been implicated in disease resistance in rice
plants [8]. The plant steroid hormone, brassinosteroid (BR), plays vital roles in plant growth
and development, and also modulates abiotic and biotic stress responses [9,10]. BR has
also been implicated in rice immune mechanisms [11], but due to its cross-talk with other
defense hormones [12,13], the role of BR in rice immunity requires further investigation.

Calcium ion (Ca2+) is an ubiquitous and a highly versatile secondary messenger in-
volved in regulating plant growth and stress responses [14,15]. Calcium signatures are
formed by changes in cytosolic free Ca2+ concentration ([Ca2+]cyt) in response to develop-
mental and environmental stimuli, including pathogen signals [16]. The calcium signatures
are decoded by Ca2+ sensors such as calmodulin (CaM) and CaM-like (CML) proteins,
calcium-dependent protein kinases (CDPKs) and calcineurin B-like (CBL) proteins that
translate the signal to molecular, physiological and metabolic responses [17]. CaM, the
primary receptor of intracellular Ca2+, functions by interacting with and modulating the
activities of various target proteins, such as transcription factors, kinases, phosphatases
and metabolic enzymes [18,19]. Although there is no well-defined consensus sequence for
a CaM-binding domain (CBD), several characteristic features such as higher propensity
for helical conformation, net positive charge within the binding region, and hydrophobic
anchor residues separated by certain number of amino acids, have allowed for prediction
of CBD within a protein [20,21].

Several CaM-binding protein (CBP) families with distinct roles in stress responses
have been identified in plants [22,23]. An eight-member plant-specific gene family in
Arabidopsis, AtCBP60, comprises of members that are induced by pathogen infection and
play critical roles in SA-mediated immunity [24,25]. Two closely related members of the
AtCBP60 family, AtCBP60g and SAR DEFICIENT1 (SARD1), promote SA production in
response to recognition of microbe associated molecular patterns (MAMPs) and impact
both SA-dependent and SA-independent gene expression [26,27]. AtCBP60g binds CaM
via its CBD located at the N-terminus, while AtSARD1 appears to lack a CBD and does
not bind CaM [26,28]. Studies in Arabidopsis suggest that AtCBP60g responds to the
initial activation of Ca2+ flux in response to plant-pathogen interaction, which leads to SA
production and subsequent immunity-related gene expression, while AtSARD1 functions
similarly but in a Ca2+-independent manner such that immune responses continue to
persist even after Ca2+ levels have returned to the normal range [25]. Recently it was
demonstrated that AtCBP60b positively regulates immunity by activating the expression of
AtSARD1 and AtCBP60g and other immune response genes [29]. In contrast to the positive
regulation of immune responses by AtCBP60g, AtSARD1 and AtCBP60b, knockdown of the
CBP60a ortholog in cotton increased SA levels and resistance against pathogen, indicating
that CBP60a is a negative regulator of immunity [30]. Phylogenetic analysis of CBP60
protein sequences of diverse plant species has revealed that CBP60a, CBP60g and SARD1
form an immune-related clade and that these subfamilies are evolving at a fast rate, likely
due to strong selection pressure from pathogen effectors [31]. Interestingly, AtCBP60g and
AtSARD1 have also been linked with cold and drought stress responses [24,32], and to be
induced by BR (P. Krishna, personal communication).

While the roles of a subset of CBP60 genes in immune regulation are well documented
in dicotyledonous plants [25,33], there is little information on the CBP60 genes and their
functions in monocotyledonous plants [33]. Considering the growing importance of the
roles of CBP60 genes in biotic and abiotic stress responses, we undertook a study of the
CBP60 gene family in rice, a model monocotyledonous plant. Fifteen OsCBP60 genes
were identified in rice. Of these, 12 gene products fell in the immunity clade, indicating
a significant expansion of the CBP60g and SARD1 subfamilies in rice. Five OsCBP60
genes within the immunity clade were upregulated by both pathogens, SA and BR. Single
nucleotide polymorphisms (SNPs) were identified within the putative promoter region
of OsCBP60g-4, which was expressed at a higher level in M. oryzae resistant genotype as
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compared to a susceptible genotype. These results provide strong preliminary evidence for
an expanded role of the OsCBP60 gene family in defense against pathogens in rice.

2. Materials and Methods
2.1. Sequence Analysis

Similarity searches of nucleotide and amino acid sequences were carried out using
BLASTP at the National Center for Biotechnology Information (NCBI) GenBank database
and the Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) (accessed on 14 June
2016) database. A phylogenetic tree was constructed using the neighbour-joining (NJ)
method based on the genetic distance of the protein sequences using the MEGA 7 (http:
//www.megasoftware.net/) (accessed on 14 June 2016) tool. The chromosomal positions of
OsCBP60s were studied using Phytozome v12.1 database (https://phytozome.jgi.doe.gov/
pz/portal.html) (accessed on 16 August 2017). In order to identify the conserved motif
structures encoded by the OsCBP60s, gene structure analysis was carried out using the
Gene structure display server GSDS 2.0.

Using Boxshade (https://embnet.vital-it.ch/software/BOX_form.html) (accessed on
12 September 2021) and CLUSTAL Omega (accessible through https://www.ebi.ac.uk)
(accessed on 12 September 2021), the sequences for the conserved CaM and DNA-binding
domains were analysed. The Calmodulin Target Database (http://calcium.uhnres.utoronto.
ca/ctdb/ctdb/sequence.html) (accessed on 15 September 2021) and CalModulin intEr-
action Learning System (CaMELS; https://camels.pythonanywhere.com/) (accessed on
15 September 2021) were used to further examine OsCBP60 amino acid sequences for
the presence of potential CBD. In addition, amino acid sequences were submitted to
https://heliquest.ipmc.cnrs.fr/ for the detection of amphipathic helices.

Subcellular localization of proteins was analysed using Balanced Subcellular Localiza-
tion Predictor tool (BaCelLo) (http://gpcr.biocomp.unibo.it/bacello/info.htm) (accessed
on 25 October 2021).

Upstream sequences of genes were obtained from the Rice Annotation Project Database
(http://rapdb.dna.affrc.go.jp/tools/dump) (accessed on 13 April 2018). The putative pro-
moters regions (1000 bp and 2000 bp upstream of transcription start site) of Arabidopsis
and rice CBP60 genes were searched for the presence of TGACG motif as binding site for
TGA1/TGA4, W-box [(T)TGAC(C/T)] for WRKY70, and CAMTA motif [(A/C/G)CGCG
(C/G/T)] for CAMTA, using PlantPAN 3.0 (http://PlantPAN.itps.ncku.edu.tw/) (accessed
on 20 September 2021) platform. BES1 (CANNTG, CACGTG and CACTTG) and BZR1
(CGTGT/CG) binding sites were manually searched within the putative promoter se-
quences of the genes [10,34,35].

2.2. Plant Materials and Treatments

Rice cv. Rajendra Kasturi (Oryza sativa L. sp. indica cv. Rajendra Kasturi) was used in
this study. Seeds of Rajendra Kasturi were grown in earthen pots containing 2:1 soil:cocopit
in a greenhouse maintained at 28 ◦C. M. oryzae (isolate B157, corresponding to international
race IC 9) was obtained from Dr. Bharat Chattoo Genome Research Centre, M.S. University,
Vadodara, Gujarat. M. oryzae was grown on Potato Dextrose Agar (PDA) medium at
28–30 ◦C. For infection with the fungus, 21-day-old rice seedlings were inoculated with
conidial suspensions (1 × 105 spores/mL) of M. oryzae as described previously [36–38]. For
mock treatment, rice seedlings were treated with an equal volume of distilled water.

X. oryzae pv. oryzae was isolated from blight infected rice field at Bihar Agricultural
College, Sabour (NCBI GenBank: MH986180) [39]. X. oryzae was grown on a nutrient
agar medium at 28 ◦C [39,40]. Leaf infection with X. oryzae was performed using the
leaf clipping method [38,41]. Rice leaves were clipped with scissors dipped in bacterial
suspension (1 × 108−9 cfu/mL) in saline (0.9%) containing 0.05% Triton-X-100. Sterile
water containing 0.05% Triton-X-100 was used for mock treatment. Leaf samples were
collected at 12 h, 24 h and 48 h after pathogen and mock inoculation, quick frozen in liquid
nitrogen and stored at −80 ◦C till further use.

https://phytozome.jgi.doe.gov/pz/portal.html
http://www.megasoftware.net/
http://www.megasoftware.net/
https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://embnet.vital-it.ch/software/BOX_form.html
https://www.ebi.ac.uk
http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html
http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html
https://camels.pythonanywhere.com/
https://heliquest.ipmc.cnrs.fr/
http://gpcr.biocomp.unibo.it/bacello/info.htm
http://rapdb.dna.affrc.go.jp/tools/dump
http://PlantPAN.itps.ncku.edu.tw/
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Rice genotypes IC-346004, IRBB55, Pusa Basmati-1 and Tetap were also used for
pathogens treatment as described for Rajendra Kasturi.

For SA treatments, 21-day-old rice seedlings were sprayed with 3 mM sodium salicy-
late containing 0.05% Triton-X-100 [38]. Seedlings sprayed with distilled water containing
0.05% Triton-X-100 served as a mock treatment. For JA treatment, seedlings were grown for
21 days in black portrays (9 cm diameter and 9 cm height) containing a hole at the bottom
for water absorption from a tray (20X14X7 cm) containing 1 litre of water. Seedlings were
then placed in another tray containing either 100 µM JA [42] or water for mock treatment.
Leaf samples were collected at 12 h, 24 h and 48 h after treatment.

For EBR treatment, surfaced sterilized rice seeds were placed on 1⁄2 Murashige and
Skoog (MS) medium containing either 1 µM EBR or 0.02% ethanol (solvent of EBR) in
test tubes [10,43]. The test tubes were closed with sterilized cotton plugs. Seedlings
were grown for 15 days in the presence of EBR before leaf tissue was collected for gene
expression analysis.

SNP analysis was carried out using DNA isolated from rice varieties IC-346004 (resis-
tant to M. oryzae) and Rajendra Kasturi (susceptible to M. oryzae).

2.3. qRT-PCR Analysis

Total RNA was isolated using the SV Total RNA isolation kit (Promega). Random
hexamer primers (Promega) were used for the synthesis of cDNA from total RNA by reverse
transcription. cDNA was diluted in nuclease free water (1:5) and used for Quantitative
real-time RT-PCR (qRT-PCR) analysis. qRT-PCR was carried out using SYBR Green dye
in Light Cycler system (Applied Biosystem). Each qRT-PCR quantification was carried
out in triplicate using gene specific primers (Supplementary Table S1). ACTIN was used
as reference gene to normalize the gene expression data. The fold-change in expression
level was calculated using the 2−∆∆Ct method of relative quantification compared with
control [44].

2.4. Promoter Mining

Genomic DNA was extracted from young seedlings of IC-346004 and Rajendra Kasturi
using the DNA extraction kit (Qiagen, Germantown, MD, USA). The 1000 bp upstream
region of OsCBP60g-4 was amplified using specific primers (Fp: GCTGTGGACACTTC-
CTAGCC and Rp: GCAACTCACGCGGTGACACG) and the amplified product was se-
quenced. The sequences of IC-346004 and Rajendra Kasturi were compared with the
reference sequence (Nipponbare; AP014967.1) available at NCBI by generating sequence
alignment using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) (accessed
on 12 July 2020) to identify Single Nucleotide Polymorphisms (SNPs).

2.5. Statistical Analysis

Gene expression data was statistically analysed using the computer software SPSS.
Significance of differences were analysed by one-way analysis of variance (ANOVA).
Comparison among treatment means was performed using the Least Significant Difference
(LSD) multiple-comparison test.

3. Results
3.1. Phylogenetic Analysis of CBP60 Families in Arabidopsis and Rice

CBP60 proteins in rice were identified by performing BLASTP searches at Phytozome11
using complete protein sequences of the eight Arabidopsis members as query against the
rice genome (Oryza sativa v7_JGI). After removing the incomplete sequences, a total of 15
OsCBP60/SARD1-like genes were identified. The protein sequences of the 15 OsCBP60s and
eight AtCBP60s were used to create a phylogenetic tree using neighbor-joining method
with bootstrapping (500 replicates) in MEGA7 software and rooted with a moss CBP60
sequence (Figure 1). We have named OsCBP60s based on sequence homology with the
Arabidopsis proteins (Table 1). The OsCBP60s were numbered according to their location

https://www.ebi.ac.uk/Tools/msa/clustalo/
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on consecutive chromosomes but the gene numbers do not correlate to the chromosome
numbers. If more than one gene was on the same chromosome, the numbering of gene
members of a subgroup was continued in a consecutive manner.

Table 1. Full list of OsCBP60 gene loci with proposed systematic names, predicted subcellular
localization, and location of CBD in OsCBP60 proteins.

S.No. Gene ID Proposed Name Predicted Localisation a Predicted CBD (Consensus *)

1 LOC_Os02g08120 OsCBP60bcd-1 Nucleus C-terminus

2 LOC_Os02g35470 OsCBP60bcd-2 Nucleus C-terminus

3 LOC_Os04g36660 OsCBP60bcd-3 Nucleus C-terminus

4 LOC_Os03g32160 OsCBP60a Nucleus C-terminus

5 LOC_Os01g04280 OsSARDL-1 Nucleus none

6 LOC_Os08g27170 OsSARDL-2 Nucleus none

7 LOC_Os09g13890 OsSARDL-3 Nucleus none

8 LOC_Os03g18960 OsCBP60g-1/OsSARDL Nucleus none

9 LOC_Os03g56660 OsCBP60g-2 Nucleus none

10 LOC_Os11g44600 OsCBP60g-3 Nucleus none

11 LOC_Os11g44680 OsCBP60g-4 Chloroplast none

12 LOC_Os12g36110 OsCBP60g-5 Nucleus none

13 LOC_Os12g36910 OsCBP60g-6 Nucleus none

14 LOC_Os12g36920 OsCBP60g-7 Nucleus none

15 LOC_Os12g36940 OsCBP60g-8 Nucleus none
a Subcellular localization predictions by BaCelLo tool. * Full details of CBD prediction results in Supplementary
Table S1.

The phylogenetic tree analysis identified two main clades with high reliability, which
were further divided into sub-clades (Figure 1). Three rice proteins that grouped in
clade I were designated as orthologs of AtCBP60b, c and d and named OsCBP60bcd-
1, OsCBP60bcd-2 and OsCBP60bcd-3 (Figure 1). Proteins closely related to AtCBP60e and
AtCBP60f were absent in rice. A total of 12 OsCBP60/SARD1-like proteins grouped in
the immunity-related clade II with AtCBP60a, AtCBP60g and AtSARD1. One of these,
designated as OsCBP60a, appears to be orthologous to AtCBP60a. The three proteins
forming a branch with AtSARD1 have been named as SARD-like (SARDL): OsSARDL-1,
OsSARDL-2 and OsSARDL-3. The remaining eight proteins form a diverse group with
AtCBP60g, although the position of OsCBP60g-1/SARDL remained unclear based on boot-
strap values. To gain a better understanding of the position of OsCBPO60g-1/SARDL, a
phylogenetic tree of CBP60 homologs from Arabidopsis, rice and cotton was constructed us-
ing NJ and ME algorithms (data not shown). While the phylogenetic tree analysis grouped
OsCBP60g-1/SARDL with CBP60gs from Arabidopsis and cotton, exon analysis of all
OsCBP60 proteins showed that similar to OsSARDL proteins, OsCBP60g-1/SARDL has a
shortened C-terminus (Figure 2). Pairwise sequence alignment indicated that OsCBP60g-
1/SARDL shares greater similarity with OsSARDL as compared to OsCBP60g proteins.
Due to this discrepancy, we have named this protein as OsCBP60g-1/SARDL. Figure 2
indicates that in contrast to OsCBP60g-1/SARDL, the rest of OsCBP60gs (OsCBP60g-2-8)
gained new C-terminal exons (Figure 2).

OsCBP60g-1/OsSARDL and OsCBP60g-2 are located far apart on chromosome 3, while
OsCBP60g-3 and OsCBp60g-4 are located close together on the chromosome 11 (Table 1).
Four OsCBP60g genes (OsCBP60g-5 to OsCBP60g-8) are encoded on chromosome 12. Also
located on chromosome 3 is OSCBP60a. The OsSARDL1-3 are located on chromosomes 1, 8
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and 9, respectively. OsCBP60bcd-1 and OsCBP60bcd-2 are located on chromosome 2 and
OsCBP60bcd-3 on chromosome 4.
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Calmodulin-binding domain (CBD) and DNA-binding domain (DBD) encoding regions of rice
OsCBP60 proteins, with that of a root sequence from Physcomitrella patens. The figure was created
using the Gene Structure Display Server (GSDS 2.0).

3.2. Predicted CaM- and DNA-Binding Regions in OsCBP60 Proteins

CBP60 proteins, in general, function as CaM-regulated transcription factors and most
members of the AtCBP60 family contain a CaM-binding domain (CBD) [28,45]. We first
examined amino acid similarities between OsCBP60 and AtCBP60 proteins to tentatively
identify CBD and DNA-binding domains (DBDs) in OsCBP60 proteins. Since the prediction
of CBD is quite difficult as it does not have a signature sequence, the CBD in OsCBP60s
was also predicted using two tools, Calmodulin target database and CaMELS (Table 1 and
Supplementary Table S2).

Based on the high interaction site prediction scores through CaMELS and amino acid
similarities with AtCBP60s, a CBD was identified in the C-termini of each OsCBP60bcd-1, 2
and 3 (Supplementary Table S2). The predicted CBDs in OsCBP60bcd-1, 2 and 3 showed a
high level of conservation with each other as well as with AtCBP60b, c, d, e and f (Figure 3).
Based on the search in Calmodulin target database, the CBD in OsCBP60a was predicted to
be localised at the C-terminus of the protein, similar to the position identified in AtCBP60a
(Table 1). Since the predicted CBD in OsCBP60a showed moderate amino acid similarity
with the CBD in AtCBP60a (Figure 4a), the characteristic basic amphiphilic alpha helix
found in CBDs [46], was identified by the Heliquest algorithm (Figure 4b). The positively
charged amino acids in both proteins lie on one face of the helix while the hydrophobic
residues lie on the other face, indicating that this region could serve as CBD in both proteins.
Similar to AtSARD1 [26,28], a CBD was not predicted in the OsSARDL proteins (Table 1).
Unlike the usual C-terminal localisation of CBD in most AtCBP60s, the CBD in AtCBP60g
was identified in the N-terminus [26,31]. It is to be noted that the N-terminal localised
CBD in AtCBP60 was identified through experimentation and not on the basis of sequence
analysis. A CBD could not be identified in the OsCBP60g proteins. The rice proteins within
this clade have highly variable N-terminal sequences with little or no homology to each
other or to AtCBP60g (data not shown). For the same reason, Val-29 that is required for the
binding of AtCBP60g to CaM [47], could not be identified in OsCBP60g proteins. Based on
this information it is tentatively concluded that the OsCBP60g proteins lack a CBD.
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AtCBP60a contribute to CBD as determined by mutagenesis [25], while the underlined region in 
OsCBP60a indicates the predicted CBD. (b) Prediction of amphipathic helix in AtCBP60a and Os-

Figure 3. Multiple sequence alignment of the predicted CBDs of AtCBP60b, c, d, e, and f and their
putative rice orthologs OsCBP60bcd -1, 2, and 3. The alignment was carried out in CLUSTAL Omega
and displayed using Boxshade. The underlined sequence indicates the CBD in Arabidopsis proteins.
Black shading indicates residues conserved in over 50% of the sequences; grey shading indicates
semi-conservative substitutions while no shading indicates the lack of any similarity.
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Figure 4. Identification of a CBD in OsCBP60a. (a) Multiple sequence alignment (Clustal Omega) of
the C-terminus localised CBD of AtCBP60a with the loosely conserved region in the C-termius of
OsCBP60a protein. Identical amino acids are indicated by a star, strongly conserved groups by double
dots, and weakly conserved groups by dots. The highlighted region in the CBD of AtCBP60a is
predicted to form the amphipathic helix shown in (b). The overlined residues in AtCBP60a contribute
to CBD as determined by mutagenesis [25], while the underlined region in OsCBP60a indicates the
predicted CBD. (b) Prediction of amphipathic helix in AtCBP60a and OsCBP60a by the Heliquest
algorithm. Both proteins show the presence of an amphiphilic alpha helix with majority of positively
charged residues lying on one face of the helix.

The DBD in CBP60s is present within the highly conserved region in these proteins
(Figure 5) and, to date, has been experimentally verified only in AtCBP60g and At-
SARD1 [47]. A comparison of the previously identified DBD in AtCBP60g and AtSARD1
with the rice proteins indicated that while this region is most conserved amongst all Os-
CBP60, OsSARDL-1, 2, and 3 and OsCBP60g proteins exhibit high level of conservation
with their Arabidopsis counterparts (Figure 5). Of the latter group, the DBDs in OsCBP60g-
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1/OsSARDL, OsCBP60g-5 and OsCBP60g-6 showed high degree of sequence similarity
to the DBDs of AtSARD1 and AtCBP60g. Localisation predictions by BaCelLo indicated
nuclear localisation for all OsCBP60 proteins with the exception of OsCBP60g-4 (Table 1),
although an alternative prediction program CELLO (http://cello.life.nctu.edu.tw/) (ac-
cessed on 30 October 2021) located OsCBP60g-4 also in the nucleus. These results suggest
that OsCBP60 function as transcription factors like their Arabidopsis orthologs.
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Figure 5. Multiple sequence alignment of the DBDs of AtCBP60g and AtSARD1 proteins with similar
regions of OsCBP60g and OsSARDL proteins. The boxed residues indicate the DBD in AtCBP60g and
AtSARD1 [47]. The alignment was carried out in CLUSTAL Omega accessed and displayed using
Boxshade. Black shading indicates residues conserved in over 50% of the sequences; grey shading
indicates semi-conservative substitutions; and the unshaded residues show no similarity.

3.3. OsCBP60 Gene Expression Changes in Response to Pathogen Infection

Since the role of AtCBP60g and AtSARD1 in immunity is well documented [26,27,31,47],
we studied the expression of OsCBP60 genes in rice seedlings infected with M. oryzae and
X. oryzae. OsPR1a, a marker gene for defense response in rice, was upregulated at all-time
points (12, 24 and 48 h) post infection with M. oryzae and X. oryzae, serving as a positive
control in this analysis (Figures 6 and 7). Genes that were highly upregulated at 12 h post
infection with M. oryzae included OsCBP60g-5 (~85-fold induction), followed by OsCBP60g-
8 (~73-fold induction) and OsCBP60g-6 (~45-fold induction), while those expressed at
the highest level at 48 h were OsCBP60g-7 (~39-fold induction) followed by OsCBP60g-8
(~32-fold induction) and OsCBP60a (~27-fold induction) (Figure 6). For OsCBP60g-5, 6, 8,
the initial high induction at 12 h was reduced by 48 h of M. oryzae infection. It is possible
that OsCBP60g-5, 6, 8, similar to AtCBP60g [48], respond to the initial Ca2+ signal that is
generated during plant-pathogen interaction.

http://cello.life.nctu.edu.tw/
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Figure 6. Transcriptional response of OsCBP60 genes in rice seedlings infected with M. oryzae. Rice
seedlings were infected with the spores of M. oryzae and transcript levels were analyzed by qRT-PCR
at 12, 24 and 48 h post infection. Relative transcript abundance (expression value) is expressed as
fold-change relative to the mock treatment. OsPR1a expression served as a positive control. Results
are representative of three independent experiments. Error bars represent standard error (SE) of
mean for three replicates. Superscripts with the same letter are not significantly different (p < 0.05) by
one-way ANOVA-protected LSD test.

Genes that were highly upregulated at 12 h post infection with X. oryzae pv. oryzae
included OsCBP60g-3 (~25-fold induction) followed by OsCBP60g-7 (~19-fold induction),
OsCBP60bcd-2 (~13-fold induction), while those expressed at the highest level at 48 h
were OsCBP60a (~28-fold induction), followed by OsCBP60g-7 (~24-fold induction) and
OsSARDL-1 (~19-fold induction) (Figure 7). In case of OsCBP60a, OsSARDL-1, OsCBP60g-4
and OsSARDL-3, a steady increase in expression was observed from 12–48 h.
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Figure 7. Transcriptional response of OsCBP60 genes in rice seedlings infected with X. oryzae pv.
oryzae. Rice seedlings were infected with X. oryzae and transcript levels were analyzed by qRT-PCR
at 12, 24 and 48 h post infection. Relative transcript abundance (expression value) is expressed as
fold-change relative to the mock treatment. OsPR1a expression served as a positive control. Results
are representative of three independent experiments. Error bars represent standard error (SE) of
mean for three replicates. Superscripts with the same letter are not significantly different (p < 0.05) by
one-way ANOVA-protected LSD test.
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OsCBP60g-3, 4, 7, OsCBP60a and OsSARDL-3, all belonging to immunity cluster,
were upregulated at all the time points studied for both pathogens. OsCBP60g-6, 8 and
OsCBP60bcd-3 had opposing expression patterns in response to the bacterial and the fungal
pathogens. The reason for these observations may lie in the fact that rice interactions with
the two pathogens have both distinct as well as shared defense responses [49,50].

3.4. OsCBP60 Gene Expression Changes in Response to Phytohormones

Typically, SA and JA are considered to play key roles in plant defense responses [6,38,51].
The involvement of SA and JA in rice defense responses against M. oryzae and X. oryzae
was strongly endorsed through extensive global gene expression analyses [50]. A growing
body of evidence supports a role of BR in plant disease resistance [6,10]. We studied the
expression of OsCBP60 genes, along with the expression of the defense marker gene OsPR1a,
in rice seedlings treated with SA, JA and 24-epibrassinolide (EBR), a BR.

With the exception of OsCBP60g-5, all other OsCBP60s were upregulated to different
levels in response to SA treatment (Figure 8). OsCBP60g-4 was maximally induced by SA
(28 to 41-fold) at all-time points studied, followed by OsCBP60a (Figure 8). The induced
expression of several OsCBP60s in response to M. oryzae, X. oryzae and SA treatment
supports a role for these proteins in disease resistance in rice.
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JA induced both up and down -regulation of OsCBP60 genes with OsCBP60g-6 and 
OsSARDL-2 showing maximum induction at ~ 23- and 20- fold, respectively, at 24 h post 
treatment. By contrast, OsCBP60g-5 and OsCBP60g-4 were downregulated by ~ 18 and 12- 
fold, respectively (Figure 9). The down-regulation by JA of OsCBP60g-4 and other Os-
CBP60 genes that were upregulated by SA is reminiscent of the antagonistic interactions 
between SA and JA signaling pathways. 

Figure 8. Transcriptional response of OsCBP60 genes in rice seedlings treated with salicylic acid (SA).
Rice seedlings were treated with SA (3 mM sodium salicylate) and transcript levels were analyzed
by qRT-PCR at 12, 24 and 48 h post treatment. Relative transcript abundance (expression value) is
expressed as fold-change relative to the mock treatment. OsPR1a expression served as a positive
control. Results are representative of three independent experiments. Error bars represent standard
error (SE) of mean for three replicates. Superscripts with the same letter are not significantly different
(p < 0.05) by one-way ANOVA-protected LSD test.

JA induced both up and down -regulation of OsCBP60 genes with OsCBP60g-6 and
OsSARDL-2 showing maximum induction at ~ 23- and 20- fold, respectively, at 24 h post
treatment. By contrast, OsCBP60g-5 and OsCBP60g-4 were downregulated by ~ 18 and 12-
fold, respectively (Figure 9). The down-regulation by JA of OsCBP60g-4 and other OsCBP60
genes that were upregulated by SA is reminiscent of the antagonistic interactions between
SA and JA signaling pathways.

In EBR-treated rice samples, all 15 OsCBP60 genes were upregulated to different levels
(Figure 10). Maximum upregulation was observed for OsCBP60g-3 (~15-fold) followed
by OsCBP60g-4 (~9-fold) and OsCBP60g-7 (~9-fold). These genes also showed prominent
upregulation by pathogens (Figures 6 and 7), and the former two by SA (Figure 8). Of the
SARD-like genes, OsSARDL-1 was upregulated by pathogens, SA and EBR. Interestingly,
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four OsCBP60s, namely OsCBP60bcd-1, 3 and OsCBP60g-6, 7, were upregulated in both JA
and EBR -treated rice seedlings (Figures 9 and 10).
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Figure 10. Transcriptional response of OsCBP60 genes in rice seedlings treated with brassinosteroid.
Rice seedlings were grown for 15 days on MS medium supplemented with 1 µM EBR. Relative
transcript abundance (expression value) is expressed as fold-change relative to the mock treatment.
Since EBR enhanced AtPR1 expression [52], OsPR1a expression was studied as a probable positive
control. Results are representative of three independent experiments. Error bars represent standard
error (SE) of mean for three replicates. Superscripts with the same letter are not significantly different
(p < 0.05) by one-way ANOVA-protected LSD test.
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3.5. Analysis of Transcription Factor Binding Sites in Putative Promoter Regions of CBP60 Genes

In recent years, transcription factors (TFs) that regulate the expression of AtCBP60g
and AtSADR1 have been identified. These include bZIP transcription factor family proteins
TGACG-BINDING FACTOR 1 (TGA1) and TGA4 as positive regulators of both genes [53],
and WRKY70 and CAMTA3 as negative regulators of AtSARD1 [54,55]. We identified
TGACG motif as binding site for TGA1/TGA4, W-box [(T)TGAC(C/T)] for WRKY70,
and the CAMTA [(A/C/G)CGCG(C/G/T)] motif in putative promoters regions (1000 bp
and 2000 bp upstream of transcription start site) of Arabidopsis and rice CBP60 genes
using PlantPAN 3.0 platform. In the 2000 bp upstream regions of Arabidopsis genes, 14
CAMTA-binding sites were identified in AtSARD1, followed by six sites in each AtCBP60c
and AtCBP60e and three sites in AtCBP60g (Supplementary Table S3). In rice genes, max-
imum number of CAMTA-binding sites were identified in the putative promoter region
of OsCBP60g-3 (12 sites) followed by OsSARDL-1 (nine sites), OsCBP60g-1/OsSARDL
(six sites), OsCBP60g-4 (six sites), OsCBP60bcd-3 (five sites), OsCBP60g-6 (five sites), and
OsCBP60g-7, OsCBP60g-8 and OsCBP60bcd-2 (four sites) (Supplementary Table S3).

Maximum number of TGACG motif (42) was identified in AtSARD1, followed by 13
sites in AtCBP60g, nine sites in AtCBP60f, six sites in AtCBP60a and two sites in AtCBP60d
in the 2000 bp upstream regions of Arabidopsis genes (Supplementary Table S3). In rice
genes, maximum number of TGACG motif were identified in the putative promoter region
of OsCBP60g-3 (13 sites) followed by OsCBP60g-1/OsSARDL (eight sites), OsCBP60a (seven
sites), OsCBP60g-5 (seven sites) and OsCBP60g-6 (five sites). The maximum number of W-
box site was observed in AtCBP60e followed by AtCBP60g, AtCBP60f, AtCBP60c, AtCBP60d,
AtSARD1, AtCBP60a and AtCBP60b. In rice genes, maximum enrichment of W-box was
observed in OsCBP60g-3 (35), followed by OsCBP60g-4 (26), OsCBP60g-2 (23), OsCBP60g-6
(23), OsSARDL-1 (20), OsCBP60g-5 (13) and OsSARDL-3 (10). While the number of TF
binding sites identified here is an overrepresentation, the identification of these sites mainly
in OsCBP60g and OsSARD-Like genes indicates that the TFs involved in the regulation of
these genes in rice may be similar to those identified in Arabidopsis.

3.6. Analysis of BZR1/BES1-Binding Sites in Putative Promoter Regions of OsCBP60 Genes

BR plays important roles in disease resistance [56] and works in part via Ca2+/CaM
signalling to mount a BR response [57–59]. This together with the observation that EBR
could induce OsCBP60 expression (Figure 10) led us to search for binding sites of BZR1
and BES1 in the putative promoter regions of OsCBP60 genes. BZR1 and BES1 are the main
TFs of the BR signalling pathway that are involved in mounting a BR response [34,35]. The
search for BES1-binding site (CANNTG) and BZR1-binding site (CGTG(T/C)G identified
maximum enrichment of BES1 sites in OsSARDL-1 (14 sites) followed by OsCBP60a (13 sites),
OsCBP60g-4 (12 sites) and OsCBP60bcd-1, 2, 3 (11 sites), and relatively lesser number of BZR1
sites in OsCBP60g-2 (2 sites) and a single site in OsSARDL-1, 2, OsCBP60g-1/OsSARDL,
3, 4, 8 and OsCBP60bcd-3. BES1-binding sites were also observed in promoter regions
of AtCBP60e (12 sites), AtCBP60f (10 sites), AtCBP60d (eight sites), AtCBP60g (five) and
AtSARD1 (five) (Supplementary Table S3). BZR1-binding sites were identified only in
AtCBP60a (3 sites).

3.7. Promoter Mining of OsCBP60g-4

OsCBP60g-4 was upregulated in response to infection with both M. oryzae and X.
oryzae (Figures 6 and 7) and was strongly induced by SA (Figure 8) and to a lesser extent
by EBR (Figure 10), suggesting a probable role in disease resistance. We further tested the
expression of OsCBP60g-4 in M. oryzae and X. oryzae resistant and susceptible rice genotypes.
Analysis of OsCBP60g-4 expression in leaf tissue of Rajendra Kasturi (an indica rice cultivar
susceptible to rice blast), and IC-346004 (resistant to rice blast, containing R-genes Piz-5,
Pi-9, Pitp(t), Pi-1, Pi-33, Pi-b, Pi27(t), Pi-ta) [60] seedlings grown under controlled conditions,
identified ~3-fold higher expression of the gene in IC-346004 as compared to Rajendra
Kasturi (Figure 11a). Additionally, OsCBP60g-4 was found to be maximally upregulated
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in the resistant genotype IRBB55, followed by the moderately resistant Tetap, at 6 h, 12 h
and 48 h post infection with X. oryzae (Figure 11b). By contrast, in the susceptible genotype
[Pusa Basmati-1 (PB-1)], the expression of OsCBP60g-4 was downregulated at 12 h and 24 h
post infection.
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promoter sequences of OsCBP60g-4 from a susceptible and a resistant to M. oryzae rice 
genotype. The 1000 bp upstream regions of OsCBP60g-4 from Rajendra Kasturi, and from 
rice germplasm accession IC-346004, were sequenced. The sequences were compared 
with the reference sequence of Nipponbare (AP014967.1 obtained from NCBI). Multiple 
sequence alignments identified 12 SNPs of which seven SNPs were associated with 
known TF binding sites (Figure 12). Two SNPs which change the binding site of EIN3, a 
TF involved in ethylene signalling [61], were identified in the sequence of the susceptible 
cultivar Rajendra Kasturi. Other transition and transversion mutations alter B3 and 
NF-YB -binding sites, leading to the formation of potential TALE homeodomain and B3 

Figure 11. (a) Transcriptional response of OsCBP60g-4 in uninfected leaves of IC-346004 and Rajendra
Kasturi rice seedlings grown under controlled conditions. Relative transcript abundance (Expression
value) of OsCBP60g-4 is expressed as fold-change in IC-346004 relative to Rajendra Kasturi. Results
are representative of three independent experiments. Error bars represent standard error (SE) of mean
for three replicates. Different lower-case letters indicate statistically significant differences (p < 0.05)
by one-way ANOVA-protected LSD test. (b) Transcriptional response of OsCBP60g-4 in leaves of rice
genotypes Pusa Basmati-1, IRBB-55 and Tetap infected with X. oryzae pv. oryzae at 6, 12 and 24 h post
infection. Relative transcript abundance (Expression value) is expressed as fold-change relative to the
mock treatment. Results are representative of three independent experiments. Error bars represent
standard error (SE) of mean for three replicates. Superscripts with the same letter are not significantly
different (p < 0.05) by one-way ANOVA-protected LSD test.

To putatively identify regulatory single nucleotide polymorphisms (SNPs) affecting
gene expression due to change/modification in TF binding sites (TFBSs), we mined the
promoter sequences of OsCBP60g-4 from a susceptible and a resistant to M. oryzae rice
genotype. The 1000 bp upstream regions of OsCBP60g-4 from Rajendra Kasturi, and from
rice germplasm accession IC-346004, were sequenced. The sequences were compared
with the reference sequence of Nipponbare (AP014967.1 obtained from NCBI). Multiple
sequence alignments identified 12 SNPs of which seven SNPs were associated with known
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TF binding sites (Figure 12). Two SNPs which change the binding site of EIN3, a TF
involved in ethylene signalling [61], were identified in the sequence of the susceptible
cultivar Rajendra Kasturi. Other transition and transversion mutations alter B3 and NF-YB
-binding sites, leading to the formation of potential TALE homeodomain and B3 binding
sites, respectively, in the Rajendra Kasturi sequence (Figure 12). Comparison between the
reference and resistant genotype IC-346004 sequences showed loss of two TCP-binding
sites with formation of potential homeodomain and other TF -binding sites in the IC-346004
sequence, and potential conversion of an EIN3 site to B3-binding site (Figure 12). While
these results do not provide evidence of a link between the higher expression of OsCBP60g-
4 in the resistant IC-346004 vs. susceptible Rajendra Kasturi (Figure 11a) and the SNPs
identified (Figure 12), they providde impetus for detailed functional analysis of OsCBP60
genes and their promoters to understand the significance of this gene family in biotic and
abiotic stress tolerance.

Agronomy 2022, 12, x FOR PEER REVIEW 16 of 23 
 

 

binding sites, respectively, in the Rajendra Kasturi sequence (Figure 12). Comparison 
between the reference and resistant genotype IC-346004 sequences showed loss of two 
TCP-binding sites with formation of potential homeodomain and other TF -binding sites 
in the IC-346004 sequence, and potential conversion of an EIN3 site to B3-binding site 
(Figure 12). While these results do not provide evidence of a link between the higher ex-
pression of OsCBP60g-4 in the resistant IC-346004 vs. susceptible Rajendra Kasturi (Fig-
ure 11a) and the SNPs identified (Figure 12), they providde impetus for detailed func-
tional analysis of OsCBP60 genes and their promoters to understand the significance of 
this gene family in biotic and abiotic stress tolerance. 

 
Figure 12. In silico analysis of the putative promoter regions of OsCBP60g-4 in M. oryzae resistant 
and susceptible rice genotypes. A 1000 bp upstream region of OsCBP60g-4 gene from each geno-
type, Rajendra Kasturi (indica rice genotype susceptible to M. oryzae) and IC-346004 (indica rice 
accession resistant to M. oryzae), was amplified and sequenced. Multiple sequence alignment of 
reference sequences (Nipponbare; AP014967.1) available in NCBI was performed to identify SNPs. 
The SNPs associated with TF binding sites are highlighted in different colours and shown in circles. 
The red colour stars (*) indicate conserved residues in both sequences. 

4. Discussion 
In plant immune systems, the immunogenic elicitors (PAMPs, MAMPs) arising from 

pathogens are recognised by receptor proteins localised at the plasma membrane, which 
then trigger cytosolic signalling events [62]. The increases in cytosolic Ca2+ within 
minutes of elicitor recognition is an early event in the signalling cascade that leads to the 
immune response [17,63,64]. In Arabidopsis leaves a significant increase in Ca2+ was seen 
to occur within two hours of infection with an avirulent bacteria [65]. The spatiotemporal 
patterns of Ca2+ changes at the cellular and tissue levels form the Ca2+ signatures, which 
are decoded by CBPs. CaM is the most researched Ca2+ sensor which can bind to TFs and 
regulate their activities, and it has been linked to SA-mediated response to pathogens 
[66]. One of the links between Ca2+/CaM and SA has been through CaM transcription ac-
tivators (CAMTAs), which negatively regulate SA biosynthesis [55]. SA has been known 
since long to play a critical role in plant immunity [67]. SA levels increase both locally 
and systemically in response to pathogen infection, which sets in train the SA signal-
ling-induced gene expression and immunity. 

Another gene family, CBP60, linked with Ca2+/CaM and SA was identified in Ara-
bidopsis. Members of this family, AtSARD1 and AtCBP60g, function as TFs and directly 
regulate the expression of isochorismate synthase 1 (ICS1), which encodes a crucial enzyme 
in SA biosynthesis [47]. The expression of AtSARD1 and AtCBP60g is repressed by 
CAMTAs, specifically by CAMTA3, leading to inhibition of SA synthesis [55]. Recent 
reports have also linked additional members of the AtCBP60 family, AtCBP60a and 

Figure 12. In silico analysis of the putative promoter regions of OsCBP60g-4 in M. oryzae resistant
and susceptible rice genotypes. A 1000 bp upstream region of OsCBP60g-4 gene from each genotype,
Rajendra Kasturi (indica rice genotype susceptible to M. oryzae) and IC-346004 (indica rice accession
resistant to M. oryzae), was amplified and sequenced. Multiple sequence alignment of reference
sequences (Nipponbare; AP014967.1) available in NCBI was performed to identify SNPs. The SNPs
associated with TF binding sites are highlighted in different colours and shown in circles. The red
colour stars (*) indicate conserved residues in both sequences.

4. Discussion

In plant immune systems, the immunogenic elicitors (PAMPs, MAMPs) arising from
pathogens are recognised by receptor proteins localised at the plasma membrane, which
then trigger cytosolic signalling events [62]. The increases in cytosolic Ca2+ within minutes
of elicitor recognition is an early event in the signalling cascade that leads to the immune
response [17,63,64]. In Arabidopsis leaves a significant increase in Ca2+ was seen to occur
within two hours of infection with an avirulent bacteria [65]. The spatiotemporal patterns of
Ca2+ changes at the cellular and tissue levels form the Ca2+ signatures, which are decoded
by CBPs. CaM is the most researched Ca2+ sensor which can bind to TFs and regulate their
activities, and it has been linked to SA-mediated response to pathogens [66]. One of the
links between Ca2+/CaM and SA has been through CaM transcription activators (CAMTAs),
which negatively regulate SA biosynthesis [55]. SA has been known since long to play
a critical role in plant immunity [67]. SA levels increase both locally and systemically
in response to pathogen infection, which sets in train the SA signalling-induced gene
expression and immunity.

Another gene family, CBP60, linked with Ca2+/CaM and SA was identified in Ara-
bidopsis. Members of this family, AtSARD1 and AtCBP60g, function as TFs and directly
regulate the expression of isochorismate synthase 1 (ICS1), which encodes a crucial enzyme in
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SA biosynthesis [47]. The expression of AtSARD1 and AtCBP60g is repressed by CAMTAs,
specifically by CAMTA3, leading to inhibition of SA synthesis [55]. Recent reports have also
linked additional members of the AtCBP60 family, AtCBP60a and AtCBP60b with immune
responses in Arabidopsis [25,29], highlighting the importance of the Ca2+/CaM-regulated
CBP60 family in plant immunity.

PAMP induced Ca2+ influx is critical for disease resistance in rice [68], and a large
number of Ca2+ sensors, including CaM and CaM-like (CML) proteins have been identified
in the rice genome [69,70]. However, there is little information on CBPs in rice. A CAMTA
gene, OsCBT, was isolated from a rice cDNA library constructed from fungal elicitor-
treated rice suspension cells [71]. OsCBT was shown to be a negative regulator of defense-
related gene expression [72]. A genome wide analysis of the CAMTA gene family in rice
identified seven CAMTA genes, and, in silico analysis of their expression indicates potential
functions in abiotic and biotic stress responses [73]. Very recently, Wang et al. [74] reported
a CBP60 gene family of 19 members in the rice cultivar Zhonghua 11 (ZH11). In this study
upregulation in response to chitin and pathogen infection of only a subset of genes was
seen in rice seedlings grown from CaCl2-pretreated seeds.

In view of the importance of AtCBP60 genes in plant immunity [25,27,29,75], we car-
ried out a search of CBP60 genes in rice. The 15 OsCBP60s candidates in rice showed an
expanded and diversified immunity clade II but a reduced clade I comprising only three
gene members (OsCBP60bcd1-3) as opposed to five members (AtCBP60b-f ) in Arabidopsis.
The immunity clade in rice maintained the previously identified three subfamilies—CBP60a,
SARD1 and CBP60g [31]. Similar to AtSARD1 [26], OsSARD-like proteins lack a CBD, and
similar to AtCBP60a, which is demonstrated to bind CaM [25], OsCBP60a appears to
contain a CBD at its C-terminus (Figure 4). Unlike AtCBP60g, which contains a CBD
at its N-termius [28], a CBD could not be identified in the highly expanded OsCBP60g
subfamily. This raises the question of whether the OsCBP60g subfamily is evolving for
functions unrelated to immunity or whether the immunity-related functions of this sub-
family are independent of regulation by Ca2+/CaM. Although experimental verification is
required to address the CaM binding ability of OsCBP60g proteins, the high level induc-
tion of OsCBP60g-3, 4, 5, 7 in response to pathogen infection (Figures 6 and 7) strongly
suggests that these proteins are involved in rice defense responses against pathogens.
An extensive phylogenetic analysis of CBP60 members in 247 diverse land plant species
led Zheng et al. [31] to suggest that either CaM-binding is not essential for CBP60g pro-
teins for their immunity-related functions or that a CaM-binding adapter protein works
with these proteins to regulate their immune-related activities. The identification of three
OsSARD-like and eight OsCBP60g proteins in rice (Figure 1) is also in agreement with
the observations made in the study of diverse angiosperm species, which concluded that
the immune regulator subfamilies are evolving rapidly, likely due to pressure from fast
evolving pathogens [31].

In Arabidopsis, AtCBP60g and AtSARD1 were experimentally shown to be located
in the nucleus and to bind to gene promoters [47], and AtCBP60b to be recruited to the
AtSARD1 promoter region [75]. Two sets of analyses made with OsCBP60 proteins in this
study suggest that the rice proteins also function as TFs; (1) multiple sequence alignment
indicated the presence and conservation to varying degrees of a DBD in OsCBP60g and
OsSARD-like proteins, and (2) in silico localization analysis indicated that all OsCBP60s are
localized to the nucleus.

In signalling events that mediate rice innate immunity, the host sensors transduce the
signal through mitogen-activated protein kinase (MAPK) cascades and TFs to activate the
expression of numerous genes, including pathogenesis-related (PR) genes [76–78], which are
a hallmark component of innate immunity system in plants [79,80]. OsPR1a was strongly
induced by X. oryzae with >45-fold induction at 48 h post pathogen infection (Figure 7), but
to a much lower level by the fungal pathogen M. oryzae (Figure 6). This difference in the
expression levels of OsPR1a in response to the two pathogens may lie in distinct temporal
regulation of the gene by different signals. Previously, a study of OsPR1a expression at
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36 h post infection, led the authors to conclude that OsPR1a is a rapid response gene to
blast fungus infection [77]. The same study also reported OsPR1a expression to be induced
by SA but suppressed by JA. We found OsPR1a expression to follow the same trend in
response to SA and JA (Figures 8 and 9), which authenticates the expression patterns we
obtained for OsCBP60 genes.

The consistent upregulation of gene members belonging to the immunity subfamilies,
albeit to different levels, in response to pathogens and SA strongly suggests that the
OsCBP60 family is involved in rice defense responses. For example, OsCBP60a, CBP60g-3,
-4, and OsSARDL-1 were induced by all three signals—fungal and bacterial pathogens and
SA. Based on SA levels and gene expression in Arabidopsis mutants cpb60g and sard1, it was
hypothesised that AtCBP60g plays a more significant role in the early defense response of
the plant, while AtSARD1 functions at a later time [26]. The strong induction of OsCBP60g-
5, -6 and -7 in response to M. oryzae infection and that of OsCBP60g -3 and -7 in response to
X. oryzae at 12 h, as compared to the relatively lower level expression of SARD-like genes,
could be taken to support the above stated hypothesis, but experimental verification will
be required in the future to fully understand the co-operation between the OsCBP60g and
OsSARD-like subfamilies.

SA and JA have both been shown to play roles in rice basal defense against fungal
and bacterial pathogens [81]. However, there is little understanding of the role of SA
biosynthesis in rice. Relative to Arabidopsis, rice accumulates high basal levels of SA, which
do not undergo any significant changes in response to pathogen attack [82]. Nevertheless,
a positive correlation exists between endogenous SA levels and the intensity of PAMP-
triggered immunity, and mild increases in SA levels in rice confer broad range resistance
without yield penalty [83]. Considering that pathogen-induced SA biosynthesis is co-
ordinately regulated by AtCBP60g and AtSARD1 in Arabidopsis [27], how significant
is the role of members of the expanded OsCBP60g and OsSARD-like subfamilies in SA
biosynthesis is a question that will need to be addressed in the future.

The evidence for the growth hormone BR to play critical roles in plant immunity
mechanisms continues to grow [10,84,85], including in rice [86]. BR regulates SA and JA
biosynthesis and interacts with SA and JA signalling pathways [52,87–89]. The collective
contribution and timing of these hormones during plant–pathogen interactions are crucial
to determining plant immunity. The OsCBP60 genes responded to all three phytohormones.
The upregulation of OsCBP60g-4, 3, OsCBP60a and OsSARDL-1 in order of fold-increases
by SA, and the downregulation of the same and other OsCBP60 genes by JA is in line with
the previously reported antagonistic interaction between SA and JA pathways [90]. The
strong induction of OsCBP60g-6 and OsSARDL-2, followed by that of OsCBP60bcd-1, 3
by JA suggests that some members of the genes family may have evolved for conferring
immunity via JA controlled defense signatures [91].

All OsCBP60 genes were found to be upregulated by EBR with highest induction in the
following order: OsCBP60g-3, 4, 7, 1. Since the treatment with EBR was for 15 days, these
expression patterns are likely to result from both primary and secondary responses of BR,
with the latter likely involving SA and JA signalling. The presence of probable BES1- and
BZR1-binding sites in the putative promoter regions of different OsCBP60 genes suggests
that at least some of the genes may be direct targets of the two BR TFs.

In summary, the expanded and diversified CBP60 family in rice appears to be involved
in immune system of this plant species through functioning as TFs whose activities may or
may not be controlled by Ca2+/CaM. The combinatorial regulation of gene family members
may be required to generate diverse expression patterns that may be effective against the
several pathogens of rice.

5. Conclusions

A growing body of evidence suggests that the CBP60 family of proteins plays key
roles in plant immune responses. The present study identified a 15 member CBP60
gene family in rice. The immunity-related clade II in rice comprises of 12 genes (Os-
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CBP60a, OsCBP60g-1/OsSARDL, OsCBP60g-2-8 and OsSARDL1-3) as opposed to three
genes (AtCBP60a, AtCBP60g and AtSARD1) in Arabidopsis, while the number of clade
I genes in rice were reduced to three (OsCBP60bcd-1-3) from the five genes identified in
Arabidopsis (AtCBP60b-f ). In contrast to AtCBP60g, which has a CBD at its N-terminus, a
CBD could not be identified in the OsCBP60g subfamily proteins. Although CaM-binding
ability of OsCBP60g proteins needs experimental verification, it is possible that this group
of proteins have evolved to function independently of Ca2+/CaM regulation. The up-
regulation of several members of the OsCBP60g subfamily, as well as of OsCBP60a and
OsSARD-like in response to bacterial and fungal pathogens and SA and BR strongly sug-
gests that OsCBP60 genes are involved in immune-related activities in rice. The significant
expansion of immunity clade II, specifically of the OsCBP60g subfamily, suggests that the
OsCBP60 gene family may be evolving for confering broad spectrum immunity in rice.
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Arabidopsis CBP60 genes were retrieved from Phytozome and TAIR, respectively. The CAMATA,
TGACG and W-box binding sequences were identified using Plant PAN 3 software. The BES1 and
BZR1 TFBSs were identified manually.
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