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Abstract: Precision spraying can significantly reduce herbicide input for turf weed management. A
major challenge for autonomous precision herbicide spraying is to accurately and reliably detect
weeds growing in turf. Deep convolutional neural networks (DCNNs), an important artificial
intelligent tool, demonstrated extraordinary capability to learn complex features from images. The
feasibility of using DCNNs, including various image classification or object detection neural networks,
has been investigated to detect weeds growing in turf. Due to the high level of performance of weed
detection, DCNNs are suitable for the ground-based detection and discrimination of weeds growing
in turf. However, reliable weed detection may be subject to the influence of weeds (e.g., biotypes,
species, densities, and growth stages) and turf factors (e.g., turf quality, mowing height, and dormancy
vs. non-dormancy). The present review article summarizes the previous research findings using
DCNNs as the machine vision decision system of smart sprayers for precision herbicide spraying,
with the aim of providing insights into future research.

Keywords: computer vision; deep learning; turf; neural networks; precision herbicide application;
machine vision; weed detection

1. Introduction

Turf is the predominant vegetation cover in urban landscapes, golf courses, residential
lawns, and sports fields. In the United States, it was estimated that the total turf area covers
163,812 km2 with a lower and upper 95% confidence interval bounds of ±35,850 km2 [1].
According to the National Golf Foundation, there are over 15,000 golf courses, with an
average of 50 to 73 ha per golf course, in the United States [2]. Turf offers many benefits,
such as providing evaporative cooling in an urban area, remediating contaminated soil,
absorbing atmospheric pollutants, and increasing the aesthetic value of residential and
non-residential areas [3]. Nevertheless, weeds are a challenging issue for turf management.
Weeds compete with turf for sunlight, nutrients, and water resources and may significantly
reduce turf aesthetics and functionalities [4–6].

Turf managers predominately rely on synthetic herbicides for controlling weeds [7–9].
Unfortunately, for controlling certain weeds growing in turf, the present control programs
relying on synthetic herbicides are not cost-efficient [6,10]. For example, repeat applications
of sulfonylurea herbicides thiencarbazone + foramsulfuron + halosulfuron in combination
with amicarbazone at 0.25 kg ai ha−1 adequately controlled tropical signalgrass (Urochloa
distachya (L.) T.Q. Nguyen] in bermudagrass (Cynodon dactylon (L.) Pers.) [11]. However,
repeated application of this herbicide program is expensive since a single application of
amicarbazone at 0.25 kg ai ha−1 would cost approximately 1500 U.S. dollars.

Moreover, some synthetic herbicides used in turf are suspected of polluting environ-
ments [12]. Possible adverse impacts include, but are not limited to, the damaging effect
on non-target organisms, water pollution, and harmful impact on humans [13–15]. In
the United States, it was reported that nearly 80% of stream samples in urban/suburban
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contained at least five pesticides [16]. Atrazine is one of the most commonly used herbi-
cides in warm-season turfgrasses [17]; however, it is frequently detected in underground
water [16,18]. Monosodium methylarsenate (MSMA) is a highly effective broad-spectrum
herbicide against a number of difficult-to-control weed species, including dallisgrass (Pas-
palum dilatatum Poir.), but pollutes underground water [19]. Following application, MSMA
is converted to a more toxic form of inorganic arsenic that may contaminate water through
soil runoff [20]. In the United States, only spot-treatment of MSMA is permitted to be
sprayed on established golf courses [21].

Deep learning, a subset of machine learning technology, has emerged as successful
applications in various scientific domains, including computer vision [22–24]. Deep con-
volutional neural networks (DCNNs) demonstrated extraordinary capability to extract
complex features from images [25] and are utilized as a tool to detect weeds and perform
precision herbicide spraying [26–31]. For example, See & Spray®, an autonomous smart
sprayer utilizing DCNNs for weed detection, has been developed for precision herbicide
application in agronomic crops [32]. Detection of weeds growing in turf needs to consider
weeds (e.g., weed growth stage, weed species, and biotypes) and turf factors (e.g., turf
quality, mowing height, dormant vs. non-dormant stages). DCNNs recognize weeds based
on plant morphological features, leaf texture, and color [33–36]. Therefore, it is logical to
assume that the detection of weeds growing in dormant turfgrass is easier than in actively
growing turfgrass; the detection of large-leaved weeds is easier than small-leaved weeds;
and the detection of broadleaf weeds is easier than grasses or grass-like weeds growing in
turfgrass (Figure 1) [37,38].
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In recent years, researchers reported that DCNNs could potentially serve as a tool for
detecting weeds growing in turf [37–40]. They suggested that the DCNNs-based machine
vision sub-system of smart sprayers might serve as an effective tool to reduce herbicide
inputs and weed control costs for turf weed management. This review paper summarizes
previous research findings in the past 10 years on deep learning-based weed detection
in turf with the objective of offering insights for further research. The studies cited in
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this review were searched and collected in various databases, including Web of Science,
ScienceDirect, Scopus, and Google Scholar.

2. Detection of Weeds Growing in Turf
2.1. Image Classification versus Object Detection

As shown in Figure 2, weeds grow either scatteringly or in relatively large patches in
turf. The preparation of training datasets for object detection neural networks involves
drawing bounding boxes on the training images. For this reason, object detectors are used
to detect scattered weeds growing in turf [37,40,41]. However, to detect inconspicuous
weeds, such as common lespedeza (Kummerowia striata L.) and spotted spurge (Euphorbia
maculata L.), labeling the ground-truth locations within images for individual weeds is
rather painstaking and laborious. Moreover, when detecting weeds in relatively large
patches, a large number of weeds per image need to be labeled prior to training the
object detectors.

Agronomy 2022, 12, x FOR PEER REVIEW 3 of 11 
 

 

turf with the objective of offering insights for further research. The studies cited in this 
review were searched and collected in various databases, including Web of Science, Sci-
enceDirect, Scopus, and Google Scholar. 

2. Detection of Weeds Growing in Turf 
2.1. Image Classification versus Object Detection 

As shown in Figure 2, weeds grow either scatteringly or in relatively large patches in 
turf. The preparation of training datasets for object detection neural networks involves 
drawing bounding boxes on the training images. For this reason, object detectors are used 
to detect scattered weeds growing in turf [37,40,41]. However, to detect inconspicuous 
weeds, such as common lespedeza (Kummerowia striata L.) and spotted spurge (Euphorbia 
maculata L.), labeling the ground-truth locations within images for individual weeds is 
rather painstaking and laborious. Moreover, when detecting weeds in relatively large 
patches, a large number of weeds per image need to be labeled prior to training the object 
detectors. 

 
Figure 2. Dandelion (Taraxacum officinale F.H. Wigg.) scatteringly grows in perennial ryegrass (Lo-
lium perenne L.) turf (A). Smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl) grows in a relatively 
large patch in bermudagrass turf (B). 

Compared to object detectors, the training of image classification neural networks 
takes less time because it does not need to draw the bounding boxes. The grid cells (sub-
images) could be created on the input images. Subsequently, the developed image classi-
fication neural networks could be used to detect if the grid cells contain weeds [42]. The 
image classification neural networks could be employed to detect either scattered or rela-
tively large-patched weeds in turf. When using the image classification neural networks 
as the machine vision decision system, the spray outputs of the smart sprayers need to be 
the same or slightly larger than the size of the sub-images in order to fully cover the sub-
images containing the target weeds [43]. 

2.2. Detection of Weeds in Dormant Turfgrass 
Yu et al. [37] evaluated DetectNet, GoogLeNet, and VGGNet for detecting annual 

bluegrass (Poa annua L.) or annual bluegrass growing in proximity to various broadleaf 
weeds, such as common chickweed (Stellaria media (L.) Vill.), dandelion, and white clover 
(Trifolium repens L.). The authors reported that DetectNet was the most effective, while 
GoogLeNet was the least effective among the neural networks evaluated for detecting 
annual bluegrass in dormant bermudagrass. DetectNet achieved high precision and recall 
values with the highest F1 score (≥0.99) at detecting annual bluegrass growing in dormant 
bermudagrass. In another study, Yu et al. [38] reported that VGGNet achieved high F1 
scores with high recall values (1.00) for detecting various broadleaf weeds, including com-

Figure 2. Dandelion (Taraxacum officinale F.H. Wigg.) scatteringly grows in perennial ryegrass (Lolium
perenne L.) turf (A). Smooth crabgrass (Digitaria ischaemum (Schreb.) Muhl) grows in a relatively large
patch in bermudagrass turf (B).

Compared to object detectors, the training of image classification neural networks
takes less time because it does not need to draw the bounding boxes. The grid cells
(sub-images) could be created on the input images. Subsequently, the developed image
classification neural networks could be used to detect if the grid cells contain weeds [42].
The image classification neural networks could be employed to detect either scattered or
relatively large-patched weeds in turf. When using the image classification neural networks
as the machine vision decision system, the spray outputs of the smart sprayers need to
be the same or slightly larger than the size of the sub-images in order to fully cover the
sub-images containing the target weeds [43].

2.2. Detection of Weeds in Dormant Turfgrass

Yu et al. [37] evaluated DetectNet, GoogLeNet, and VGGNet for detecting annual
bluegrass (Poa annua L.) or annual bluegrass growing in proximity to various broadleaf
weeds, such as common chickweed (Stellaria media (L.) Vill.), dandelion, and white clover
(Trifolium repens L.). The authors reported that DetectNet was the most effective, while
GoogLeNet was the least effective among the neural networks evaluated for detecting
annual bluegrass in dormant bermudagrass. DetectNet achieved high precision and recall
values with the highest F1 score (≥0.99) at detecting annual bluegrass growing in dormant
bermudagrass. In another study, Yu et al. [38] reported that VGGNet achieved high F1
scores with high recall values (1.00) for detecting various broadleaf weeds, including
common chickweed [Stellaria media (L.) Vill.], dandelion, henbit (Lamium amplexicaule L.),
purple deadnettle (Lamium purpureum L.), and white clover (Trifolium repens L.) in dormant
bermudagrass turf.
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2.3. Detection of Broadleaf Weeds in Actively Growing Turfgrass

Yu et al. [44] compared DetectNet, GoogLeNet, and VGGNet to detect dandelion,
ground ivy (Glechoma hederacea L.), and spotted spurge growing in actively growing peren-
nial ryegrass and reported that VGGNet was more effective than AlexNet and GoogLeNet
in detecting these weeds. When the neural networks were trained with 15,486 negative
(images without weeds) and 17,600 positive images (6500 images contain spotted spurge,
4600 images contain ground ivy, and 6500 images contain dandelion), VGGNet achieved
high F1 scores (≥0.9345) with high recall values (≥0.9952) to detect these weeds; the F1
scores of AlexNet and GoogLeNet did not exceed 0.9103, while DetectNet was highly
effective and achieved high F1 scores (≥0.9843) to detect dandelion growing in peren-
nial ryegrass.

2.4. Detection of Grass or Grass-Like Weeds in Actively Growing Turfgrasss

It was assumed that machine vision-based detection of grass or grass-like weeds in
turfgrass is especially challenging due to the similarity in plant morphology [37,38,45]. Yu
et al. [45] evaluated the use of image classification neural networks, including AlexNet,
GoogLeNet, and VGGNet, for the detection of smooth crabgrass (Digitaria ischaemum L.),
dallisgrass, doveweed [Murdannia nudiflora (L.) Brenan], and tropical signalgrass [Urochloa
distachya (L.) T.Q. Nguyen] growing in bermudagrass with erratic turf surface conditions
(i.e., varying mowing heights and surface qualities). The authors found that VGGNet
achieved excellent performances for detecting these weed species with high F1 scores
(≥0.93) and recall values (1.00). Although AlexNet and GoogLeNet achieved high recall,
they exhibited low precision [45]. The low precision indicates that the neural networks
are more likely to misclassify turfgrass as weeds, leading to herbicide applications in turf
where weeds do not occur.

2.5. Weed Localization

Object detectors, such as Faster R-CNN [46], YOLO (You Only Look Once) [47], and
SSD (Single Shot Detector) [48], generate bounding box outputs but do not determine
the exact location of weeds on the images. Mask R-CNN, a segmentation network, can
address this issue because it can achieve finer image segmentation for object detection [49].
Nevertheless, this neural network requires pixel-wise precise ground truth labeling, which
is time-consuming. Xie et al. [39] developed an algorithm to generate synthetic data and
constructed a nutsedge (Cyperus spp.) skeleton-based probabilistic map as the neural
network input to reduce the dependence on pixel-wise precise labeling. This approach
effectively overcame the effect of insufficient training images and reduced the labeling
time by 95%, and meanwhile, it outperformed the original Mask R-CNN approach for
weed detection.

Despite all the successes described in previous paragraphs, detecting weeds growing
in turf with image classification neural networks faces challenges [37,50]. While previous
researchers reported that image classification neural networks could detect and discriminate
the sub-images containing weeds, they did not attempt to identify the location of weeds
on the images [37,38,50]. When using the image classification neural networks for weed
detection, the exact location of the sub-images containing weeds on the input images
needs to be determined to realize precision herbicide application with the smart sprayers.
To address this issue, Yu and Jin [42] developed a software that can integrate image
classification neural networks and OpenCV-Python to create the grid cells on the input
images. This software can crop the testing image (1920 × 1080 pixels) into a total of 40 equal
size grid cells. The software marks the grid cells as “spray” if the inference of the developed
neural networks indicates that they contained weeds and marks as “non-spray” if the
inference indicates that they did not contain weeds. The x, y coordinates of the grid cells
containing weeds are located with the developed software when used in conjunction with
the image classification neural networks. Using this software, Jin et al. [42] found that
EfficientNetV2 was reliably inferred if the grid cells contained the target weeds with high
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F1 scores (≥0.980) and noted that DenseNet, EfficientNetV2, ResNet, RegNet, and VGGNet
reliably detected and discriminated the grid cells contained in dandelion, dallisgrass,
purple nutsedge, and white clover. After the grid cells are located using the developed
software in the machine vision sub-system of the smart sprayer, the nozzles over the grid
cells containing weeds are turned on to realize precision herbicide spraying.

2.6. Detection of Weeds Growing in Various Turfgrass Surface Conditions

Image classification and object detection neural networks can detect weeds growing
in various turf surface conditions (Table 1) [37,50]. When the neural networks were trained
with images taken at athletic fields, institutional lawns, and various golf course manage-
ment zones (i.e., fairways, tees, putting greens, and rough), VGGNet demonstrated high F1
score values (≥0.95) and effectively detected dollar weeds (Hydrocotyle spp.), old world
diamond-flower (Hedyotis cormybosa L. Lam.), and Florida pusley (Richardia scabra L.) in
actively growing bermudagrass turf [37].

Table 1. A summary of published reports on the use of DCNNs for detecting weeds growing in turf.

Turfgrass
Species

Turfgrass
Conditions Weeds Deep Learning

Models Brief Summary Reference

Bermudagrass Dormant

Annual bluegrass or
annual bluegrass

grows in proximity to
various broadleaf

weeds

DetectNet,
GoogLeNet, and

VGGNet

DetectNet exhibited high F1 scores
(≥0.99) to detect annual bluegrass,

broadleaf weeds, or annual
bluegrass occulted with broadleaf
weeds. VGGNet reliably detected
various broadleaf weeds (≥0.96).

Yu et al. [37,38]

Bermudagrass Actively growing
Dollarweed, old

world
diamond-flower, and

Florida pusley

DetectNet,
GoogLeNet, and

VGGNet

VGGNet outperformed GoogLeNet
and achieved high F1 scores (≥0.95)
with high recall (0.99) to detect all

three weed species growing in
bermudagrass turf.

Yu et al. [37]

Bermudagrass Actively growing

Crabgrass species,
doveweed,

dallisgrass, and
tropical

Signalgrass

AlexNet, GoogLeNet,
and VGGNet

VGGNet achieved high F1 scores
(1.00) to detect all four weed species

regardless of weed densities.
Yu et al. [45]

Bermudagrass Actively growing
A mix of yellow and

purple nutsedge
weeds

Mask R-CNN

Mask R-CNN trained with synthetic
data (generated with a nutsedge

skeleton-based probabilistic map)
and raw data reduced labeling time

by 95% compared to the Mask
R-CNN trained with the raw data.

Xie et al. [39]

Bermudagrass Actively growing

Common dandelion,
dallisgrass, purple

nutsedge, and white
clover

DenseNet,
EfficientNetV2,

ResNet, RegNet, and
VGGNet

A custom software was
built to generate grid cell maps on

the input images. When used in
conjunction with the developed

software, the image classification
neural networks effectively detected

and discriminated the grid cells
containing weeds and turfgrass

only.

Jin et al. [42]

Bermudagrass Actively growing

Crabgrass,
dallisgrass,
dollarweed,

goosegrass, old
world

diamond-flower,
tropical signalgrass,

Virginia buttonweed,
and

white clover
growing in actively

growing
bermudagrass turf

GoogLeNet,
MobileNet-v3,

ShuffleNet-v2, and
VGGNet

The research evaluated the
feasibility of using image

classification neural networks for
detecting and discriminating weed

species according to their
susceptibilities to

ACCase-inhibiting and synthetic
auxin herbicides. ShuffleNet-v2

performed best in terms of overall
accuracy and image processing
speed compared to GoogLeNet,

MobileNet-v3, and VGGNet.

Jin et al. [43]

Bermudagrass Actively growing Dandelion
YOLOv4,

YOLOv4-tiny, and
YOLOv5

YOLOv5 achieved 97%
precision, 91% recall, and 41.2

frames per second to detect
dandelion with

Deepstrem on NVIDIA
Jetson Nano 4GB.

Medrano [40]
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Table 1. Cont.

Turfgrass
Species

Turfgrass
Conditions Weeds Deep Learning

Models Brief Summary Reference

Bahiagrass
Drought-

stressed or
actively growing

Florida pusley

YOLO-v3, Faster
R-CNN, VFNet,

AlexNet, GoogLeNet,
and VGGNet

The object detection neural
networks, including YOLOv3, faster

region-based convolutional
network, and variable filter net did
not effectively detect Florida pusley

growing in drought-stressed or
unstressed bahiagrass, while the
developed image classification

neural networks AlexNet,
GoogLeNet, and VGGNet

effectively detected Florida pusley
growing in drought-stressed or

unstressed bahiagrass.

Zhuang et al.
[50]

Perennial
ryegrass Actively growing

Dandelion, ground
ivy, and spotted

spurge

AlexNet, DetectNet,
GoogLeNet, and

VGGNet

DetectNet exhibited high F1 scores
(≥0.98) to detect dandelion.

VGGNet achieved high F1 scores
(≥0.92) with high recall (≥0.99) to

detect all three weed species.

Yu et al. [44]

Abiotic/biotic stresses or varying management practices (e.g., irrigation, mowing, and
fertilization) can cause erratic turf conditions with different surface qualities. Soil water
deficiency could alter plant leaf color and morphological features and thus affecting neural
networks for detecting weeds. Certain weed species, such as Florida pusley (Richardia
scabra L.), are highly drought-tolerant and can thrive in drought-impacted bahiagrass.
Zhuang et al. [50] investigated the feasibility of using object detection and image classifi-
cation neural networks for the detection of Florida pusley (Richardia scabra L.) growing in
drought-stressed or unstressed bahiagrass (Paspalum natatum Flugge) and found that the
evaluated object detectors, including YOLOv3, Faster R-CNN, and VFNet, did not reliably
detect Florida pusley growing in drought-stressed or unstressed bahiagrass. In contrast,
the evaluated image classification neural networks, including AlexNet, GoogLeNet, and
VGGNet, achieved high F1 scores (≥0.97) to detect Florida pusely growing in varying
drought-stressed bahiagrass turf.

2.7. Detection of Weeds at Various Densities and Growth Stages

Weed density significantly impacted the performances of DCNNs for weed detec-
tion [45]. AlexNet (for detection of crabgrass species, dallisgrass, doveweed, and tropical
signalgrass) and GoogLeNet (for detection of smooth crabgrass) exhibited higher accuracy
when detecting high weed densities (weeds ≥80% image area) compared to low weed
densities (weeds ≤20% image area); however, VGGNet reliably detected all these weed
species, regardless of weed densities [45]. In perennial ryegrass turf, Yu [44] reported that
DetectNet achieved high F1 scores to detect dandelion at varying densities and growth
stages. In the case of high dandelion density, DetectNet-generated bounding boxes failed
to cover every leaf of the weeds, reducing the recall values. However, it was hypothesized
that this is unlikely to be an issue in field applications since most weeds per image were
detected, and a few undetected weeds likely fall into the spray zone if the smart sprayers
utilize flat fan nozzles for herbicide application.

2.8. Detection of Weeds Based on Herbicide Weed Control Spectrum

POST herbicides have their specific weed control spectrum. For instance, glyphosate
and glufosinate are used to nonselectively control all winter weeds in dormant bermuda-
grass and zoysiagrass (Zoysia spp.) turf [6]. However, most POST herbicides used in turf
are selective; for example, synthetic auxin herbicides (e.g., 2,4-D, dicamba, and MCPP)
only control broadleaf weeds [6,51]; Acetyl-CoA carboxylase inhibiting herbicides (e.g.,
clethodim, sethoxydim, and fenoxaprop-P-ethyl) only control grass weeds [10,52]; and
sulfentrazone controls broadleaves, certain grass weeds (e.g., goosegrass), and sedges [45].
Therefore, instead of indiscriminately detecting all types of weed species growing in turf,
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the machine vision decision system of the smart sprayer detecting herbicides’ weed control
spectrum can efficiently save herbicides. Further investigations are needed to evaluate the
feasibility of using DCNNs to detect herbicides’ weed control spectrum.

In a previous investigation, Jin et al. [43] trained GoogLeNet, VGGNet, MobileNet-v3,
and ShuffleNet-v2 to discriminate the vegetation into three classes according to the herbi-
cide weed control spectrum, including grass weeds (susceptible to Acetyl-CoA carboxylase-
inhibiting herbicides), broadleaf weeds (susceptible to synthetic auxin herbicides), and turf-
grass only (no herbicide spraying). The authors documented that VGGNet and ShuffleNet-
v2 achieved a high overall accuracy of ≥0.999 to detect and discriminate the vegetation,
including crabgrass, dallisgrass, dollarweed, goosegrass, old world diamond-flower, tropi-
cal signalgrass, Virginia buttonweed, and white clover growing in turf into the categories
based on their susceptibility to ACCase-inhibiting herbicides and synthetic auxin herbi-
cides. ShuffleNet-v2 was noticeably faster than GoogLeNet and VGGNet, and thus the
authors concluded that ShuffleNet-v2 was the most efficient and reliable neural network
among the neural networks evaluated.

3. Future Research Directions

A variety of weed species with comparable visual characteristics may occur in the
turfgrass. Detection and classification of weeds in turf are difficult as weeds and turfgrass
often exhibit similar colors, morphologies, and textures. Thus, using these characteristics
alone is insufficient to distinguish between weeds and turfgrass. Moreover, weed detection
can be more challenging under certain situations, such as the color and texture varying
due to the variations of illumination and lighting conditions, or weeds are overlapped or
partially occluded by turfgrass leaves. Previous findings have demonstrated that deep
learning-based methods outperformed conventional approaches, including image pro-
cessing, support vector machine (SVM), K Nearest Neighbor (KNN), and random forest
(RF) [53]. Deep learning models have extraordinary feature learning and representing
abilities, making them capable of addressing fine-grained detection and classification prob-
lems [54]. The cited studies in this paper offer a feasible basis and reference for applying
deep learning methods in detecting and discriminating weeds while growing on turf. Deep
learning datasets are essential for training the DCNNs to learn all aspects of complex
natural environments. The training datasets are expected to comprise diverse images, such
as weeds and turfgrass acquired at different growth stages, position, orientation, and vari-
ous illumination conditions, to improve the adaptability and robustness of the developed
DCNNs. It is obvious that higher accuracy could be achieved with larger training datasets.
The following research directions should be pursued in future in order to realize precision
herbicide application in turfgrass landscapes.

First, the training image size was reported to considerably affect the effectiveness
of DCNNs for weed detection and discrimination [30,55]. For example, Yang et al. in-
vestigated the impact of training image sizes on deep convolutional neural networks for
weed detection in alfalfa (Medicago sativa L.) and found that increasing training image
sizes from 200 × 200 pixels to 800 × 800 pixels reduced the detection accuracy of all deep
learning models. The DCNNs trained with an image size of 200 × 200 pixels resulted in
the best detection accuracy [55]. In another study, Zhuang et al. trained the DCNNs with
various sizes of images, including 200 × 200, 300 × 300, and 400 × 400 pixels, for detecting
weeds in wheat (Triticum aestivum L.). The authors reported that AlexNet and VGGNet
achieved increased classification accuracy when they were trained with 200 × 200 pixels
than 300 × 300 or 400 × 400 pixels sizes. However, conversely, results were observed for
DenseNet and ResNet. Nevertheless, when the DCNNs were trained with larger datasets,
no noticeable difference was observed between the training image sizes. Therefore, the
authors conclude that increasing the amount of training images generally boosts the perfor-
mance of DCNNs while diminishing the impacts of training image sizes [30]. The impacts
of the training image quantities and the training image sizes on the performance of DCNNs
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for weed detection in turf shall be the first future research direction to effectively employ
DCNNs as the machine vision sub-system of smart sprayers.

Second, because of phenotypic plasticity, significant morphological variations exist
between the weed ecotypes from distinct turfgrass management regimes or geographical
areas [4,56,57]. For example, morphologically different goosegrass (Eleusine indica L.)
ecotypes are reported in Malaysia [57] and Florida in the United States [56]. In Florida, the
dwarf ecotypes of goosegrass have an average internode length of 0.2 cm, 1 raceme per
plant, and 6 cm plant height, while the wild ecotypes have an average internode length
of 7 cm, 7 racemes per plant, and 36 cm plant height [56]. Therefore, the complexity of
feature extraction would increase if the training and testing datasets contained various
broadleaf and grass weed species and ecotypes, which might reduce the performance of
weed detection. We hypothesize that the training images covering more diverse weed
ecotypes across varying geographic regions, turf management zones, and traffic stresses
will increase the datasets’ robustness for improving the performance of weed detection,
which warrants further investigation.

Third, weed detection based on the herbicide weed control spectrum allows the
smart sprayer to apply herbicides only onto the susceptible weed species, thereby saving
more herbicides compared to an approach that indiscriminately detects weed species.
Jin et al. [43] confirmed that the image classification neural networks could effectively
detect and discriminate weeds growing in bermudagrass turf susceptible to Acetyl-CoA
carboxylase-inhibitors and synthetic auxin herbicides; but the authors did not attempt
to develop neural networks for detecting and discriminating more categories of weed
species based on their susceptibilities to herbicides. Here, we suggest that additional
research is needed to examine the feasibility of developing neural networks for detecting
and discriminating three categories of weed species, including broadleaves, grass weeds,
and sedges.

Fourth, weeds are often present in relatively large patches in turfgrass. For this reason,
it is likely that creating grid cells on the images and identifying if the grid cells contain
weeds is a universal method for detecting weeds growing in turf compared to object
detectors. In previous research, Yu and Jin [42] developed a software to create grid cells
on the input images containing dandelion, dallisgrass, purple nutsedge, or white clover
growing in bermudagrass turf and reliably identify if the grid cells exclusively contain
weeds or turfgrass. Further research is needed to evaluate the feasibility of using this
method to detect a more diverse weed species growing on turf.

Fifth, deep neural networks need to be trained with large constructed and labeled
datasets; however, labeling and processing large datasets for training neural networks are
time-consuming, labor-intensive, and often require professional knowledge to perform
the task. In previous works, researchers have manually labeled and processed very large
training datasets for developing neural networks to detect various broadleaf and grassy
weeds growing in turf. For example, Yu et al. [37] developed an image classification neural
network using a total of 36,000 images, including 18,000 true positive (images containing
weeds) and 18,000 true negative (images containing turfgrass only). In another work, a
total of 39,000 images, including 19,500 true positive and 19,500 true negative images were
used to develop a neural network to detect common dandelion, ground ivy, and spotted
spurge growing in perennial ryegrass [44]. A potential solution is to use a semi-supervised
learning algorithm as it could keep the neural network consistent and turn with labeling
during iterative procedure [58]. Semi-supervised learning algorithms could alternatively
use a small labeled dataset and a larger unlabeled dataset to simultaneously learn and to
enhance feature representation and prediction; and consequently, a relatively small labeled
dataset could be used for developing an effective neural network [58]. We hypothesize
that using a semi-supervised learning algorithm could significantly reduce the size of the
training dataset while achieving the same performance of weed detection compared to
supervised learning; however, this assumption needs to be further verified.
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Last but not least, previous studies demonstrated the effectiveness of using DCNNs
for weed detection with CUDA-enable graphics processing units (GPUs). However, weed
detection with DCNNs, utilizing an edge device that is not CUDA-capable, would have
reduced the performance of weed detection. Recently, Medrano [40] evaluated several
object detectors, including YOLOv4 [59], YOLOv4-tiny [60], and YOLOv5 [61], on Jetson
Nano 4GB as the central computer in a mobile robotic platform for the real-time detection
of dandelion in bermudagrass in the hopes of achieving real-time detection speed. It was
found that using Jetson Nano 4GB, YOLOv5 achieved excellent accuracy of weed detection
in a real-time manner. An additional study is needed to explore image classification neural
networks with more advanced or newer edge devices to detect weeds growing in turf
in real-time.
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