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Abstract: Aquaculture wastewaters have been used in rice irrigation directly or indirectly. Antibiotics
in aquaculture wastewater entering the rice fields with irrigation will affect the soil physicochemical
properties, microbial properties, and nitrogen conversion. A pot experiment irrigated with simu-
lated aquaculture wastewater was performed to study the effects of sulfamethazine in aquaculture
wastewater on nitrogen concentration and conversion-related microorganisms in rice fields with
different irrigation modes. Sulfamethazine (500 ng/L, 1500 ng/L, and 3000 ng/L) decreased the
NH4

+ concentration at the late tillering stage and NO3
− concentration at the late tillering and jointing–

booting stages (p < 0.05) but increased the NH4
+ concentration at the late tillering stage (p < 0.05).

Sulfamethazine (3000 ng/L) promoted the lowest nitrogen conversion gene (amoA, nirS, and nirK)
abundances and the most special community structure of nitrogen conversion microorganism un-
der mild alternate wetting and drying (AWD). Furthermore, Nitrosospira_sp._KAN8, belonging to
ammonia-oxidizing bacteria (AOB), was sensitive to sulfamethazine. Flora with the same nitrogen
conversion genes exhibited different variations under the same treatment. The results show that
antibiotic and mild AWD caused more serious adverse effects to soil nitrogen conversion and nitrogen
conversion microorganisms, which will increase the environmental risks of sulfamethazine. It can
provide a basis for the scientific and rational use of aquaculture water to irrigate rice fields.

Keywords: alternate wetting and drying irrigation; antibiotic; Illumina sequencing; nitrogen conver-
sion microorganism; PCR

1. Introduction

The global overuse of ground and surface water resources has caused serious environ-
mental problems [1]. Due to greenhouse gas emissions, droughts of the future are likely
to be more frequent, severe, and longer-lasting than they have been in recent decades [2].
Water scarcity is increasingly becoming a key constraint on global development. To obtain
more available water resources, the development and utilization of unconventional water
resources such as wastewater has attracted more and more attention from various coun-
tries [3,4]. Agriculture consumes the most water resources, agricultural water consumption
accounts for nearly 60% of the total water consumption in China, and irrigation consumes
90% of the total agricultural water consumption. In the meantime, unconventional water
resources such as aquaculture wastewater contain the nitrogen and phosphorus required for
crops. Therefore, the usage of unconventional water resources for irrigation has important
prospects and significance in coping with water shortages [5].

Aquaculture wastewater, one of the common unconventional water resources, is rich
in nutrients such as nitrogen and phosphorus owing to excreta and unused feed [6]. Its
application to irrigation is an effective means to achieve “solving aquaculture pollution
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emissions and alleviating irrigation water shortages” [7,8]. However, some new pollutants,
such as antifungal compounds, hormones, and antibiotic, are produced in aquaculture
production [9–11]. These pollutants will be a potential contributor to farmland pollution.
Residual antibiotics are one of the most typical pollutants. They have been widely detected
in natural water bodies, which is mainly sulfamethazine [12–15]. The concentration of
antibiotics in water is often less than 3200 ng/L [12,16].

Antibiotics are used in animal husbandry as antimicrobial growth promoters to control
infectious diseases and accelerate animal growth. Antibiotics used in animals are not fully
absorbed. They are excreted and enter the farmland with fertilization or irrigation [17,18].
Antibiotics are widespread in the water and soil [19,20], and it has been found that the
concentration of sulfonamide antibiotics in agricultural soils is 0–27.93 µg/kg [21], and
the average concentration is 6.92 µg/kg [22]. A study along the Mekong Delta in Vietnam
found that the highest sulfamethazine concentration was 86.1 µg/kg [23] in rice field soils.
Previous studies have shown that antibiotics in soils can not only lead to changes in the
community structure of soil microbes [24,25] but also have an impact on the nitrogen
conversion process [26–29].

Aquaculture ponds and rice fields are staggered in the plain lake areas of South China,
and aquaculture wastewater has been used directly or indirectly for irrigation [30]. At
the same time, rice has different irrigation methods, such as flood irrigation and alternate
wetting and drying (AWD) [31]. AWD reduces water consumption and changes the long-
term anaerobic environment of flood-irrigated rice fields. It leads to changes in the soil
physicochemical characteristics of rice fields [32] and will cause differences in soil antibiotic
residues. These changes will lead to differences in soil microbes and nitrogen conversion,
whereas very few studies have examined this.

The objective of this study was to reveal the effects of antibiotics on soil nitrogen and
nitrogen conversion microorganisms in paddy fields under different intensities of AWD
to study the adverse effects of antibiotics on rice fields in aquaculture wastewater and
ways to reduce their adverse effects. We hypothesized that AWD would promote antibiotic
degradation and thus mitigate the effects on soil nitrogen conversion in paddy fields. This
study can provide a basis for the scientific and rational use of aquaculture water to irrigate
rice fields.

2. Materials and Methods
2.1. Experimental Design

The experiment was performed in the water-saving park of Hohai University, Jiangn-
ing District, Nanjing. The soil was taken from a paddy field in Nanjing, and it is loam. It
was mixed well before experiment and passed through a coarse sieve (5 mm). The rice
cultivar is Nanjing 46 (Oryza sativa L.), and the whole growth period is 167 days. The rice
was transplanted on July 10, 2019 and harvested on 8 October 2019. A pot experiment
was used. The soil pots used in the experiment were 60 cm high and 30 cm in diameter,
22 kg soil was filled inside each pot in layers, and three plants were planted in each pot.
Two factors, antibiotic concentrations (A) and irrigation methods (W), were set: (1) The
antibiotic concentration is the concentration of sulfamethazine in irrigation water, and
4 gradients were set, including A0 (0 ng·L−1), A1 (500 ng·L−1), A2 (1500 ng·L−1), and A3
(3000 ng·L−1). (2) Three irrigation methods were set, including flood irrigation (W1, except
for the midseason drainage and preharvest drain, the shallow water layer was maintained
during the experiment period), mild AWD (W2, each irrigation brought field water depth
to 20 mm, and the next irrigation flooding is 3 days later than the disappearance of the
field water), and severe AWD (W3, each irrigation brought field water depth to 20 mm,
and the next irrigation flooding is 5 days later than the disappearance of the field water).
There were 12 treatments, with three replicates every treatment (Table 1). The irrigation
water was artificial simulated aquaculture wastewater, and the formula was: C6H12O6:
33.3 mg/l, NH4Cl: 68.76 mg/L, NaHCO3: 71.4 mg/L, NaHPO4: 18.86 mg/L, and mix
trace elements 1 ml/L. Mixed trace elements: MnSO4·H2O: 33.8 mg/L, H3BO3: 49.4 mg/L,
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ZnSO4·7H2O: 43.1 mg/L, FeSO4·7H2O: 97.3 mg/L, and CuSO4·5H2O: 25.0 mg/L [33].
During the experiment, the precipitation was isolated.

Table 1. Processing numbers.

Treatments Antibiotic Concentrations (A) Irrigation Methods (W)

A0W1 A0 W1
A0W2 A0 W2
A0W3 A0 W3
A1W1 A1 W1
A1W2 A1 W2
A1W3 A1 W3
A2W1 A2 W1
A2W2 A2 W2
A2W3 A2 W3
A3W1 A3 W1
A3W2 A3 W2
A3W3 A3 W3

The base-fertilizer was 750 kg/hm2 of compound fertilizer according to the nitro-
gen application level in the local area, the nutrients of the compound fertilizer were
N:P2O5:K2O = 15:15:15, and the topdressing was 300 kg/hm2 of urea. Topdressing was ap-
plied about 60 days after transplanting (at the jointing–booting stage). Agronomic measures
such as weeding were carried out in accordance with local customs.

2.2. Soil Sampling

Soil samples were collected regularly combined with irrigation and fertilization at
various growth stages of rice, the sampling depth was 5–10 cm, which was taken every
5–7 days, and the measurement was added after fertilization. Then, soil samples were kept
at −20 ◦C in a freezer until analysis for soil nitrogen and functional genes.

2.3. Measurement of Soil Nitrogen

Soil NH4
+ and NO3

− were extracted with 50 mL of 0.5 M K2SO4 from 5.0 g fresh soils
and determined using a continuous flow spectrophotometer (Auto Analyzer 3-AA3, Seal
Analytical, Norderstedt, Germany).

2.4. DNA Extraction, PCR, and Sequencing of the Nitrogen Conversion Functional Genes

According to the supplier’s instructions, the DNA of each sample was extracted from
soil samples (A0W2, A3W1, A3W2, and A3W3) at the late tillering and yellow ripening
stages, respectively, using the E.Z.N.A.® stool DNA Kit (Omega Bio-tek, Norcross, GA,
USA). The quality of DNA was determined using 1% agarose gel electrophoresis and
spectrophotometry. All extracted DNA samples were stored at −20 ◦C for the subse-
quent analysis.

The amoA, nirS, and nirK are important genes in nitrification and denitrification. AOA
amoA and AOB amoA are involved in the first, often limiting, step of nitrification (oxidation
of ammonium into nitrite) [34]; nirK and nirS encode nitrite reductases [35]. Referring to
the methods of Liao et al. [36], we used specific primers for AOA amoA [37], AOB amoA [38],
nirK, and nirS [39] to quantify the samples individually using the fluorescence PCR tech-
nique. The sequences of these primers are show in Table 2. During PCR amplification,
R2 > 0.98, and the amplification efficiency > 92%.

The Illumina Hi-seq (Allwegene, Beijing, China) platform was used to target ammonia
oxidizing archaea (AOA) amoA, AOB amoA, nirS, and nirK genes perform high-throughput
sequencing. The raw sequencing data were filtered and pruned using the PReprocessing
and INformation of SEQuence data (PRINSEQ) and Moetur tools. The UCLUST tool in
Quantitative Insights Into Microbial Ecology (QIIME 2) was used to conduct a cluster
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analysis on sequences with a sequence similarity threshold of 97% and calculate the Alpha
Diversity Index (including Shannon and Chaol) for each set of samples [40].

Table 2. Primer information used in the experimental procedure.

Genes Name of Primer Sequence (5′ to 3′)

AOA amoA
Arch-amoA26F GACTACATMTTCTAYACWGAYTGGGC

Arch-amoA417R GGKGTCATRTATGGWGGYAAYGTTGG

AOB amoA
amoB-F GGGGTTTCTACTGGTGGT

amoB-r CCCCTCKGSAAAGCCTTCTTC

nirK
nirKF1aCu ATCATGGTSCTGCCGCG

nirKR3Cu GCCTCGATCAGRTTGTGGTT

nirS
cd3aF GTSAACGTSAAGGARACSGG

R3cd GASTTCGGRTGSGTCTTGA

2.5. Statistical Analysis

The data were analyzed and plotted using StataMP 16.0 (StataCrop, College Station,
TX, USA) and Origin 2021 (OriginLab Corporation, Northampton, MA, USA). The Kruskal–
Wallis method was used for ANOVA, and Dunn’s test was used for paired comparisons.
The Pearson correlation analysis was performed.

3. Results
3.1. NH4

+ and NO3
− Concentration at Each Stage

NH4
+ and NO3

− concentrations are shown in Figure 1. The NH4
+ concentration

decreased with changes of the rice growth stages (p < 0.05), but the NO3
− concentration of

different growth stages varied less. The NH4
+ concentration decreased with the increase of

AWD intensity at the late tiller stage and heading and flowering stage (p < 0.05) but did not
change significantly under different irrigation methods at other stages and even increased
with the increase of AWD intensity (p < 0.05) at the milk ripe stage (Figure S1). The NO3

−

concentration showed significant differences under different irrigation methods (p < 0.05) at
all stages, except the jointing–booting stage (Figure S2). The NO3

− concentration decreased
with the increase of AWD intensity in the late tillering period (r = −0.4313, p < 0.05),
but the AWD significantly promoted the NO3

− concentration in the other three periods.
Significant differences under different sulfamethazine treatments were shown at the late
tillering and the jointing stages (p < 0.05). Sulfamethazine significantly reduced the soil
NH4

+ concentration at the late tillering stage but significantly increased the soil NH4
+

concentration at the jointing–booting stage. At the late tillering and jointing–booting stages,
sulfamethazine significantly reduced the NO3

− concentration.

3.2. Absolute Abundance and Diversity of Nitrogen Conversion Genes

Based on the NH4
+ and NO3

− concentrations, the late tillering stage was selected as
the representative period with a significant response to sulfamethazine, and the yellow
ripening stage was selected as the representative period without a significant response to
sulfamethazine for further study. During these two stages, A3 treatments with significant
differences in the NH4

+ and NO3
− concentrations were selected, and the microbial indica-

tors were extracted and determined. As shown in Figure 2, there were large differences
between the absolute abundances of the nitrogen conversion genes. The abundance of
the AOA amoA and AOB amoA were smaller. The minimum abundance of the nirK gene
was above 4 × 107 copies/g soil, much higher than other genes. Apart from AOA amoA,
all gene abundances showed smaller difference at the yellow ripening stage than that
at the late tillering stage, while the genes in A3W2 showed lower absolute abundances
compared to the other A3 treatments at the late tillering or yellow ripening stages. At the
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yellow ripening stage, the AOA amoA appeared with lower abundance in A3W2, while the
abundances of AOB amoA, nirS, and nirK were similar to that of other A3 treatments. In
summary, A3W2 had the lowest AOA amoA and AOB amoA abundances at the late tillering
and yellow ripening stages and the lowest nirS and nirK abundances at the late tillering
stage. The lowest nitrogen conversion gene abundance of A3W2 attests to the special NH4

+

and NO3
− concentrations exhibited at A3W2 over multiple stages.
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Figure 1. Soil (a) NH4
+ and (b) NO3

− concentrations during different growth stages. * indicates
a significant difference from the A0 treatment in the same stage. A, the concentration gradient of
the antibiotic sulfamethazine, including A0 (0 ng·L−1), A1 (500 ng·L−1), A2 (1500 ng·L−1), and A3
(3000 ng·L−1). W, irrigation methods, including W1 (flood irrigation), W2 (mild AWD), and W3
(severe AWD).
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Figure 2. Absolute abundance of AOA amoA (a), AOB amoA (b), nirS (c), and nirK (d). A, the
concentration gradient of the antibiotic sulfamethazine, including A0 (0 ng·L−1), A1 (500 ng·L−1),
A2 (1500 ng·L−1), and A3 (3000 ng·L−1). W, irrigation methods, including W1 (flood irrigation), W2
(mild AWD), and W3 (severe AWD).

3.3. Alpha Diversity of Nitrogen Conversion Genes Communities

The Chao1 and Shannon diversity indices were used to study the differences in the
microbial community structure under different treatments. The gene (AOA amoA, AOB
amoA, nirS, and nirK) diversity indices are shown in Table 3.

The trends of the chao1 and Shannon indices were the same basically. The Shannon
index of the AOB amoA had the greatest difference under different conditions, while the
Shannon indices of other genes were smaller. The lowest Shannon index also appeared in
the AOB amoA, while the nirK gene generally had a higher Shannon index. At the same
time, the AOB amoA gene in the A0W2 had the highest Shannon index compared with
others at the yellow ripening stage.
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Table 3. Nitrogen conversion gene’s observed Chao1 and Shannon indices.

Growth
Stages Treatments

AOA amoA AOB amoA nirS nirK

Chao1 Shannon Chao1 Shannon Chao1 Shannon Chao1 Shannon

late
tillering

A0W2 24 3.113744 24 0.768873 34 2.060788 299.4286 4.729482

A3W1 23 3.065076 19 1.155675 22 2.764163 284.6364 4.776766

A3W2 23 2.904411 15 0.857637 17.5 2.110334 292.5526 4.368037

A3W3 24 2.687998 21.33333 3.391534 19.5 3.050141 255.45 5.180928

yellow
ripening

A0W2 24 3.129178 22 0.240285 20.2 3.707995 327 3.452603

A3W1 23.5 3.306445 13 0.392306 20 2.956571 278.0882 4.347746

A3W2 21 3.279984 13 0.478024 42.46154 2.113301 207.2 2.755407

A3W3 24 3.206926 11 1.74004 18 3.458921 242 5.106296

Note: A, the concentration gradient of the antibiotic sulfamethazine, including A0 (0 ng·L−1), A1 (500 ng·L−1),
A2 (1500 ng·L−1), and A3 (3000 ng·L−1). W, irrigation methods, including W1 (flood irrigation), W2 (mild AWD),
and W3 (severe AWD).

3.4. Community Structure of Nitrogen Conversion Genes
3.4.1. Community Structure of AOA amoA and AOB amoA

A total of 30 OTUs were detected, of which the species detected were only able to
annotate to the level of the classes in all treatments, and three phyla were identified except
for the bacteria that failed to be annotated. Figure 3a,b shows a histogram of the phyla
level and the classes level. The structure of the AOA amoA community changed little in all
the treatments. The highest relative abundance of Crenarchaeota appeared in the A3W3_L,
and the highest relative abundance of Unspecified_Archaea appeared in A3W2_Y. With
the change of the growth stages, the composition of AOA amoA in the phyla and classes
level underwent some changes. Crenarchaeota with relative abundances above 75% at the
late tillering stage decreased below 75% at the yellow ripening stage (A3W2_Y slightly
above 75%), while the relative abundances of Unspecified_Archaea and Thaumarchaeota
increased with changes of the rice growth. In A3 treatment, Crenarchaeota had a higher
relative abundance at the yellow ripening stage, while other phyla were inhibited. AWD
also promoted Crenarchaeota while inhibiting other phyla, although this change may be
affected by the growth period. Unspecified_Archaea has the highest relative abundance
in A0W2_Y.

A total of 57 OTUs were detected in AOB amoA, and a total of three phyla were an-
notated. The relative abundance of the phyla and genera levels are shown in Figure 3c,d.
The relative abundance of Proteobacteria was the highest in A0W2_L. The relative abun-
dance of Proteobacteria in A3W2_Y was the lowest (70.2%), but the relative abundance of
Proteobacteria in A3W1_Y and A3W3_Y were above 99.5%. At the late tillering stage, the
relative abundance of Proteobacteria in A3 was reduced compared with A0W2_L, while
the relative abundance of the other phyla increased. At the yellow ripening stage, except
for A3W2_Y, antibiotics improved the relative abundance of Proteobacteria compared with
A0W2_Y (more than 99.2%). The abundance distribution at the genera level is similar to
that at the phyla level. Nitrosospira was the most abundant at the genera level, and the
presence of sulfamethazine increased the abundance of Nitrosospira at the late tillering stage,
but the abundance of Nitrosospira at the yellow ripening stage decreased. These changes
varied due to the difference in the AWD intensity. A3W2_Y had the highest environmen-
tal_samples_environmental_samples abundance and the lowest Nitrosospira abundance of all
sulfamethazine treatments. A0W2_Y had the most uniform species composition at the
species level and was related to the diversity of nitrogen conversion genes in the preceding
article. Nitrosomonas_sp._Nm86 had the highest abundance at the species level.
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3.4.2. Community Structure of nirS and nirK

A total of 77 OTUs of the nirS were detected in all treatments. Five phyla were
detected, and Figure 4a,b shows the community structure at the phyla and genera levels.
Proteobacteria was the most abundant of all treatments, with only Proteobacteria included
in A3W2_L and A3W3_L. Other phyla emerged in A3W2_Y and A3W3_Y, including
Planctomycetes, Actinobacteria, and Acidobacteria. With the change of the growth stages,
Acidobacteria was replaced by Chloroflexi in A0W2, Planctomycetes and Acidobacteria
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were replaced by Actinobacteria in A0W3. At the genera level, the relative abundance of
the microorganisms under different treatments varies greatly. The abundance distribution
of Noviherbaspirillum had a large range different from other gene-based strains, and with the
highest relative abundance always occupying higher abundances, Noviherbaspirillum had a
relative abundance of only 3.8% in A3W3_L. At the same time, the relative abundance of
Unspecified_Burkholderiales became the largest relative abundance in the treatment (40.8%),
and the relative abundance of others also increased. Similarly, the relative abundance of
Noviherbaspirillum in A3W1_L was only 29.8%, while the relative abundance of Sandaracinus
reached 60.7% and became the most relatively abundant phylum in this treatment. A3W2_L
had the highest Noviherbaspirillum abundance in the late tillering stage, while the other
sulfamethazine treatments were low. In addition, with the change of the growth stage,
the composition of the genera-level community structure also underwent succession, and
Noviherbaspirillum became the genus with the largest relative abundance in A3W1 at the
yellow ripening stage (92.2%). The relative abundance of Noviherbaspirillum in A3W3 rose to
37.4%, but the largest relative abundance of bacteria was Pseudodogulbenkiania (39.0%). With
the changes of the growth stages, the relative abundance of Noviherbaspirillum decreased to
a certain extent in A0W2, but the relative abundance of other bacteria increased.

A total of 450 OTUs were detected in the nirK, all of which belong to three phyla.
Figure 4c,d shows the community structure at the phyla and genera levels. Of all treatments
at the late tillering stage, A0W2_L had the highest relative abundance of Proteobacteria.
The relative abundance of Proteobacteria gradually decreased with the increase of the
AWD intensity in the A3 treatments. Of all the treatments at the yellow ripening stage,
A0W2_Y had the lowest relative abundance of Proteobacteria, while the A3 treatments
had a higher Proteobacteria abundance than A0W2_Y. At the phyla level, A3W2_Y had
the lowest Proteobacteria abundance of all A3 treatments; A3W2_L and A3W2_Y had the
lowest Nitrosospira abundances at the genera level. The different community structures of
A3W2_Y may be related to the special values of the NO3

− concentration. The genus with
the highest level of abundance was generally Nitrosospira, and sulfamethazine decreased
the abundance of Nitrosospira at the late tillering stage, while the relative abundance of
other species increased. The relative abundance of Nitrosospira was higher under the A3
treatment at the yellow ripening stage, but the relative abundance of Nitrosospira in A3W2_Y
was lower.

3.5. Correlation Analysis

As shown in Figure 5, most bacteria did not show a significant correlation with sul-
famethazine. Nitrosospira_sp._KAN8, belonging to AOB amoA, can still be found with a
significant negative correlation with sulfamethazine (p < 0.001). This suggested that both
sulfamethazine-sensitive and -insensitive bacteria are present in the nitrogen conversion mi-
croorganism and that irrigation water containing sulfamethazine may have a huge impact
on these antibiotic-sensitive bacteria. Except for nirK, other genes were not significantly
associated with the irrigation methods, and Bradyrhizobium_sp._s23321, Ochrobactrum, and
Bradyrhizobium_sp._STM_3843 showed a negative correlation to irrigation (p < 0.05). The
microorganisms of the four nitrogen conversion genes all responded to changes in the
growth period of rice. Thaummarchaeota and Crenachaeota belonging to AOA amoA
showed a diametrically opposed correlation with the growth periods (p < 0.01), indicat-
ing that some microbes may have adapted to the antibiotic-containing environment and
underwent ecological niche changes. Other nitrogen conversion gene microorganisms
correlated with the growth stage were Janibacter_indicus, Pseudogulbenkiania_sp._NH8B, and
Bradyrhizobium_diazoefficiens positively (p < 0.05), and Nitrosospira_sp._En13, Rhodopseu-
domonas_palustris, and Rhodopseudomonas_sp._2_8 were correlated with the growth stages
negatively (p < 0.05). The strains of various nitrogen conversion-related genes showed a
certain correlation with the NH4

+ and NO3
− concentrations. Among them, Crenachaeota,

Archaea, Rhodopseudomonas_palustris, and Rhodopseudomonas_sp._2_8 were correlated with
the NH4

+ concentration negatively (p < 0.05). Nitrosospira_sp._9ss1 and Afipia_sp._1NLS2
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were correlated with the NO3
− concentration positively (p < 0.05). Although some nitrogen

conversion microorganisms are involved in the same nitrogen conversion process and have
the same gene, their responses to the same environmental variables varied. This may be
due to their different sensitivities to different factors or the competitive relationships that
exist between them. Under the antibiotics, changes in the nitrogen conversion processes
and rates in paddy fields may be related to more detailed changes in different nitrogen
conversion bacteria.
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4. Discussion
4.1. Soil Nitrogen

The NH4
+ concentration decreased significantly with the growth stages (Figure 1a).

This is roughly the same as the results of Li. [41]. However, the concentration of soil NH4
+

is also related to the input of exogenous fertilizers, the absorption of nitrogen by rice, the
volatile loss of nitrogen ammonia, etc. In this study, there was no significant increase in
NH4

+, and NH4
+ did not change much in the late tillering and flowering stages of panicle

extraction (Figure 1a), which is because the input of fertilizer compensated for the loss of
NH4

+ in the rice growth process. The change of the NO3
− concentration at different growth

stages only showed significant differences at the late jointing and the yellow ripening
stages (p < 0.05). The regression analysis showed that the regression coefficient is only
−0.10 (p = 0.257), indicating that NO3

− did not change significantly in this study. NO3
−

with a negative charge is difficult to be adsorbed by soil colloidal particles but easy to
disperse into the environment through leaching [42]. The NO3

− concentration did not
change significantly in this study, and this difference may be because NO3

− cannot be
removed from the pot experiment system. The NO3

− concentration increased significantly
with the increase of the AWD intensity over certain periods, while the NH4+ concentration
decreased significantly over certain periods (Figure S2). Cao et al. [43] and Zhang et al. [44]
found similar laws to this study in culture experiments. However, the trend of the NO3

−

concentration changing with the AWD intensity gradually changed with the growth period
(Figure S2), while the degree of decline of the NH4

+ concentration with the increase of
the intensity of AWD was gradually less obvious with the change of the growth period
(Figure S1). The rice demand for nitrogen is mainly concentrated during the reproductive
growth period [45]. At the same time, although rice also absorbs NO3

−, NH4
+ is still the

main source of nitrogen utilization for rice [46]. Therefore, the difference in the responses of
NH4

+ and NO3
− to AWD may be explained because of the differences in the rice nutrient

requirements with growth periods and differences in the rice demand for different types
of nitrogen.
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Antibiotics can affect the soil nitrogen conversion, but the effects are also related
to the type and concentration of antibiotics. Antibiotics affect soil nitrogen conversion
by influencing different microorganisms. Revellin et al. [47] found that low concentra-
tions of antibiotics change the diversity and characteristics of nitrogen-fixing bacteria,
and many studies have found multiple antibiotics can inhibit nitrification and denitrifica-
tion [48]. However, some antibiotics, including sulfamethazine, facilitate the denitrification
process [27]. Trace antibiotic concentrations were used in this study, but the significant
difference of NO3

− and NH4
+ still can be observed (p < 0.05). Studies have found that

low concentrations of antibiotics can promote denitrification, but it only has a significant
effect under soil moisture conditions of 40% of the water-filled pore space (WFPS) [49].
The moisture conditions of severe and mild AWD in the study were much greater than
40% WFPS, which may explain the effect of antibiotics in this study is not significant in
some cases.

4.2. Nitrogen Conversion-Related Microorganisms

Nitrogen conversion-related microorganisms are important components of the soil
microbial community, which includes a variety of microbes involving a variety of nitrogen
conversion functional genes. Changes in soil nitrogen conversion-related microorganisms
can significantly affect the nitrogen conversion in soil. Many studies have found that,
although AOA and AOB participate in the same process of nitrification, their presence in
the environment is different. Archaea typically make up 0–10% of the total native microflora
in the soil, the most abundant of which is AOA [50]. AOA has been found to occupy higher
abundances than AOB in many studies [51–54]. AOA and AOB respond differently to
factors such as pH, salinity, NH4

+, and NO3
− [55]. AOA is better adapted to low NH4

+

concentrations, and it has higher abundance at higher NO3
− concentrations, while AOB

tends to have a higher abundance at higher NH4
+ concentrations [56–58]. In this study, all

treatments had higher AOB amoA abundances at the late tillering stage, except for A3W2,
and A3W1 and A3W3 had higher AOA amoA abundances at the yellow ripening stage
(Figure 2). Except for A3W2, all treatments had a higher AOA amoA/AOB amoA ratio at the
yellow ripening stage than that at the late tillering stage, which may be due to the high soil
NH4

+ concentration at the late tillering stage. As NH4
+ was consumed in soils, AOA had a

greater advantage in soils. The above discussions show that the main force of nitrification
may change as the NH4

+ and NO3
− concentrations change in the soil.

The nirS and nirK genes are important denitrification genes. Abundances of nirS are
higher in some studies [59]; however, nirK have higher abundances in other studies [60–62].
Yoshida et al. [39] found that the abundance of nirK was approximately 10 times more than
nirS throughout the field sampling season. NirK is more dominant in this study, and this is
due to the fact that nirS and nirK have different niches. In this study, the Shannon index of
AOA amoA was between 2.687998 and 3.306445, and the Shannon index of AOB amoA was
0.240285–3.391534 (Table 3). NirK had the highest Shannon index, because the nirK gene
had the highest number of species compared to other genes. The community structure of
AOA amoA changed little and is more stable than AOB amoA (Figure 3). At the same time,
it was found that AOB amoA had a higher correlation coefficient with NH4

+ and NO3
−

than AOA amoA, although they were not significant. However, this may indicate that the
intensity change of nitrification in rice fields is mainly contributed to by AOB amoA.

Under the impact of antibiotics or moisture conditions, the soil microbial diversity and
community structure and the nitrogen cycle processes are changed [63–65]. Further studies
show that antibiotics can affect the nitrification and denitrification of soil microorgan-
isms [48,66,67]. This study found that the presence of antibiotics changed the community
structure of nitrogen conversion microorganisms, but it also varied at different growth
stages of rice (Figures 3 and 4). It is worth noting that, except for AOA amoA, A3W2 showed
significant differences in the community structures of the other three genes. Although
there is a lack of direct evidence that the community structure of AOA amoA is more stable
than AOB amoA under the impact of antibiotics, AOA has been found to be insensitive
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to antibiotics [68,69]. The results of this study show that sulfamethazine has a stronger
effect on the nitrogen conversion microbial community and nitrogen conversion at a mild
AWD. This result may be related to the distribution of antibiotics under such irrigation.
Surface tension causes the narrowest diameter pores to control moisture distribution during
wetting and drying due to the ink effect. During wetting, the narrow inlet of the large
hole slows the infiltration of water, and during the drying process, they obstruct drainage,
resulting in water retention, which affects the distribution of nutrients and sulfamethazine
in the soil [70]. Therefore, due to the ink effect, the most uniform distribution of nutrients
and sulfamethazine may occur under A3W2. Such results suggest that mild AWD may
contribute to the effects of antibiotics on soil nitrogen conversion communities and nitrogen
conversion processes.

Only Nitrosospira_sp._KAN8, belonging to AOB amoA, was significantly and negatively
correlated with sulfamethazine concentrations (Figure 5a), which may explain why no sig-
nificant effect of antibiotics on nitrogen conversion has been found in some studies [71,72].
Since the NH4

+ concentration also changed with the change of the rice growth stages, this
study cannot fully distinguish the effects of sulfamethazine on the microbial community
structure under long-term action. All the microorganisms involved in this study were
nitrifying and denitrifying microorganism. However, they responded to NH4

+ and NO3
−

differently, and some studies found that AOA amoA and AOB amoA, nirS, and nirK respond
to environmental factors differently [69,73]. This study further demonstrates that even
microbiota with the same nitrogen conversion gene respond significantly differently to
environmental factors such as NH4

+, NO3
−, and antibiotics. This study may provide a

basis for a more in-depth explanation of soil microbial community structures and nitrogen
conversion changes.

5. Conclusions

This study found that the presence of antibiotics changes the NH4
+ and NO3

− con-
centrations at the late tillering and jointing–booting stages (p < 0.05). Experimental data
showed that mild AWD promoted the adverse effect of sulfamethazine (3000 ng/L) on soil
nitrogen conversion microorganisms. Microbiota containing the same nitrogen conversion
gene exhibited different responses to environmental factors. This study can provide a
basis for the use of aquaculture water containing antibiotics to irrigate rice fields. Fur-
ther research is needed, especially the response of nitrification and denitrification rates to
antibiotics and how long antibiotics take to form the effect on nitrogen conversion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12123034/s1: Figure S1: Responses of NH4

+ concen-
tration to irrigation methods at different growth stages. Figure S2: Responses of NO3

− concentration
to irrigation methods at different growth stages.
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