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Abstract: Wheat is affected by various biotic and abiotic stresses, especially salinity, which reduces
the growth and yield drastically. With this view, an experiment was conducted to observe geno-
typic differences in agro-morphological, yield, and biochemical responses to salinity. Experimental
variables consisted of five salt-tolerant genotypes (G 13, G 20-1, G 9, G 22, G 20-2), one susceptible
genotype (G 24) and one standard check variety (BARI ghom 25), which assigned to four levels
of salinity with electrical conductivities 0, 4, 8 and 12 dS m−1. Irrespective of genotypes, salinity
stress significantly decreased the yield and yield attributes. However, maximum total tillers plant−1,
effective tillers plant−1, number of grains spike−1, and grain yield plant−1 was found in salt tolerant
genotype G 20-2, followed by genotypes G 13, G 20-1, and the lowest was observed in salt-susceptible
genotype G 24. The lowest reduction percentage of yield and yield attributes were also observed
in salt tolerant genotype G 20-2 followed by genotypes G 13, G 20-2, and the maximum reduction
percentage was found in salt-susceptible genotype G 24. Results showed that the highest amount
of proline, glycinebetaine, soluble sugar and soluble protein content were observed in salt-tolerant
genotype G 20-2, followed by genotypes G 13, G 20-1, and the minimum was found in salt-susceptible
genotype G 24. On the other hand, the lowest hydrogen peroxide (H2O2) and melondealdehyde
(MDA) accumulation was detected in the same salt-tolerant genotype G 20-2, followed by G 13,
G 20-1, and the maximum was observed in salt-susceptible genotype G 24. Therefore, higher accumu-
lations of compatible solute in the tolerant genotypes reduce the oxidative stress, and provide the
higher yield.

Keywords: salt stress; reactive oxygen species; biochemical responses; wheat; yield

1. Introduction

Wheat (Triticum aestivum L.) is an important cereal crop, and over 200 million hectares
of land are cultivated for wheat in the world [1]. After rice, it ranks second in Bangladesh
and contributes 7% to the total output of food cereals, which provide 20% of the total
energy requirement in human food [2,3]. It comprises about 60–80% carbohydrate, 2–2.5%
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glucose, 1.5–2% fat and 2–3% mineral [4]. It delivers about 55% carbohydrates and 20%
food calories [5]. Mostly, wheat is grown in the north and north-west part of Bangladesh.
Still, a huge coastal area of southern Bangladesh remains fallow. Thus, to meet the food and
nutritional deficit of the ever-increasing population of Bangladesh, these saline areas must
be brought under intensive cultivation. Therefore, it is crucial to develop salinity-tolerant
crop varieties to cope with this upcoming problem of food security.

Saline areas cover about 25–30% of the total arable land of Bangladesh [6]. These
saline-affected areas of Bangladesh increase every year due to climate change. Due to
salinity problems, the average crop yield is very low in that region. Due to high salinity,
the cropping intensity is relatively low in saline areas of Bangladesh [7]. Crop production
is limited and more than 50% of the yield of major crops is reduced due to salinity [8].
High levels of soil salinity badly affect the quality and quantity of crop production [9–11]
by preventing seed germination, seedling growth and developmental phases, owing to
the combined effects of high osmotic potential and ion toxicity [9,12]. Salinity affects
physiological processes of crops, such as modification of ion balance, water status, mineral
nutrition, stomatal behaviour and photosynthetic efficiency; it also causes oxidative damage
due to overproduction of reactive oxygen species (ROS) and differences in the antioxidant
enzymes’ activities [4,13–17]. It is reported that salinity reduces the crop growth more than
any other noxious material and modifies several physiological and biochemical processes
in crops [18,19].

Through increasing the osmotic strength, salt stress inhibits plants from accessing
soil water. Munns et al. [20] stated that due to the presence of salt in soil solutions, the
osmotic potential of soil is decreased, which creates water stress and makes it difficult for
the plant to absorb adequate water for growth. Thus, reduced water uptake is the common
response of plants under salt stress [21]. Reduced water status in the plant body slows
the rate of cell division and expansion mainly due to loss of turgor [22]. To overcome this
problem, plant cells need readjust their osmotic potential to prevent water loss through the
uptake of inorganic ions from the external solution, or by de novo synthesis of a number of
metabolites termed compatible solutes [23]. They mainly include proline [24–28], glycine
betaine [29,30], sugar [23,31] and polyols [14,32].

Proline is one of the familiar osmoprotectants, and accumulation of proline in various
organisms is widely observed under salt stress [32,33]. Shamsi and Kobraee [34] reported
that with increasing salinity, proline and water-soluble carbohydrates were increased in
wheat. Moreover, during stress, proline and other osmoprotectants act as a metal chelator,
an antioxidative defence molecule and a signaling molecule [35]. Overproduction of
reactive oxygen species, such as superoxide anions (O2

−), hydrogen peroxide (H2O2), and
hydroxyl radicals (OH−), occur due to salt stress [36]. Reactive oxygen species react with
vital cellular metabolites and molecules including photosynthetic pigments, lipids, proteins
and DNA [15]. The overproduction of ROS causes lipid peroxidation and results in a higher
accumulation of malondialdehyde (MDA) [37].

As arable land of the saline-prone area remains fallow and the wheat production in
the country is as yet much below the annual requirement, the increase of wheat production
to keep up with the increasing demand of wheat in the next few decades will be a big
challenge for Bangladesh. The cultivation of salt-tolerant wheat in the saline-prone area
may become an important effort to utilize these lands to meet the food deficit of the ever-
growing population of Bangladesh. This would be possible through the selection of wheat
genotypes tolerant to soil salinity and by understanding biochemical mechanism of salinity
tolerance. The present study was therefore undertaken to explore genotypic differences in
the mechanism of salinity tolerance in wheat, and to identify promising wheat genotypes
tolerant to soil salinity.
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2. Results
2.1. Agro-Morphology and Yield of Wheat
2.1.1. Plant Height

Different salinity levels significantly affect the plant height of wheat. Under control
conditions, the highest plant height (90.9 cm) was observed in G 22 and the lowest (83.3 cm)
was found in G 13 (Table 1). However, the highest plant height at 4, 8 and 12 dS m−1

was found in G 20-1 (85.3, 80.4 and 76.3 cm, respectively) and the lowest plant height was
observed in G 24. The highest plant height reduction percent of different wheat genotypes
was found at 12 dS m−1 than 4 and 8 dS m−1 salinity levels (Figure 1). The lowest plant
height reduction at 4, 8 and 12 dS m−1 salinity level was found in genotype G 20-1 (4.42,
9.90 and 14.56%, respectively), followed by G 20-2 (4.68, 10.40 and 14.06%, respectively). At
4, 8 and 12 dS m−1 salinity level, the highest plant height reduction was found in genotype
G 24 (11.17, 19.75 and 30.28%, respectively).

Table 1. Plant height and total tillers of wheat genotypes under different salinity levels.

Genotypes
Plant Height (cm) Total Tillers Plant−1

Control 4 dS m−1 8 dS m−1 12 dS m−1 Control 4 dS m−1 8 dS m−1 12 dS m−1

G 13 83.3 c 77.9 c 72.8 c 70.1 b 5.9 a 5.5 ab 5.4 abc 5.2 ab
G 24 84.6 bc 75.2 c 67.9 d 59.0 d 5.7 a 5.3 b 4.5 d 3.9 d

G 20-1 89.3 ab 85.3 a 80.4 a 76.3 a 6.2 a 5.9 ab 5.6 ab 5.3 ab
G 9 89.0 ab 81.2 b 76.6 bc 66.7 c 5.9 a 5.5 ab 4.9 bcd 4.8 bc
G 22 90.9 a 82.3 ab 78.7 ab 73.3 a 5.7 a 5.5 ab 4.7 cd 4.6 c

G 20-2 86.0 abc 82.0 b 77.1 ab 73.9 a 6.3 a 6.1 a 5.9 a 5.7 a
BARI ghom 25 89.3 ab 83.4 ab 78.3 ab 74.9 a 6.2 a 5.8 ab 5.6 ab 5.1 bc

CV (%) 3.45 2.24 2.78 2.47 5.61 5.96 6.78 6.16

Mean values in the same column with different letters are significantly different at 5% level of significance.
Averages data are shown with mean values of five independent replicates (n = 5).
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Figure 1. Reduction (%) of plant height of wheat genotypes under various salinity levels. The vertical
bar indicates average of five independent replicates (n = 5). Error bars represent standard error.

2.1.2. Total Tillers per Plant

Salinity stress significantly reduced the total tillers plant−1 at higher salinity levels in
each wheat genotypes. Under control conditions, all wheat genotypes showed statistically
similar results (Table 1). At 4, 8 and 12 dS m−1 salinity levels, the maximum number of
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total tillers plant−1 (6.1, 5.9 and 5.7, respectively) was found in genotype G 20-2, which was
statistically similar to G 20-1, and the lowest total tillers plant−1 was observed in G 24 (5.3,
4.5 and 3.9, respectively), which was statistically dissimilar to other genotypes. At different
salinities, the reduction of total tillers ranged from 3.24 to 31.23% (Figure 2). The minimum
reduction of total tillers plant−1 at different salinity levels was observed in genotype G 20-2.
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2.1.3. Effective Tillers per Plant

Increased salinity causes severe plant growth reduction. Therefore, all yield attributes
were affected by salinity, and effective tiller number plant−1 reduced due to higher saline
conditions (Table 2). Under control conditions, statistically similar results were found in
all the genotypes. At all salinity levels, genotype G 20-2 showed the highest number of
effective tillers plant−1 (5.31, 5.17 and 5.11, respectively), which was statistically similar
to G 20-1, and the lowest effective tillers plant−1 was observed in G 24 (4.35, 3.30 and
2.23, respectively), which was statistically dissimilar to other genotypes. Genotype G 20-2
showed the lowest reduction (7.65%) of effective tillers plant−1 and genotype G 24 showed
the highest reduction (56.70) (Figure 3) at 12 dS m−1 salinity level.

Table 2. Effective tiller number and spike length of wheat genotypes under different salinity levels.

Genotypes
Effective Tiller No. Plant−1 Spike Length (cm)

Control 4 dS m−1 8 dS m−1 12 dS m−1 Control 4 dS m−1 8 dS m−1 12 dS m−1

G 13 5.29 a 4.93 abc 4.68 a 4.59 a 10.28 bcd 10.08 bc 9.84 abc 9.51 ab
G 24 5.15 a 4.35 c 3.30 b 2.23 c 11.83 a 10.86 a 10.40 a 9.66 ab

G 20-1 5.45 a 5.17 ab 4.82 a 4.70 a 10.60 bc 10.51 ab 10.13 ab 9.80 a
G 9 5.11 a 4.62 bc 3.65 b 3.49 b 10.69 b 9.98 bc 9.59 bc 9.14 b
G 22 5.06 a 4.51 c 3.45 b 3.20 b 10.95 b 10.07 bc 9.85 abc 9.29 ab

G 20-2 5.53 a 5.31 a 5.17 a 5.11 a 9.83 d 9.62 c 9.53 bc 9.21 ab
BARI ghom 25 5.49 a 5.23 a 5.00 a 4.73 a 9.96 cd 9.73 c 9.52 c 9.18 b

CV (%) 6.86 6.19 6.34 6.96 3.48 3.04 3.29 3.30

Mean values in the same column with different letters are significantly different at a 5% level of significance.
Average data are shown with mean values of five independent replicates (n = 5).
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2.1.4. Spike Length

The spike length of all the wheat genotypes was significantly reduced due to salt
stress and there were significant differences among the wheat genotypes (Table 2). The
spike length of the wheat genotypes under control conditions ranged from 9.83 to 11.83 cm.
Genotype G 24 showed the highest spike length under salinity levels of 4 and 8 dS m−1

(10.86 and 10.40 cm, respectively) but under salinity level 12 dS m−1, genotype G 20-1
showed the highest spike length (9.80 cm), and it is statistically similar to genotypes G 24
(9.66 cm) and G 20-2 (9.21 cm) (Table 2). Under the highest salinity level (12 dS m−1), the
lowest reduction of spike length was observed in genotype G 20-2 (6.31%). Genotype G 13
(7.49%) and G 20-1 (7.50%) also showed better performance (Figure 4).
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2.1.5. Spikelet Number per Spike

Salinity stress significantly reduced the spikelets number spike−1 of the studied wheat
genotypes (Table 3). The highest spikelet number spike−1 at 4 dS m−1 salinity level was
observed in genotype G 9 (18.88). The reduction percentage was higher in G 22 and G 24
(2.86%) and lowest in G 20-2 (1.33%) (Figure 5). At 8 dS m−1 salinity treatment, the highest
spikelet number spike−1 was found in G 13 (18.01), followed by G 9 (17.65), and the
lowest spikelet number spike−1 was found in G 24 (15.63). The reduction percentage of
spikelet number spike−1 at 8 dS m−1 was higher in G 24 (10.69%) and the lowest reduction
percentage was found in G 20-2 (5.78%) (Figure 5). The maximum spikelet number spike−1

at 12 dS m−1 was found in genotype G 13 (16.68) and the lowest was found in G 24
(12.00). Among all wheat genotypes and at all salinity levels, reduction percentage of
spikelet number spike−1 was lower in G 20-2, whereas G 24 showed the highest reduction
percentage (Figure 5).

Table 3. Spikelet number spike−1 and grains per spike of wheat genotypes under different
salinity levels.

Genotypes
Spikelets Number Spike−1 Grains Spike−1

Control 4 dS m−1 8 dS m−1 12 dS m−1 Control 4 dS m−1 8 dS m−1 12 dS m−1

G 13 19.26 ab 18.80 a 18.01 a 16.66 a 57.53 ab 56.00 ab 54.56 ab 51.85 ab
G 24 17.50 d 17.00 c 15.63 e 12.00 d 53.95 bc 46.91 c 40.00 e 36.90 e

G 20-1 17.36 d 17.02 c 16.02 de 14.85 c 54.84 abc 53.10 b 51.73 bc 49.04 bc
G 9 19.43 a 18.88 a 17.65 ab 15.71 b 54.40 abc 52.32 b 48.10 cd 45.72 c
G 22 18.38 bcd 17.85 bc 16.65 cd 14.41 c 50.86 c 47.88 c 44.56 d 40.98 d

G 20-2 18.00 cd 17.76 bc 16.96 bc 15.64 b 59.53 a 58.10 a 56.36 a 55.00 a
BARI ghom 25 18.70 abc 18.32 ab 17.36 abc 15.83 b 54.66 abc 52.88 b 51.20 bc 48.75 bc

CV (%) 2.88 2.63 2.47 2.29 5.24 4.40 4.44 4.75

Mean values in the same column with different letters are significantly different at 5% level of significance.
Averages data are shown with mean values of five independent replicates (n = 5).
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2.1.6. Grains per Spike

Number of grains spike−1 of different wheat genotypes was significantly influenced
by salinity stress (Table 3). At salinity levels 4, 8 and 12 dS m−1, statistically the maximum
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grain spike−1 was observed in G 20-2 (58.10, 56.36 and 55.00, respectively), which was
statistically similar to G 13, and the lowest grains number spike−1 was observed in genotype
G 24 (46.91, 40.00 and 36.90, respectively). Due to salt stress, the reduction of grains number
spike−1 was varied from 2.39 to 31.60% (Figure 6). At all salinity levels, the lowest reduction
of grain number spike−1 was also observed in genotype G 20-2.
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2.1.7. Thousand Grain Weight

Thousand grain weight of different wheat genotypes was reduced significantly due to
salt stress (Table 4). Thousand grain weight ranged from 26.09 to 51.25 g (Table 4). Under
highest salt stress (12 dS m−1), genotype G 20-1 showed the highest 1000-grain weight
(41.54 g) and genotype G 24 showed the lowest (26.09 g) 1000-grain weight. The reduction
percent of 1000-grain weight was smallest at 4 and 8 dS m−1 than 12 dS m−1 salinity level
(Figure 7). Under 4, 8 and 12 dS m−1 salinity, the lowest reduction of 1000-grain weight
was found in genotype G 20-2 (5.05, 10.95 and 14.34%, respectively), and genotype G 24
showed the highest reduction (10.69, 23.71 and 41.69%, respectively).

Table 4. Thousand grain weight and grain yield of wheat genotypes under different salinity levels.

Genotypes
Thousand Grain Weight (g) Grain Yield (g plant−1)

Control 4 dS m−1 8 dS m−1 12 dS m−1 Control 4 dS m−1 8 dS m−1 12 dS m−1

G 13 47.85 ab 45.41 ab 42.45 ab 40.00 a 9.79 a 9.29 a 8.80 ab 7.81 b
G 24 44.75 b 39.96 c 34.14 c 26.09 c 9.76 a 8.78 b 6.55 d 4.86 e

G 20-1 51.25 a 47.58 a 44.18 a 41.54 a 9.18 bc 8.80 b 8.39 ab 7.62 b
G 9 46.43 b 44.55 ab 39.38 b 34.19 b 8.91 cd 7.72 c 7.45 c 6.59 c
G 22 48.45 ab 46.40 ab 39.87 b 33.89 b 8.58 d 7.64 c 7.05 cd 5.90 d

G 20-2 45.34 b 43.05 bc 40.37 b 38.84 a 9.54 ab 9.19 ab 8.91 a 8.62 a
BARI ghom 25 47.03 b 44.60 ab 40.32 b 38.72 a 9.29 abc 8.87 ab 8.26 b 7.08 c

CV (%) 4.80 4.63 4.71 5.37 3.29 3.13 3.86 4.01

Mean values in the same column with different letters are significantly different at 5% level of significance.
Averages data are shown with mean values of five independent replicates (n = 5).
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2.1.8. Grain Yield

Yield is the total combination of many parameters, such as tiller number, spike number
plant−1, grain number, grain size, grain weight, etc. Salt stress actually reduces these
attributes when it occurs significantly. The present study showed a significant difference in
yield among the different wheat genotypes due to the increase in salinity levels (Table 4).
At 0 dS m−1 (control) salinity level, genotype G 13 showed the maximum grain yield
(9.79 g plant−1), while at 8 and 12 dS m−1 salinity, genotype G 20-2 showed the highest
grain yield (8.91 and 8.62 g plant−1, respectively). Genotype G 24 showed the lowest grain
yield at all salinity levels. Genotypes G 13 (9.10 g plant−1) and G 20-1 (7.92 g plant−1) also
showed better grain yield at 12 dS m−1 salinity level (Table 4). Genotype G 20-2 showed
the lowest grain yield reduction (9.68%), while the highest was found in genotype G 24
(50.25%) at 12 dS m−1 salinity level (Figure 8).

2.2. Compatible Solutes Accumulation
2.2.1. Accumulation of Proline and Glycinebetaine

Under non-saline conditions, the highest proline content was found in genotype G 13
(1.43 µg g−1) (Figure 9). Salt stress significantly increased the proline accumulation and
genotype G 20-2 showed the highest accumulation of proline (2.91, 6.43 and 11.32 µg g−1

at 4, 8 and 12 dS m−1 salinity levels, respectively). Again, the lowest proline content was
found in G 24 in both control and saline conditions. The relative value was higher in G 20-2
compared to the other genotypes at all the treatments. At all salinity levels, the lowest
relative value was observed in G 24 genotype (Figure 10).
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Figure 9. Proline content in leaf of wheat genotypes under various salinity levels. The vertical bar
indicates average data of five independent replicates (n = 5). Error bars represent standard error.
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Figure 10. Relative value of proline content in leaf of wheat genotypes under various salinity levels.
The vertical bar indicates average data of five independent replicates (n = 5). Error bars represent
standard error.

In this study, glycinebetaine (GB) content was significantly increased with the increase
of salinity level (Figure 11). Under control conditions, GB content was statistically similar
in all the genotypes. However, at 4, 8 and 12 dS m−1 salt stress, genotype G 20-2 showed
the highest GB content (35.21, 51.15 and 62.93 µg g−1, respectively) which was statistically
similar to G 13, while the genotype G 24 showed the lowest GB content (28.85, 34.70 and
39.20 µg g−1, respectively). In the case of relative value, genotype G 20-2 showed the
highest relative value (124.68 181.04 and 222.73% at 4, 8 and 12 dS m−1, salinity levels,
respectively) and genotype G 24 showed the lowest (Figure 12).
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Figure 11. Glycine-betaine content in leaf of wheat genotypes under various salinity levels. The
vertical bar indicates average data of five independent replicates (n = 5). Error bars represent
standard error.
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2.2.2. Soluble Sugar and Soluble Protein Accumulation

Salt stress significantly increased soluble sugar accumulation in all wheat genotypes
(Figure 13). Under control conditions, soluble sugars accumulation was identical in all
wheat genotypes. However, genotype G 20-2 showed the highest sugars accumulation
33.32, 41.25 and 59.95 mg g−1 under 4, 8 and 12 dS m−1 salt stress, respectively, and
genotype G 24 showed the lowest accumulation. Genotype G 20-2 also showed the highest
relative value of sugar accumulation (128.38, 158.94 and 231.01% at 4, 8 and 12 dS m−1,
respectively), followed by G 13 and G 20-1, and the lowest was observed in genotype G 24
(Figure 14).
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Figure 13. Soluble sugar content in leaf of wheat genotypes under various salinity levels. The vertical
bar indicates average data of five independent replicates (n = 5). Error bars represent standard error.
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Figure 14. Relative value of soluble sugar content in leaf of wheat genotypes under various salinity
levels. The vertical bar indicates average data of five independent replicates (n = 5). Error bars
represent standard error.

Soluble proteins also significantly increased by increasing salinity level in all wheat
genotypes (Figure 15). However, under 4, 8 and 12 dS m−1 salt stress, genotype G 20-2
showed the highest protein accumulation (24.01, 31.73 and 42.02 mg g−1, respectively),
and the lowest protein accumulation was recorded in G 24. The relative value showed
a significant difference among the genotypes (Figure 16). The highest relative value was
recorded in genotype G 20-2 and it was 210.82% under 12 dS m−1 salinity level. The lowest
relative value was found in G 24 and it was 145.30% at 12 dS m−1 salinity level.
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Figure 15. Soluble protein content in leaf of wheat genotypes under various salinity levels. The
vertical bar indicates average data of five independent replicates (n = 5). Error bars represent
standard error.
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2.3. Accumulation of Hydrogen Peroxide and Malondialdehyde

Figure 17 shows that salt stress elevated hydrogen peroxide (H2O2) accumulation in
all wheat genotypes. Genotype G 9 showed the highest accumulation of H2O2 (7.52) under
control conditions, while genotype G 24 showed the highest accumulation of H2O2 (8.23,
9.96 and 12.06 µ mol g−1) under 4, 8, and 12 dS m−1 salt stress, respectively. However,
genotype G 20-2 showed the lowest accumulation of H2O2 (7.45, 7.86 and 8.39 µ mol g−1)
under 4, 8, and 12 dS m−1 salt stress, respectively. Genotype G 20-2 also showed the lowest
relative value 117.52% at 12 dS m−1 salt stress and genotype G 24 showed the highest
relative value 160.56% at 12 dS m−1 salt stress (Figure 18).
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Figure 17. Hydrogen peroxide (H2O2) accumulation in leaf of wheat genotypes under various
salinity levels. The vertical bar indicates average data of five independent replicates (n = 5). Error
bars represent standard error.
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Figure 18. Relative value of hydrogen peroxide (H2O2) accumulation in leaf of wheat genotypes
under various salinity levels. The vertical bar indicates average data of five independent replicates
(n = 5). Error bars represent standard error.

Melondealdehyde (MDA) is a widely used marker of oxidative stress. Salt stress
significantly increased the MDA accumulation in all studied wheat genotypes (Figure 19).
However, genotype G 20-2 showed the lowest accumulation of MDA (10.43, 11.97 and
14.17 nmol g−1) under 4, 8, and 12 dS m−1 salt stress, respectively, and genotype G 24
showed the highest accumulation of MDA. The relative value is another important indicator
of salinity stress, which is shown in Figure 20. The highest relative value was found in G 24
in the case of all saline treatments and the lowest was found in G 20-2 genotype.
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Figure 19. Melondealdehyde (MDA) accumulation in leaf of wheat genotypes under various salinity
levels. The vertical bar indicates average data five independent replicates (n = 5). Error bars represent
standard error.
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3. Discussion
3.1. Agro-Morphology and Yield of Wheat

Salt stress significantly reduced the plant height and spike length of wheat. Salinity
stress inhibited the cell elongation, cell division, photosynthesis and nutrient uptake of
plants and finally reduced plant height and spike length of wheat [38]. Ouhaddach et al. [39]
reported that photosynthetic rate, transportation of compatible solutes and cell division
decrease due to salinity limited the crop growth rate. Ibrahimova et al. [40] stated that total
tillers and effective tillers are essential components of the yield. Salt stress significantly re-
duced the number of effective tillers at 12 dS m−1 salinity level. Asgari et al. [41] described
the severe reduction in tiller numbers of wheat under salinity. This phenomenon is also
supported by Asgari et al. [42], who reported that salinity stress critically influenced the
development and viability of primary and secondary tillers. It was reported that salt stress
inhibits the formation of tillers during their emergence and the rate of abortion increases
at late stages [41]. The spike length of wheat genotypes was significantly reduced due to
salinity stresses and there was significant difference among the wheat genotypes. Many
researchers reported the high effectiveness of salinity on spike lengths of wheat [43–46].
Premature senescence of different plant parts occurs due to salt stress, which reduces the
supply of assimilates to growing regions, ultimately reducing the length of the spikes [47].
Salinity stress significantly decreases the spikelet number spike−1 and grains spike−1 of
all wheat genotypes. These results indicate that higher levels of salinity decrease filled
grains spike−1 of wheat. Therefore, increased salinity resulted in an increased total num-
ber of empty grains spike−1, and hence decreased yield. Salinity stress causes early leaf
senescence which causes assimilate shortage during grain filling stage and finally increase
the number of empty grains [48]. It was reported that salinity reduces the translocation of
soluble carbohydrates to primary and secondary spikelets, increases the accumulation of
sodium and reduces the accumulation of potassium in all floral parts, inhibits the starch
synthetase activity in grains of wheat, and finally reduces the seed set [49]. Ali et al. [50]
also reported that ionic toxicity under salinity stress decreased pollen viability and finally
reduced seed sets in the panicle. Spikelet numbers spike−1 declined with increasing salinity
levels in different wheat genotypes and the salt-tolerant genotypes showed low reduc-
tion percentage (Table 3 and [41]). Thousand grain weight and grain yield of different
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wheat genotypes were significantly decreased with increasing salinity stress. Contents of
photosynthetic pigments and soluble proteins in the ovaries might be reduced due to salt
stress. As a result, ovary photosynthesis will be reduced and hence there is poor sugar
production in the ovaries leading to lower yield [51]. It was reported that salinity stress
reduces the number of fertile florets and inhibits the translocation of assimilate from shoot
to panicles, consequently reducing grain weight [38]. It was also reported that salt stress
causes retarded growth of the crops as a result of the low uptake of water and nutrients
and reduces the yield and yield components [52,53]. Shamsi and Kobraee [54] reported
that salinity significantly reduced 1000-grain weight in wheat, including lower reduction
rates in tolerant genotypes compared to salt-susceptible ones.

3.2. Accumulation of Compatible Solutes

To alleviate the physiological damage under salt stress, plants accumulate osmolytic
cytosolutes [44,55,56]. Proline is a well-known osmolyte which regulates the osmotic ad-
justment of plants under stress. Proline minimizes the production of ROS by scavenging
free radicals, and hence plays a vital role in preventing salt stress-mediated oxidative
damage and lowers the cell death. It stabilizes membrane structures, enzyme functions,
and maintains water status, and as a result inhibits stress-induced damaging effects on
cellular organelles [57–59]. Intercellular proline serves as an organic nitrogen reserve and
provides tolerance towards stress. Figure 9 shows that compared to the control, proline
accumulation was 2.0–2.5 times higher at lower salt stress and 3.0–5.5 times higher at higher
salt stress conditions. Ouhaddach et al. [39] also stated that salt-tolerant variety accumu-
lates more proline than salt-sensitive varieties, which is confirmed by the present study.
They suggested that the proline content in wheat genotypes is probably a positive adaptive
mechanism for overcoming the salt stress. Salinity stress significantly increased the accumu-
lation of glycinebetaine (GB) in all wheat genotypes (Figure 11). Through osmoregulation
or osmoprotection, GB reduced the intensity of abiotic stresses in plants [60]. In addition to
other roles, GB activates some stress-related genes, inhibits ROS accumulation and protects
photosynthetic machinery [61]. Proline and GB activate stress-related genes, regulate en-
zyme activity and buffer the photosynthetic machinery [62–64]. Both of these osmolytes
neutralize and bring down the reactive oxygen species (ROS) and malondialdehyde (MDA)
through increasing the enzyme activities associated with ROS scavenging [62,65].

The soluble sugar accumulation of all wheat genotypes was significantly increased
due to salinity stress (Figure 13). Our results are also in agreement with Heshmat et al. [66],
who stated that soil drenched with sea water significantly increased the total soluble
sugars. Many other researchers also stated that salt stress increased the accumulation
of carbohydrates such as sugars and starch [44,66,67]. Structural and functional changes
of the membrane destruction of soluble proteins is prevented through accumulation of
sugar under salt stress [49,68]. Shamsi and Kobraee [54] stated that there was more of an
increase of soluble sugars in a tolerant variety than a salt sensitive variety. Soluble proteins
also significantly increased with increasing salt stress conditions (Figure 15). Higher
accumulation of proline and protein and higher peroxidase (POD) activity are the indicators
of salinity tolerance [69,70]. Protein accumulations are particularly very much important
for cell survival and cause membrane stabilization under salt stress conditions [69]. Due to
salt stress, plants produce more proteins, which helps them to grow and develop under
saline condition [71]. Salt-tolerant genotype (G 20-2) produced higher soluble proteins due
to higher osmotic regulation mechanisms by reducing the sodium concentration in cell
cytoplasm than the susceptible (G 24) genotype.

3.3. Hydrogen Peroxide and Malondialdehyde Accumulation

The accumulation of excess amounts of ROS and MDA are indicators of oxidative
stress under salt stress [44,72,73]. Here, wheat genotypes were significantly different from
each other regarding the accumulation of H2O2 (Figure 17). These results are similar to
those found by Sairam et al. [74], who stated that salt-sensitive wheat cultivar accumulate
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significantly higher amounts of H2O2 and cause higher lipid peroxidation than the tolerant
cultivar. Hasanuzzaman et al. [72] stated that a higher accumulation of ROS enhances
the antioxidant defense. Therefore, ROS signaling is an important factor for stress tol-
erance in crops. In this study, increased amount of H2O2 accumulation was observed
with increased salinity level in all wheat genotypes, which is similar to the results ob-
served by Hasanuzzaman et al. [75]. However, at 12 dS m−1 salinity level, genotype G 20-2
showed the lowest accumulation of H2O2 and also the lowest relative value (117.52%)
(Figure 18). Chunthaburee et al. [76] reported that higher H2O2 production was noted in
the salt-susceptible cultivars and lower H2O2 production was noted in the salt-tolerant
cultivars. In this study, a higher accumulation of MDA was observed in salt-sensitive
wheat genotypes than the tolerant genotypes (Figure 19). Many researchers reported that
less accumulation of MDA is a sign of stress tolerance [77–79]. ROS and MDA hamper
cell membrane integrity in plants, which consequently increases electrolyte leakage. Fur-
thermore, root damage under salt stress might be due to higher root electrolyte leakage
resulting in osmotic suffering [80–82].

4. Materials and Methods
4.1. Plant Material and Treatment

On the basis of yield and yield contributing characters, five salt-tolerant genotypes
(G 13, G 20-1, G 9, G 22, G 20-2), one susceptible (G 24) genotype and one check variety of
wheat BARI ghom 25 (high yielding, salt-tolerant) were used as planting materials for this
experiment. The experiments of this study were conducted at the Laboratory of Department
of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU),
Gazipur 1706, Bangladesh. Sodium hypochlorite @ 2.5% was used for seed sterilization.
After being germinated on filter paper in Petri plates, four seedlings were transplanted
to plastic pots (20 L). The seedlings were nourished with full strength Hoagland nutrient
solution, as stated by Hoagland and Arnon [83]. Thirty days after sowing (DAS), different
salt treatments (4, 8 and 12 dS m−1) were applied by a modified Hoagland solution during
the whole period of study. Only Hoagland’s nutrient solution was provided to control
plants. Therefore, the treatment combinations were: control (0 dS m−1); 4 dS m−1 NaCl;
8 dS m−1 NaCl and 12 dS m−1 NaCl. The experimental pots were positioned in a completely
randomized design with five replications.

4.2. Assessment of Yield Contributing Parameters and Yield

The wheat was harvested at maturity. Yield data were recorded from each pot. Plant
height was measured by scale after harvest. Total tillers and effective tiller number plant−1

were counted from five plants per replication of each genotype of all the treatments. Then
the number was computed to per plant. Spikes from five harvested plants of each replication
were taken and the total number of spikelets was counted and averaged per spike. Wheat
grains yield was recorded on a 14% moisture basis.

4.3. Proline and Glycine Betaine (GB) Determination

Proline content was measured as described previously by Bates et al. [84].
Determination of glycinebetaine content was performed according to the method of

Grieve and Grattan [85].

4.4. Soluble Sugar and Soluble Protein Determination

Soluble sugar content was measured according to Yoshida et al. [86].
Soluble protein content was determined as described previously by Lowry et al. [87].

4.5. Determination of Hydrogen Peroxide and Melondealdehyde

Hydrogen peroxide (H2O2) was estimated as described previously by Velikova et al. [88].
Malondialdehyde (MDA) was estimated as described previously by Madhava Rao

and Sresty [89].
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4.6. Statistical Analysis

Statistics 10 software was used for statistical evaluation of the collected data. The data
were analyzed using the analysis of variance (ANOVA) technique and comparison of the
mean difference was carried out by the least significant difference (LSD) test with a 5%
level of significance.

5. Conclusions

In this study, we observed the agro-morphology, yield and biochemical response of
different wheat genotypes under four salt concentrations. This study revealed that different
wheat genotypes suffered differently from growth, yield and other yield related parameters
from salt exposure. Salt stress significantly increased the accumulation of ROS, which
causes lipid peroxidation (MDA). However, genotypes G 20-2 followed by G 13 and G 20-1
accumulated a significantly higher amount of proline, glycinebetain, soluble sugars, soluble
proteins, and less H2O2 and MDA. Genotypes G 20-2 followed by G 13, G 20-1 also showed
significantly higher yield. Based on the above results, genotypes G 20-2, G 13 and G 20-1
might be considered as potential for developing salt-tolerant wheat variety.
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