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Abstract: Rice grain production is important for the world economy. Determining the moisture
content of the grains, at several stages of production, is crucial for controlling the quality, safety, and
storage of the grain. This work inspects how well rice images from global and local descriptors work
for determining the moisture content of the grains using artificial vision and intelligence techniques.
Three sets of images of rice grains from the INIAP 12 variety (National Institute of Agricultural
Research of Ecuador) were captured with a mobile camera. The first one with natural light and
the other ones with a truncated pyramid-shaped structure. Then, a set of global descriptors (color,
texture) and a set of local descriptors (AZAKE, BRISK, ORB, and SIFT) in conjunction with the
dominate technique bag of visual words (BoVW) were used to analyze the content of the image with
classification and regression algorithms. The results show that detecting humidity through images
with classification and regression algorithms is possible. Finally, f1-score values of at least 0.9 were
accomplished for global color descriptors and of 0.8 for texture descriptors, in contrast to the local
descriptors (AKAZE, BRISK, and SIFT) that reached up to an f1-score of 0.96.

Keywords: rice grain; computer vision; global descriptors; local descriptors; moisture determination

1. Introduction

The moisture parameters of rice are monitored from the harvest stage when the grain
is normally harvested with moisture levels between 18 and 26% [1–4]. To ensure the safety
of the grain and that it is free of fungi and insects, the grain is dried quickly after harvest
at a moisture level below 15% [5–7]. During storage, the humidity of the rice must be
maintained between 12 and 14%, with storage variables of 25 ◦C temperature and 13%
humidity. Under this environment, the safety of the grain can be ensured for 17 months.
On the other hand, with 14% humidity, the storage time can be reduced from 3 to 7 months,
noting that storing the rice at 12% humidity ensures a longer storage time [8–10].

In the post-harvest processing stages, the moisture content (12–13%) of rice plays a
very important role for the quality of the final product, mainly in the characteristics of
whiteness and morphology of the final product [11,12]; however, during husking in rice
milling, a humidity of 12 and 13% is inadequate, with the most appropriate humidity being
15–16%, where less rice breakage is observed [12]. The average per capita consumption of
rice in the world and Ecuador is 58.4 and 53.2 kilos, respectively, being one of the most
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consumed products on the planet [13–15]. Rice consumption provides 20% of the world’s
metabolic energy supply.

There are several methods for determining moisture in grain [16], but the most reliable
methods are slow, and the fastest methods are not accessible to all farmers. Nevertheless,
artificial intelligence has advanced by leaps and bounds in recent years. In this work,
an alternative for training humidity classifier models is explored using computer vision
algorithms and artificial intelligence.

Developments using computer vision to determine moisture in corn kernels, such as
the work of [17], conclude that using this method has potential for determining moisture.
In this study, an optimized set of weight, morphology, and color variables were used, and
an R2 greater than 0.96 was obtained when linear regression was used.

It has also been used to quantify changes in grain morphological characteristics in
Western Canadian wheat classes as a function of moisture content. This test was performed
at moisture contents between 12 and 20%, using potassium hydroxide (KOH) concentrations
to regulate relative humidity [18].

Changes in appearance and morphology of cereal grains attributed to moisture content
were detected by the human eye and evaluated using computer vision techniques in a study
examining three cereal species: Canada Western Amber Durum wheat (CWAD), Canada
Western Red Spring wheat (CWRS), and barley. Grains were conditioned at moisture
contents of 12, 14, 16, 18, and 20% to take photographs. Moisture content was found to
significantly affect grain color and texture [19].

The quality of the grains has been also evaluated in terms of their physical factors
such as moisture content, bulk density, grain size, hardness, grain density, and number of
damaged grains. Using techniques, such as color image analysis, hyperspectral imaging,
X-ray imaging, and thermal imaging, these techniques are being investigated for their
advantages in controlling production chains and grain quality, as there is great interest in
developing these technologies [20].

Figure 1 shows the stages used in the classification of grains according to the informa-
tion in the overview in [21]. The first stage is image acquisition, which can be of different
types; the second stage is preprocessing, in which the image is cropped, scaled, enhanced,
and the colors are converted; the third stage is segmentation, in which the elements of
interest in the image are obtained; and finally, there is a classification stage through several
alternatives of algorithms for learning and classifying.
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The technique called Bag of Visual Words (BoVW) has also been used to classify
im-ages of weed species in some studies, as shown in [22]. In this work, the images were
de-composed into a set of generalized features that corresponded to visual features. By
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ap-plying BoVW, relationships represented as frequency vectors and generalized features
of reference images were generated.

The BoVW technique [23] consists of three steps: The first step consists in creating a
visual dictionary based on a considerable number of images, which may be images of a
different type and not necessarily plants, and from which information must be extracted
using extractors and descriptors of keypoints. The second step consists of generating a set
of tagged images for which the features of new images are extracted and declined, and
from which their descriptors of keypoints refer to the visual dictionary according to their
similarity. In a final step, an image classifier is trained using a support vector machine
(SVM) [24]. Then, a new BoVW vector is generated for each image and related to the
codebook. A generalized classifier is then used to decide to which specific category an
image belongs.

In many applications based on the use of artificial vision, the process of image pairing
is common, which includes five main stages: first, feature recognition and description;
and second, determining the correspondence between the features of the images, rejecting
atypical features, deriving the transformation function, and reconstructing the images [25].
For the detection and description process, the following algorithms can be used: SIFT [26],
SURF [27], KAZE [28], AZAKE [29], ORB [30], and BRISK [31].

Once the features are constructed from the images, machine learning models, namely
Random Forest (RF) and XGBoost, are used to perform a classification and regression
analysis on the data. Both RF and XGBoost are ensemble machine learning models that
fit several decision-based classifiers (trees) on various subsamples of the dataset and use
averaging to improve the predictive accuracy and control overfitting. These algorithms
perform well on small datasets; thus, they are suitable for the present problem [32,33].

The main goal of this work is to detect humidity in rice grain using computer vision
techniques on visible spectrum images. In this work, both global and local descriptors are
used for detecting moisture content in grains using images from mobile devices. Local
descriptors are processed using the BoVW technique to define the vector of features. Once
the features are engineered according to the discussed methods, Random Forest (RF) and
XGBoost classifiers and regressor are constructed. The performance of the classifiers and
regressor is explored and compared in detail.

The rest of the paper is organized as follows. The Methodology Section describes the
procedures consideration of data acquisition preprocessing methods. The Results Section
presents the classification and regression results with the different algorithms used, i.e.,
Random Forest and XGBoost classifiers and regressor. A comparison of their performances
is presented with an analysis of variance. Finally, the Conclusion Section outlines the main
conclusions of this experimental study and suggests future research.

2. Materials and Methods

This section describes the treatment and preparation of the rice grains used for im-
aging, the techniques used to analyze the images, and the procedure for training the models
to predict moisture content in rice grains.

2.1. Preparation of Rice Samples

The rice used in this study corresponds to the INIAP 12 variety harvested in August
2020 in Milagro Canton, Guayas Province, Ecuador. The rice fields are located at an altitude
of 10 m above sea level. The harvesting process was carried out manually and the samples
were stored in silos of 10 tons for a period not exceeding 10 h.

For the analysis of the images and the identification of their humidity, homogeneous
samples with humidity between 10 and 15%, with a 1% increase, were prepared. That is,
humidity is in {10, 11, 12, 13, 14, 15} humidity percent. The homogeneous samples were
obtained using the gravimetric method of Gough [34], which allows for the application of
Equation (1) for preparing the inhomogeneous batch at the corresponding humidifies.
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Considering Gough’s method, homogeneous samples were prepared by conditioning
10 lots of 250 g each. Five moisture values were determined, corresponding to a moisture
content between 10% and 15%, considering the data in [35]. Then, the grains were stored
and kept in airtight bags at a refrigeration temperature of 5◦ C. To confirm the homogeneity
of the samples, the moisture content of portions of the grains of each bag was determined.
An analysis of variance was performed to determine if there was a significant difference
between the samples of each standard according to their respective moisture content.

Q =
A (b − a)

100 − b
(1)

where Q corresponds to the weight of the water to be added in grams, A is the initial
weight of the subsample in grams, a is a percentage of the initial moisture content of the
subsample, and b is the percentage of the desired final moisture content in the subsample.

2.2. Image Acquisition

After the initial steps, independent samples corresponding to homogeneous moisture
levels 10, 11, 12, 13, 14, and 15% were prepared. For each sample, a set of photographs
was acquired for the analysis by using a mobile camera. In total, three different groups of
samples were prepared and labelled as G01, G02, and G03 (Figure 2).
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Figure 2. Examples of image acquisitions for analysis: (a) G01 comprises natural white light (60 W),
(b) G02 comprises randomly scattered backlit images with white light source (60 W), and (c) G03
comprises white backlit images (60 W) of grains scattered in a single layer.

The samples in the G01 dataset were collected with natural white light and a cell
phone fixed on a static base, which was a stand holder for the mobile phone. These samples
consist of a multilayer image captured using natural white light (60 W). On the other hand,
the G02 and G03 samples were taken using a truncated pyramid-shaped structure (see
Figure 3). These last datasets consist of randomly scattered backlit images captured with
white light source (60 W) in a single layer with similar light conditions.

In the truncated pyramid-shaped structure, a camera was set at the top while a
container with a rectangular transparent bottom supporting the rice grains in such a way
as to allow for the passage of white directional light from a lamp LED through the rice
grains [36]. Additionally, to prevent the outside light from changing the intensity of the
analyzed images inside the structure, a camera with outside light isolation was used. The
height h between the camera lens and the lower position of the rice grains was 17 cm for
acquiring all the sample images. Each time a photograph was taken, a refill was carried
out. This means that the grain sample in the device was replaced by a new sample of the
same class (moisture level).
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Figure 3. Arrangement of the grains in a structure designed to obtain images.

A set of 75 photographs were taken for G01 with a resolution of 4032 × 3024 pixels,
a flash illumination, and no image enhancement effect. The photographs were taken in
an environment with 60 W of directional LED white light, without using the structure
in Figure 2.

In group G02, a total of 70 images were taken with the device shown in Figure 2 and
with a resolution of 1600 × 1200 pixels. A white LED directional lamp (60 W) was used
for background illumination, and the grains were randomly scattered over the light source
without checking whether there was a single layer of grains.

Finally, in group (G03), a total of 218 images were taken with a resolution of
3472 × 4624 pixels. The grains were also scattered in a single layer within the rectan-
gular box and the same light source used in G02 was used.

2.3. Image Preprocessing for Feature Extraction

The photographs of the three groups were cropped before processing according to
their resolutions to keep the central region information and to evaluate the power of dis-
crimination of moisture based on the available information. Then, to obtain the image
content, vectors of features with global and local descriptors were calculated.

2.3.1. Global Descriptors

The global features describe the whole image [37] as a vector. They are compact
representations where each image corresponds to a point in a high-dimensional feature
space, and they focus on color and texture.

• The color histogram is rotation and scale invariant and is used under the hypothesis
that images with similar color model distributions are semantically similar. The
color model is a mathematical representation that usually uses three or four different
components [38]. Some common color models are Gray, HSV, and RGB. The grayscale
color model (GRAY_CH) defines color by using only one component, lightness, which
is measured in values ranging from 0 to 255. The RGB color model (RGB_CH) is a
color model with three dimensions—red, green, and blue—that are mixed to produce
a specific color. The HSV color model (HSV_CH) is a cylindrical color model that
remaps the RGB primary colors into three dimensions that are easier for humans to
understand. The color moments (HSV_CM) represent the color distribution by three
moments: the average is the first-order moment, the variance is the second-order
moment, and the skewness is the third-order moment.

• Local binary patterns (LBP) [39] look at points surrounding a central point and test
whether the surrounding points are greater than or less than the central point. It is
illumination and translation invariant. The image is converted to grayscale, and a
histogram is computed with a mask of P = 16 and R = 10.

• Haralick (HRLK) [40] distinguishes between rough and smooth surfaces using the
gray level co-occurrence matrix (GLCM), which uses the adjacency concept in images.
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It looks for pairs of adjacent pixel values that occur in an image and keeps recording it
over the entire image.

• A gray level co-occurrence matrix (GLCM) is a histogram of co-occurring gray-scale
values at a given offset over an image [41]. It is created in four directions with the
distance between pixels as one. Texture features are extracted from the statistics
of this matrix according to the correlation of a couple pixels’ gray-level value at
different positions.

The global descriptors are evaluated with a 10-fold cross validation technique, which
is a data resampling method (without replacement) to prevent overfitting and to assess
the generalization ability of predictive models. Each time, one of the K subsets is used
as the testing set and the other K−1 subsets are put together to form the training set and
compute the f1-score on the test set [42]. The f1-score is an error metric that measures
model performance by calculating the harmonic mean of precision and recall [43].

2.3.2. Local Descriptors

Besides, local features refer to image neighborhoods computed at multiple interest
points in the image. They are consequently more robust to occlusion and clutter. Features
consist of keypoints and descriptors [44]. Key points are the “stand out” points in an image,
so no matter whether the image is rotated, shrunk, or expanded, its keypoints will always
be the same. In addition, a descriptor depicts the keypoint in the image.

In this study, the algorithms of SIFT, BRISK, ORB, and AKAZE were used to detect
local features.

• Scale Invariant Feature Transform (SIFT) [44] is robustly invariant to image rotations,
scale, and limited affine variations, but its main drawback is high computational cost.

• Binary Robust Invariant Scalable Keypoints (BRISK) [45] is invariant to scale, rotation,
and limited affine changes. It uses an easily configurable circular sampling pattern
from which it computes brightness comparisons to form a binary descriptor string.

• Oriented FAST and Rotated BRIEF (ORB) [15] is invariant to scale, rotation, and limited
affine changes.

• AKAZE [46] is invariant to scale, rotation, and limited affine changes and has more
distinctiveness at varying scales because of nonlinear scale spaces.

Once local features were detected, the bag of visual word (BoVW) method [47] was
used to quantify and to describe regions in and around keypoints of interest (Figure 4).
Detected keypoints were treated like words and were used to construct a vocabulary with
the k-means clustering algorithm to identify groups of similar local descriptors and to take
some of them to represent an image. The keypoints were quantified and pondered by the
Tf-Idf strategy to represent the images by a histogram (Equation (2)).

xi =
ni

ND
log

(
N
Ni

)
(2)

The Tf-Idf value increases proportionally to the number of times a word appears in an
image but is offset by the frequency of the word in the image collection. It is represented
in Equation III, where ni is the number of repetitions of each characteristic (word) i in the
image, ND is the total number of characteristics in the image, N is the total number of
images used to construct the vocabulary, and Ni is the number of the image where the
characteristics appear. Afterwards, the resulting histogram is reduced into a vector for each
humidity level, and each image is represented as a frequency histogram.

Then, histograms are normalized, and a supervised approach is used with two classi-
fications and two regression algorithms. The classifiers are the Random Forest classifier
(RFC) and XGBoost classifier (XGBC) and the regressors are the Random Forest regressor
(RFC) and XGBoost regressor (XGBR). The Random Forest algorithm consists of several
simple decision trees that use averaging to improve the predictive accuracy and control
overfitting by building estimators from a bootstrap sample from the training set [48]. On
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the other hand, the XGBoost algorithm is also a decision tree ensemble designed to be
highly scalable that provides a parallel tree boosting based on gradient boosting [49].
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A common ratio for evaluating the models is a 70/30 split for the training and testing
datasets [50], selected without replacement. It is because the visual words vocabulary for
the BoVW method was created dynamically for each training set using a k-means clustering
algorithm, and this process was computationally expensive. Finally, the effectiveness of
these descriptors is also evaluated using the measured f1-score.

3. Results
3.1. Global Descriptors

The global descriptors capture the information from the whole image by a single
feature vector, thus cutting the images to keep the central regions. Figure 5 schematically
illustrates how the borders are gradually removed, and after a few steps, the final new
image just contains the central area. It is anticipated that, as the region of the grains is
smaller, the global descriptors have a higher and then a lower value of the f1-score. It is
because the image becomes too small and there is not enough information, or the outer
border region of the box is noise, given that the edges represent other information related
to the surface.

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 19 
 

 

border region of the box is noise, given that the edges represent other information related 
to the surface. 

  
Figure 5. Cropping an image from G03 to evaluate global descriptors. 

Results of regression and classification algorithms for the different cropping are pre-
sented in Figures 6–8. The color global descriptors, the most basic quality of the visual 
contents, are beneficial to describe the moisture levels independently of the analyzed color 
space (Gray, HSV, RGB). It is also shown that descriptors of the images taken in controlled 
conditions like G02 and G03 seem to give better performance than G01. 

 
(a) Classifiers 

Figure 5. Cropping an image from G03 to evaluate global descriptors.



Agronomy 2022, 12, 3021 8 of 17

Results of regression and classification algorithms for the different cropping are pre-
sented in Figures 6–8. The color global descriptors, the most basic quality of the visual
contents, are beneficial to describe the moisture levels independently of the analyzed color
space (Gray, HSV, RGB). It is also shown that descriptors of the images taken in controlled
conditions like G02 and G03 seem to give better performance than G01.
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Figure 7. F1-score average performance with global descriptors between classifiers and regressors
when cropping the images in dataset G02.

Besides, results show that texture global descriptors (LBP, Haralick, GLCM) also al-low
for detecting humidity in G03 in classification and regression algorithms but do not perform
well for discriminating the humidity levels when there is not enough information, like
G01 and G02. This can be explained due to visual patterns in the images in those datasets
that do not contain enough structural information of surfaces and their relationship to the
surrounding environment to differentiate the humidity intra-class.

Classifiers and regressors allow for discriminating the grain moisture with global
features. The f1-scores obtained with color and texture features suggest a good performance
with both techniques; however, classifiers seem to work a little better. The results also
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suggest that, with enough information, a prediction model can be trained with an image
size of 940 × 940 pixels based on their color features.

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 19 
 

 

 
(b) Regressors 

Figure 7. F1-score average performance with global descriptors between classifiers and regressors 
when cropping the images in dataset G02. 

 
(a) Classifiers 

Agronomy 2022, 12, x FOR PEER REVIEW 11 of 19 
 

 

 
(b) Regressors 

Figure 8. F1-score average performance with global descriptors between classifiers and regressors 
while cropping the images in dataset G03. 

Besides, results show that texture global descriptors (LBP, Haralick, GLCM) also al-
low for detecting humidity in G03 in classification and regression algorithms but do not 
perform well for discriminating the humidity levels when there is not enough infor-
mation, like G01 and G02. This can be explained due to visual patterns in the images in 
those datasets that do not contain enough structural information of surfaces and their re-
lationship to the surrounding environment to differentiate the humidity intra-class. 

Classifiers and regressors allow for discriminating the grain moisture with global 
features. The f1-scores obtained with color and texture features suggest a good perfor-
mance with both techniques; however, classifiers seem to work a little better. The results 
also suggest that, with enough information, a prediction model can be trained with an 
image size of 940 × 940 pixels based on their color features. 

Figure 9 shows the average f1-score of these images with the different algorithms. It 
shows that there are visual patterns of color and texture to discriminate the different mois-
ture levels, especially in controlled environments. It also shows that the color descriptors 
stand out for their good performance with little information. 

 
(a) G01 

Figure 8. F1-score average performance with global descriptors between classifiers and regressors
while cropping the images in dataset G03.

Figure 9 shows the average f1-score of these images with the different algorithms. It
shows that there are visual patterns of color and texture to discriminate the different mois-
ture levels, especially in controlled environments. It also shows that the color descriptors
stand out for their good performance with little information.
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Figure 9. Performance of global descriptors under the datasets G01 (a), G02 (b), and G03 (c) with
cropped images (940 × 940).

Subsequently, Table 1 shows the average f1-score for the evaluated prediction algo-
rithms and global features with cropped images (940 × 940) of each dataset—G01, G02,
and G03. The f1-score values suggest that G02 and G03 have a better f1-score with most
global descriptors compared to G01. This can be related to the truncated pyramid-shaped
structure used for capturing these datasets. A small group of images like G01, which
were captured with natural light, is propene to noise due to external factors; consequently,
finding patterns is more difficult, and a bigger dataset is required to handle this noise with
other techniques.
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Table 1. Average f1-score performance of different classifier algorithms with global descriptors in
940 × 940 images.

Global Descriptors Dataset Feature Size RFC XGBC RFR XGBR

Color histogram 1D CRAY_CH G01 92 0.66 0.55 0.66 0.6
Color histogram 3D HSV_CH G01 1728 0.73 0.7 0.57 0.55
Color histogram 3D RGB_CH G01 8000 0.75 0.6 0.65 0.58
Color moments HSV_M G01 9 0.51 0.55 0.57 0.67
LBP LBP G01 34 0.72 0.69 0.68 0.62
GLCM GLCM G01 24 0.53 0.51 0.58 0.62
Haralick HRLK G01 13 0.53 0.55 0.6 0.49

Color histogram 1D CRAY_CH G02 20 0.81 0.66 0.63 0.7
Color histogram 3D HSV_CH G02 8000 0.72 0.7 0.46 0.63
Color histogram 3D RGB_CH G02 8000 0.8 0.72 0.65 0.65
Color moments HSV_M G02 9 0.73 0.72 0.65 0.71
LBP LBP G02 34 0.83 0.80 0.7 0.7
GLCM GLCM G02 13 0.73 0.71 0.69 0.69
GLCM HRLK G02 24 0.73 0.64 0.69 0.67

Color histogram 1D CRAY_CH G03 44 0.96 0.92 0.92 0.87
Color histogram 3D HSV_CH G03 8000 0.9 0.92 0.86 0.85
Color histogram 3D RGB_CH G03 8000 0.87 0.9 0.9 0.86
Color moments HSV_M G03 9 0.75 0.77 0.72 0.7
LBP LBP G03 32 0.75 0.78 0.65 0.58
GLCM GLCM G03 13 0.87 0.85 0.83 0.84
Haralick HRLK G03 24 0.85 0.81 0.81 0.79

Likewise, the results evidence that color descriptors have a better f1-score with values
higher than 0.8 in images taken under controlled conditions and an f1-score of 0.7 when
images were not taken under controlled conditions, as is shown with the descriptors
RGB_GH and HSV_CH in G01. Moreover, LBP texture descriptors report f1-score values
higher than 0.75 in G03.

Regarding the results, one-way ANOVA was performed with Tukey’s post hoc test over
the f1-score values of each classification and regression algorithm, and a p-value of 0.00147
was reached, which means that there are statistically significant differences between them
(Table 2). In addition, a Tukey’s test was used to perform a pairwise comparison (Figure 10)
with a 95% confidence level to see differences between groups. The difference between
groups XGBC-RFC and XGBR-XGBC is statistically significant because the intervals for the
mean differences do not contain the zero. The pairwise results are reported in Table 2, and
for the groups with a small p-value (<0.05), a similar conclusion can be yielded.

Table 2. Tukey’s multiple comparisons of classifiers’ and regressors’ f1 mean scores.

Mean
Difference

Lower
Estimation

Upper
Estimation p-Adjusted

RFR-RFC −0.037281746 −0.08877360 0.01421011 0.2423261
XGBC-RFC −0.003769841 −0.05526170 0.04772201 0.9975838
XGBR-RFC −0.069207058 −0.12069891 −0.01771520 0.0033528
XGBC-RFR 0.033511905 −0.01797995 0.08500376 0.3344428
XGBR-RFR −0.031925312 −0.08341717 0.01956654 0.3782033

XGBR-XGBC −0.065437216 −0.11692907 −0.01394536 0.0063473

3.2. Local Descriptors

On the other hand, the local descriptors analysis, which identifies prominent image
regions that have rich local information (such as color or texture) and are more robust to
occlusion and clutter, also reported good results. Figure 10 shows the performance of them
when cropping the borders of the image, and it shows that, when the image is very small,
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there is not enough information to identify local descriptors and to define a vocabulary and
a feature vector. The smallest image required to identify the descriptors is 146 × 146 pixels
for images taken in a controlled environment.
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Figure 11 suggests that, with enough visual information, AKAZE, BRISK, and SIFT
local descriptors are significantly better for moisture detection because most of their f1-score
values were over 0.75, and they achieved values higher than 0.8 with an image size of at
least 660 × 660 pixels.

The local features were also evaluated with cropped images in the same way as
the global descriptors in Table 3. Handling these features requires more computational
re-sources and time for training; however, the results indicate a better performance for
deter-mining the different levels of humidity. The reported f1-score values were over 0.9
for BRISK, SIFT, and AKAZE local descriptors. In addition, a one-way ANOVA test was
also performed, and a p-value of 0.00114 was obtained. This demonstrates again that there
are statistically significant differences between the algorithms.

Table 3. F1-score over the local features with the BOWN technique.

Local Descriptors Feature Size RFC XGBC RFR XGBR

BRISK 70 0.96 0.87 0.93 0.88
SIFT 80 0.93 0.85 0.79 0.74
AKAZE 70 0.98 0.78 0.82 0.72
ORB 70 0.67 0.59 0.68 0.58
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SIFT is robust local descriptor that can reliably identify objects even in messy situations
and with partial occlusion [26]; however, its calculation speed is low, which makes it
complicated to use in real-time applications.

On the other hand, AZAKE, ORB, and BRIEF are faster binary descriptors based on
the intensity information because they encode information in a series of numbers like a
fingerprint. In terms of f1-score, the AZAKE, BRISK, and SIFT local descriptors perform
well for detecting humidity levels, and ORB is the worst.

4. Conclusions

In this work, global and local descriptors were used to detect humidity moisture in
images taken with natural light and under controlled conditions. Various image features
were engineered and used to fit Random Forest and Boost classifier and regressor models.

The best results for classification and regression algorithms were achieved with texture
and global features due to the f1-score reaching above 0.85. The classifiers detect moisture
with an f1-score of up to 0.96 for color descriptors (GRAY_H) and up to 0.87 for texture
descriptors (GLCM). The regressors also reached values of 0.92 with color descriptors
(GRAY_H) and 0.84 with texture descriptors (GRAY_H). It was evidenced that the color
feature has a key role in humidity prediction.

The BoVW technique is also an efficient image representation in the humidity levels
classification task; however, a significant amount of time and data is required to train a
classifier. The f1-score values over 0.9 suggest that they are good for detecting moisture
levels with the BRISK, SIFT, and AKAZE local features The classifiers reached an f1-score
of 0.98 with AKAZE, 0.96 with BRISK, and 0.93 with SIFT; in a similar way, the regressors
reached a value of 0.93 with BRISK, 0.82 with AKAZE, and 0.79 with SIFT.

For future work, images will be collected under different conditions for extracting
a variety of color and texture patterns, as well as performing a segmentation analysis.
Thus, robust patterns can be obtained to better handle noise and explore samples of grains
un-der a combination of different moisture levels. It is also recommended to increase the
dataset size due to exploring other robustness techniques like neural networks and deep
learning classifiers.
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