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Abstract: Combining optical and synthetic aperture radar (SAR) data for crop mapping has become a
crucial way to improve classification accuracy, especially in cloudy and rainy areas. However, the
acquisition of optical images is significantly unstable due to the influence of cloudy and rainy weather,
which seriously restricts the application of this method in practice. To solve this problem, this study
proposed an optical-SAR imagery-based rice mapping method which has the advantages of less
dependence on optical images, easy operation and high classification accuracy. To account for the
trait of sparse availability of optical images, this method only needs one clear sky optical image in the
rice growth period and combined it with multi-temporal SAR images to achieve a high accuracy rice
mapping result. Meanwhile, this paper also proposed a comprehensively multi-scale segmentation
parameter optimization algorithm, which considers the area consistency, shape error and location
difference between the segmented object and reference object, and adopts an orthogonal experiment
approach. Based on the optical image, the boundaries of the parcel objects can be segmented, which
were subsequently used to perform the object-oriented classification. The results show that the overall
accuracy of the proposed method in Yangzhou City is 94.64%. Moreover, according to a random pick
test, it is encouraging that the proposed method has strong robustness in response to the instability
of the acquisition time of SAR images. A relatively high overall accuracy of 90.09% suggested that
the proposed method can provide a reliable rice mapping result in cloudy and rainy areas.

Keywords: rice mapping; data fusion; multi-scale image segmentation; operational system

1. Introduction

As an important global food crop, obtaining the rice area and distribution informa-
tion are of great significance for rice growth tracking, cultivation management, disaster
monitoring and yield forecasting [1,2]. Conventional surveys on rice planting area are
conducted through statistical sampling, field surveys, etc., which are prone to be subjective,
less efficient and costly. Therefore, rice mapping using optical and synthetic aperture radar
(SAR) satellites has become the mainstream method for its advantages of low cost, high
precision and timeliness [3,4].

The optical image is the main data source for rice mapping. At present, the commonly
used optical remote sensing satellites mainly include MODIS, Landsat series, Sentinel-2, GF
series, etc. Although optical remote sensing images can produce relatively high accuracy
in rice mapping [3,5], the data availability is significantly affected by cloudy and rainy
weather (frequent in some major rice-growing areas in southern and eastern China), which
hampers operational application of such techniques [6].

On the other hand, active remote sensing allows all-weather and day–night observa-
tion, which guarantee data acquisition on continuous growth stages of rice [7]. In recent
years, some studies have shown the rice phenology information that were indicated by
SAR time-series data, together with some machine learning methods, can be effectively
used for rice mapping [8]. For example, Talema and Hailu [4] used classification and
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regression trees (CATR) to extract the rice planting area in Ethiopia, and the classification
accuracy reached 79%. Mansaray et al. [9] used random forest (RF) and support vector
machine (SVM) to extract rice area, and, under different feature combinations, the highest
accuracy achieved by SVM and RF were 93.4% and 95.2%, respectively. However, the
significant salt-and-pepper noise issue of SAR images pose great challenges to rice fine
mapping [10]. Therefore, some studies attempted to combine optical and SAR images
that takes advantage of both rich spectral information and stable temporal information for
improving the performance of rice mapping [9,11]. However, the information from both
type images were merged at the pixel level [12], and only a few studies were conducted
at a parcel level that used optical images to extract boundaries of parcels in advance [13].
Moreover, in these studies, there is still insufficient research on the optimization of image
segmentation parameters [14].

It is noted that “single-phase optical and multi-phase microwave images” are a com-
monly available data combination form in cloudy and rainy areas after analyzing the
availability of remote sensing images. Taking the Yangzhou area as an example, from
2016 to 2020, only two cloud-free optical images were obtained in different rice growth
stages in 2019, whereas only one cloud-free optical image was acquired in the remaining
years. Therefore, based on the traits of the remote sensing data availability in cloudy
and rainy areas, this study attempts to propose a method that couples multiple sources
of remote sensing data and image processing and modeling methods for rice mapping.
The method makes full use of the parcel boundary information derived by optical images
and growth and phonological traits of rice from SAR images, which includes steps of
preliminary classification, multi-scale segmentation, feature extraction and selection, and
machine learning-based rice classification. The research objectives mainly include:

(1) To propose a method that has operational potential for rice mapping based on the
remote sensing data availability traits in cloudy and rainy areas;

(2) To obtain high quality rice parcel boundaries serving as analyzing units, and for
the method for optimizing parameters in the automatic multi-scale segmentation
procedure to be established and evaluated;

(3) To evaluate the performance of the proposed method and compare it with conven-
tional methods that are solely based on multi-temporal optical images or multi-
temporal SAR images. In addition, a “random pick” strategy is used to generate a
SAR image series on key growing stages of rice in order to test the adaptability of the
novel method in an operational scenario.

2. Materials and Methods
2.1. Study Area

The study area was located in Yangzhou City, Jiangsu Province, China, as shown in
Figure 1a,b. It has a subtropical monsoon climate, which is featured with cloudy and rainy
weather during the rice growing season. The study area was a representative rice planting
area in southern China, where the farmland is small and fragmented and the climate is
cloudy and rainy, which makes it an ideal place for testing rice mapping methods. The
key growth stages of rice in the study area include the transplanting, tillering, jointing and
heading stages, as shown in Figure 1c.

2.2. Remote Sensing and Field Survey Data

Sentinel-1 and Sentinel-2 data acquired between June and August in 2018, 2019 and
2020 were employed in this study (Figure 2). The main parameters of Sentinel-1 and
Sentinel-2 images are shown in Table 1. The acquisition dates of the used satellite images
are illustrated in Figure 3. Unlike the SAR data that were continuously acquired from 2018
to 2020, there was only one cloud-free optical image acquired in both 2018 and 2020 (on 18
July which was at the tillering stage in 2018, and on 1 August which was at the jointing
stage in 2020, respectively). In 2019, there were only two available cloud-free optical images,
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which were acquired at the transplanting stage (3 June) and the jointing stage (2 August),
respectively.

Figure 1. Geographical location of the study area, field survey and sample points. (a) Location of the
study area; (b) field survey and sample points in the study area; (c) four key growth stages of rice in
the study area.

Figure 2. A demonstration of optical (Sentinel-2, Red: Band8, Green: Band4, Blue: Band3) and
synthetic aperture radar (SAR) (Sentinel-1 VV) images.
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Figure 3. Field survey calendar and available remote sensing images within 2018–2020.

Table 1. Main parameters of the used Sentinel-1 and Sentinel-2 images.

Sentinel-1 Sentinel-2

Indicators Information Band Wavelength
(µm) Resolution (m)

Mode IW Band1 0.443–0.453 60

Polarization VV, VH
Band2 0.458–0.523 10
Band3 0.543–0.578 10

Band C Band4 0.650–0.680 10

Resolution 10 m
Band5 0.698–0.713 20
Band6 0.733–0.748 20

Centre
frequency 5.4 GHz

Band7 0.773–0.793 20
Band8 0.785–0.900 10

Product type Ground Range
Detected (GRDH)

Band9 0.935–0.955 60
Band10 1.360–1.390 60

Pass direction Ascending Band11 1.565–1.655 20
Band12 2.100–2.280 20

In addition, field surveys were conducted at the end of the jointing stage on three
consecutive years. A total of 96, 151 and 173 rice fields were investigated from 2018 to
2020, respectively. Referring to these field survey samples, 250 rice sample points and
50 regions of interest (ROIs) were further obtained by visual interpretation against a high-
resolution image in each year. In this study, by combining sample points with ROIs, the
representativeness of the sample can be effectively guaranteed, which is conducive to
remote sensing recognition and accuracy verification of ground objects. In addition to
rice, the classes corresponding to the water body, artificial surface and other vegetation
were also interpreted with 250 sample points and 50 ROIs in each class. Considering the
study area’s size and the distribution of ground objects, the samples were trained and
validated in a 4:6 ratio (Figure 1). In addition, according to the ground survey and visual
interpretation, we drew the boundaries of 80 rice plots to evaluate the performance of
multi-scale segmentation.

2.3. Methods for Rice Mapping
2.3.1. Rice Mapping Method by Fusing SAR and Optical Images (SOI)

Based on the commonly available scenario of “single-phase optical and multi-phase
microwave images” in cloudy and rainy regions, this method aims to take full advantage
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of SAR and optical images in rice mapping, and reduces the dependence on the acquisition
time of the optical image. The technical workflow of the method is illustrated in Figure 4,
which includes the following steps:

(1) Preliminary classification based on single-phase optical image

Firstly, with optimized spectral features generated from Sentinel-2 image bands (more
details in Section 2.4), a preliminary classification model is established by SVM to exclude
some ground objects (i.e., the artificial surface) that are evidently not rice, and thus simplify
image segmentation and rice mapping.

(2) Optical image segmentation and object-based feature extraction from SAR images

A multi-scale segmentation was conducted to extract boundaries of rice parcels based
on the Sentinel-2 image and the preliminary classification result. Then, the parcel boundary
information is used to handle the features from the SAR time-series images. Detailed
processes could be found in Sections 2.4 and 2.5.

(3) Rice mapping and evaluation of methods’ adaptability to operational scenario

Based on the object-based time-series SAR features, the classification model for rice
mapping is established. In this process, different machine learning algorithms are tested
and compared in performance evaluation (details are fully described in Section 2.6). In each
of the four rice growth stages, one SAR image is randomly selected to form a time-series
of SAR images for rice mapping, so as to test the sensitivity of the proposed method to
the slight difference of SAR image acquisition time. Further, to evaluate the capabilities of
polarization features and texture features in rice extraction, three different feature sets were
compared, including the pure polarization feature set (PPF), the pure texture feature set
(PTF), and the joint set of polarization features and texture features (PFTF).

Figure 4. Illustration of the rice mapping method. PPF means the pure polarization feature set; PTF
means the pure texture feature set; PFTF means the joint set of polarization features and texture
features.

2.3.2. Rice Mapping Methods Based on Pure Optical Images (POI) and Pure SAR Images
(PSI) for Comparison

To assess the performance of the SOI method, two conventional strategies that map
rice based on pure optical images (POI) and pure SAR images (PSI) were compared. For the
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POI-based strategy, two Sentinel-2 images on the tillering and jointing stages in 2019 were
analyzed. For the PSI-based strategy, the pixel-level classification was conducted based on
the time-series microwave images from 2018 to 2020 (Figure 5). For POI and PSI, similar
feature selection and machine learning approaches to SOI were adopted.

Figure 5. A comparison of different strategies for rice mapping.

2.4. Feature Selection for Rice Mapping

Stable and effective features are crucial for rice mapping with remote sensing data.
Optimal feature sets were generated from candidate optical and SAR features considering
both feature sensitivity and information redundancy for different classification strategies.

(1) Candidate optical and SAR features

The candidate optical features mainly include 10 spectral band features and 8 clas-
sic vegetation indices (VIs) that can effectively indicate the physiological state of plants
(Table 2). These VIs are sensitive to vegetation targets and are frequently used for crop
mapping and monitoring [15]. The candidate SAR features mainly include 2 polarization
features and 8 texture features that are generated by the gray-scale co-occurrence matrix
(with a 5×5 window and 32 levels). The VV and VH polarization are significantly affected
by variation of soil moisture and canopy structure. The texture features of SAR images are
derived from the gray co-occurrence matrix that are able to provide information about the
spatial pattern among image pixels (Table 2) [16]. The above features were extracted by
ENVI 5.3 software.

(2) Selection of features for preliminary classification

Among the 18 candidate optical features in Table 2, an independent t-test was used
to evaluate their sensitivity in classifying the four ground object types, with a criteria of
p < 0.01. Within the sensitive features, a correlation analysis was carried out among features
to reduce information redundancy. The R2 > 0.8 was used as the relevant criterion for
each pair of features. Combined with the sensitivity result of the t-test, the features with
weak sensitivity were eliminated according to the p-value until no features were highly
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correlated. As a result, this yielded the optimized feature set with strong sensitivity and
low correlation for preliminary classification.

Table 2. Candidate optical and SAR features for rice mapping.

Satellites Category Features Reference

Sentinel-2

Spectral
bands

Band2-Blue

/

Band3-Green
Band4-Red

Band5-Vegetation Red Edge
Band6-Vegetation Red Edge
Band7-Vegetation Red Edge

Band8-NIR
Band9-Water vapor

Band11-SWIR
Band12-SWIR

VIs

EVI = 2.5 × (NIR − Red)/(NIR + 6 × Red − 7.5 × Blue + 1) [17]
EVI2 = 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) [18]

SR = NIR/R [19]
NDVI = (NIR − Red)/(NIR + Red) [20]

SAVI = (NIR − Red) × (1 + L)/(NIR + Red + L) [21]
WDRVI = (0.1 × NIR − Red)/(0.1 × NIR + Red) [22]

MNDWI = (Green − SWIR)/(Green + SWIR) [23]
VARIred-edge = (Red-edge − Red)/(Red-edge + Red) [24]

Sentinel-1

Polarization
VV

/VH

Textural
features

Mean

[16]

Variance
Homogeneity

Contrast
Dissimilarity

Entropy
Second Moment

Correlation

(3) Selection of temporal change optical features

To use the temporal change information of optical features on two growth stages of
rice, the difference of the candidate features (Table 2) was derived between the transplanting
stage and the jointing stage (Formula (1)).

F∆ = Fp2 − Fp1 (1)

where F represents a certain feature, Fp1 and Fp2 represent the feature on transplanting
stage and jointing stage, and F∆ represents the change of this feature.

Based on the temporal change features, the same approach for conducting sensitiv-
ity analysis and cross-correlation analysis were implemented to generate the optimized
temporal change feature set. These features, together with optimal features for preliminary
classification, were used for rice mapping under POI mode.

(4) Selection of SAR features

The polarization and texture features on each SAR image were averaged according
to the generated ROIs (details please see Section 2.5). Based on these extracted data, the
same feature elimination process as used in previous steps was implemented to obtain the
optimized SAR features.

2.5. Multi-Scale Image Segmentation

Multi-scale segmentation is used to segment the image into parcel objects. In multi-
scale segmentation, the selection of segmentation parameters directly associates with the
consistency between the derived boundaries and actual boundaries of natural plots [25],
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which significantly affects the accuracy of rice mapping. To assess the results of the
segmentation, a set of objective and quantifiable evaluation indices are needed.

In this study, a representative region was selected in the study area for determining
the segmentation parameters. The optimized parameters were then applied to the whole
study area. As the Figure 6 shows, in the multi-scale image segmentation analysis, the
original bands (Band3 to Band8) and NDVI feature of the Sentinel-2 image were used as
the base images. According to both the literature and pre-experiment results [26,27], the
range and step of the segmentation parameters are determined as scale factor: 35–60 with a
step of 5; shape factor: 0.1–0.6 with a step of 0.1; and compactness factor: 0.2–0.7 with a
step of 0.1. A three-factor and six-level orthogonal experiment [28] was conducted to avoid
traversal testing, yielded a total of 36 factor combinations for optimizing parameters.

Figure 6. Overview of the multi-scale image segmentation for parcel boundary extraction.

Regarding the quality evaluation of the multi-scale segmentation, three indices, in-
cluding the area consistency index (ACI), shape error (SE) and quality of an individual
object’s location (Q_Loc), were used to provide a comprehensive evaluation. The principle
of the three indices is illustrated in Figure 6, and their formulas are given as follows:

ACIi =
area(SOi ∩ ROi)

area(SOi ∪ ROi)
(2)

Q_Loci = dist(centroid(SOi), centroid(ROi)) (3)

SEi = |Asr(SOi)− Asr(ROi)| (4)

where the ACI refers to the ratio of the overlap between the segmented object (SO) and the
reference object (RO) to their merged area. When the SO is close to RO, the ACI approaches
1, indicating the ideal result. The Q_Loc represents the sum of the distances between
the centroids of RO and SO. The SE calculates the aspect ratio between the SO and the
RO [29,30], and Asr represents the aspect ratio.
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Based on the three indices, a comprehensive segmentation score (CSS, Formula (5)) is
proposed, which is the sum of the sequential score of each index (e.g., for one index, the
highest score, 36, indicates the combination ranking no. 1). The combination corresponding
to the highest CSS is determined as the optimal parameter set and was used to conduct the
multi-scale segmentation.

CSS = Sequential Score(ACI + Q_Loc + SE) (5)

2.6. Classification Method and Evaluation

Based on the optimized features extracted from the segmented blocks, two representa-
tive machine learning algorithms, the CART and SVM, were used for rice mapping. The
CART is a classic method for adaptively constructing a decision tree classifier according
to the relationships among variables. The algorithm is easy to be interpreted, superior in
processing a large amount of high-dimensional data and solving nonlinear problems [4].
The SVM seeks the optimal hyperplane for different categories of samples by projecting the
variables into a high-dimensional feature space, which has good generalization ability and
advances, particularly for small-size samples [9,31].

The evaluation of rice mapping results, including the overall accuracy (OA), user’s
accuracy (UA), producer’s accuracy (PA) and kappa coefficient, are all calculated from the
confusion matrix [9]. In this study, the eCognition software was used for multi-scale image
segmentation, the ENVI software was used for image processing, and the Matlab software
was used for data analysis.

3. Results
3.1. Optimal Features for Rice Mapping

The sensitivity of optical features for preliminary classification are shown in Table 3.
All bands except Band2, Band3 and Band5 achieved the significance level of p < 0.01. The
EVI, EVI2, SAVI, MNDWI and VARIred-edge all exceeded the significance level of 0.01.
However, a high cross-correlation was found between these features. After removing
those features with redundant information, only Band4, Band11, EVI, MNDWI and SAVI
were retained.

Table 3. Results of sensitivity analysis with the single-scene Sentinel-2 image.

Category Features t-Test Cross-Correlation

Spectral bands

Band2
Band3
Band4 N �
Band5
Band6 N
Band7 N
Band8 N
Band9 N
Band11 N �
Band12 N

VIs

EVI N �
EVI2 N
SR

NDVI
SAVI N �

WDRVI
MNDWI N �

VARIred-edge N

“N” indicates that the t-test results of the specific feature achieved p < 0.01 significance level, and “�” indicates
the final features selected under correlation analysis R2 < 0.8.



Agronomy 2022, 12, 3010 10 of 17

Meanwhile, according to same feature selection steps above, the optimal features for
POI-based classification are Band3∆, Band6∆, Band9∆, EVI∆ and WDRVI∆.

Based on segmented parcel boundaries, the SAR features are extracted and processed
with sensitivity analysis. It was noticed that the VH value of the water body is significantly
lower than that of the other classes, while rice has a lower backscattering coefficient
compared with other classes, except water (Figure 7). The VH backscattering coefficient
of rice is low in the transplanting stage, and gradually increases with the growth of the
plants, which exhibited a clear temporal pattern. According to the similar t-test and cross-
correlation check, the sensitivity of the SAR features was derived and illustrated in Table 4.
There are more sensitive features identified on the tillering stage (9 July and 21 July) and
jointing stage (2 August). More VH polarization features are found to be sensitive than
the VV polarization features. For texture features, the dissimilarity, mean, variance and
entropy features are sensitive to rice mapping. However, the texture features are generally
not as sensitive as polarization features.

Figure 7. Temporal curves of SAR features in 2019. (a) Temporal curves of four classes; (b) temporal
curve of rice. The light buffers refer to ±1σ from the mean.

Table 4. Sensitivity of SAR features on different dates.

Features

Date (2018)

Phase1
(0603)

Phase2
(0615)

Phase3
(0627)

Phase4
(0709)

Phase5
(0721)

Phase6
(0802)

Phase7
(0814)

Phase8
(0826)

VV N N N
VV_Mean N N N

VV_Variance N N
VV_Homogeneity

VV_Contrast
VV_Dissimilarity N N

VV_Entropy N N
VV_Second Moment

VV_Correlation
VH N N

VH_Mean N
VH_Variance N N

VH_Homogeneity N N N
VH_Contrast N

VH_Dissimilarity N N N
VH_Entropy N N

VH_Second Moment N N
VH_Correlation N N

The dates in the table are from 2018. In 2019 and 2020, the acquisition dates are one day postponed compared to
2018. “N” indicates that the t-test results of the specific feature achieved the p < 0.01 significance level, and the
final features were selected under correlation analysis R2 < 0.8.
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To further test the adaptability of the proposed method, the 30 optimized features
were grouped according to four key growth stages of rice, and combined according to PPF,
PTF and PFTF. On each growth stage, only one feature was randomly selected to test the
influence of the slight difference in image acquisition time on classification results (Table 5).

Table 5. A summary of selected SAR features on key growth stages of rice.

Combinations Randomly Selected Features

PPF VH_Phase2, VV_Phase5, VH_Phase7, VV_Phase8

PTF VV_Mean_Phase1, VV_Dissimilarity_Phase4,
VH_Entropy_Phase6, VV_Second Moment_Phase8,

PFTF VH_Homogeneity_Phase2, VV_Phase5,
VH_Variance_Phase6, VV_Phase8

3.2. Rice Parcel Boundaries Yielded by Multi-Scale Segmentation

The orthogonal experiment method was conducted, and the CSS index was calculated
for each combination of segmentation parameters. The combination corresponding to
the highest CSS is determined as the optimal combination. In this case, the segmentation
parameters are: scale = 35, shape = 0.3, compactness = 0.6. The scale parameter controls the
size of the generated object and has a decisive influence on classification accuracy. When
the scale is small (e.g., 15), the results tend to be over-segmented, while when the scale is
large (e.g., 60), the under-segmented issue tends to be significant. In case the scale is 35, the
segmented blocks are approximately similar to the actual rice parcels (Figure 8).

Figure 8. A demonstration of multi-scale segmentation results under different scale parameters.
Shape and compactness are defined as 0.3 and 0.6 here.

3.3. Evaluation of Rice Mapping Results

Rice planting area mapped with different strategies (i.e., SOI, POI and PSI, for details
please see Section 2.3) in 2018–2020 are shown in Figures 9 and 10. Figure 9 shows that rice
is mainly distributed in the northern part of the study area, while the southern part of the
study area is dominated by artificial surfaces. Figure 10 shows that the rice classification
results obtained by the POI method are the least fragmented, but there are some misclassifi-
cations (e.g., the pond is misclassified as rice), and the rice classification results obtained
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by the PSI method show an obvious salt and pepper effect, which is mainly caused by
the significant noise of the SAR images. The SOI method gives better consideration to the
accuracy of classification results, together with the integrity of classified rice parcels. The
OA of rice mapping exceeded 90% for both the CART and SVM classifiers under SOI. A
remarkably high overall accuracy (93.95%) was achieved for the SVM model, with the PA
average and UA average reaching 92.83% and 90.48% (Table 6), which were slightly higher
than those of CART.

Figure 9. Rice mapping result based on the SOI strategy in 2019.

Figure 10. Comparison of rice mapping results using different classification strategies based on SVM
and the 2019 dataset: (a–c) represent the partial result under PSI, SOI and POI; (d) represents the false
color image of Sentinel-2 (Red: Band8, Green: Band4, Blue: Band3).
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Table 6. The accuracy of rice mapping results under the SOI strategy. CART means classification and
regression trees method; SVM means support vector machine method. OA means overall accuracy;
UA means user’s accuracy and PA means producer’s accuracy.

Classifier Date OA (%)
OA

Average
Kappa

Rice

PA (%) PA
Average UA (%) UA

Average

CART
2018 90.61

91.85
0.85 87.22

85.37
88.40

87.882019 94.04 0.91 84.05 87.23
2020 90.89 0.87 84.85 88.01

SVM
2018 92.42

93.95
0.88 91.33

92.83
95.03

90.482019 94.64 0.92 92.18 84.03
2020 94.80 0.92 94.97 92.37

The accuracies of SOI were significantly higher than those of PSI. For example, based
on SVM, the OA, PA, UA and Kappa of the PSI strategy were lower than the SOI strategy
by 9.75%, 19.4%, 18.74% and 0.16, respectively (Table 7). This suggests that the addition of
the parcel boundary information plays a vital role in rice mapping. Conversely, for SOI
and POI, the results indicated that under the commonly available scenario of “single-phase
optical and multi-phase microwave images”, the SOI can yield approximate accuracy to
the POI strategy in rice mapping. In addition, the performance of the POI is somewhat
unstable. The UA of the CART model is only 76.05%, indicating significant misclassification
from the water body to rice (Tables 7 and 8).

Table 7. Accuracy of rice mapping under different strategies.

Classifier Strategy OA (%) Kappa
Rice

PA (%) UA (%)

CART
POI 94.02 0.91 96.66 76.05
SOI 94.04 0.91 84.05 87.23
PSI 82.35 0.72 71.64 65.62

SVM
POI 97.83 0.97 97.71 95.61
SOI 94.64 0.92 92.18 84.03
PSI 84.89 0.76 72.78 65.29

The results are based on the 2019 dataset.

Table 8. Confusion matrix of the CART model under POI strategy.

Truth

Paddy
Rice

Water
Body

Artificial
Surface

Other
Vegetation Total

Classification

Paddy rice 927 215 12 65 1219
Water body 17 3598 8 46 3669

Artificial surface 14 2 1680 31 1727
Other vegetation 1 5 17 607 630

Total 959 3820 1717 749 7245
The results are based on data from 2019.

To further assess the adaptability of SOI in the operational scenario, three randomly
picked SAR image sets were used to substitute the entire SAR image time series. The
results of SVM models showed that PPF achieved relatively high accuracies, whereas the
accuracies of PTF were lower (Table 9). Such a pattern indicates that polarization features
are more effective in rice mapping than texture features.
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Table 9. Accuracy of rice mapping with randomly picked SAR images.

Combinations Date OA (%)
OA

Average
Kappa

Rice

PA (%) PA
Average UA (%) UA

Average

PPF
2018 88.12

90.09
0.81 79.69

85.10
85.70

87.432019 92.74 0.89 90.93 86.94
2020 89.41 0.84 84.67 89.66

PTF
2018 84.57

85.58
0.76 76.02

72.71
58.98

60.202019 86.63 0.79 70.80 58.08
2020 85.55 0.79 71.32 63.55

PFTF
2018 89.62

88.81
0.84 87.12

85.60
91.63

90.022019 86.03 0.78 84.88 92.71
2020 90.79 0.86 84.79 85.71

In comparing the operational PFTF model (Table 9) with the model with the entire SAR
time series (Table 6), despite the accuracy of the PFTF model being slightly lower than that
of the model with the entire SAR time series, the accuracy of rice mapping is still acceptable.
This suggests that the SOI can also be driven by only SAR images on several key growth
stages of rice, which thus illustrates a great potential in the operational implementation of
rice mapping.

4. Discussion
4.1. Role of Optical and SAR Features for Rice Mapping

Throughout the growing progress of rice, it shows significant changes in optical and
SAR features, which help to distinguish it from other land objects. For example, the
significant increase of the rice leaf area during the tillering stage and jointing stage will
induce the response of several Vis [15,21]. For SAR images, the backscattering intensity
is governed by the composition of the soil and the structure of the rice canopy. In the
transplanting stage of rice, the microwave signal was dominated by mirror reflection of
the water surface, which is similar to the response of the water body. During the tillering
to ridge sealing stages of rice, the body scattering and canopy scattering increased, and
lead to an increase of the backscattering coefficient. Conversely, during the ridge sealing
to heading stages, the canopy coverage of rice is stable, and the canopy scattering played
a dominant role, thus leading to a slight decrease of the backscattering coefficient. The
variation of canopy composition and canopy structure of rice across the growth stages thus
forms the theoretical basis of rice mapping with SAR features [4,11].

The polarization features of the SAR image can reflect the degree of interaction between
vegetation structures, while the textural features of the SAR image can delineate the
spatial relationship and structure distribution of ground objects [16]. The complementary
characteristics between these two types of features help to improve the efficacy of rice
recognition.

4.2. Optimization of Multi-Scale Segmentation

Different from some existing studies that evaluate multi-scale segmentation results
using a single criterion (e.g., common area ratio; distance between objects’ centers, etc.) [32],
this study combines a set of evaluation indices and an orthogonal experiment to provide a
comprehensive optimization of segmentation parameters. The evaluation method considers
the area consistency, shape error and location of objects, which ensures the high quality of
segmented parcels’ boundaries.

It should also be noticed that although the ideal block boundaries can be obtained
for most parcel fields under optimal segmentation parameters, some non-ideal segments
also existed in results. Within a certain region, the heterogeneity of the landscape resulted
in difference in the category, size and spectral characteristics of the ground object. This
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may be because the landscape heterogeneity (i.e., size, spectral characteristics, etc.) makes
it difficult to achieve satisfactory segmentation for all parcels using one set of segmen-
tation parameters for a large area [33]. Therefore, it might be necessary to adjust these
segmentation parameters in different parts for a large area to improve the quality of the
segmentation.

4.3. The Effectiveness of the SOI

The SOI strategy fully considers the climatic characteristic of cloudy and rainy regions
where the acquisition time of optical images is uncertain. The role of the optical images is
changed from classification to field segmentation, which thus loosen the requirement of the
acquisition time of optical images. Therefore, within 2018–2020, despite the optical images
being acquired at different rice growth stages, a relatively stable accuracy can be achieved
in rice mapping, which guarantees the robustness of the strategy. Yang et al. [11] combined
multi-scene optical images with time-series microwave images for rice mapping, and the
classification accuracy reached 90.2%. In contrast, the SOI method proposed in this paper
achieved a higher rice mapping accuracy (94.64%), while reducing the dependency on
multi-temporal optical images. On the other hand, the SAR images can capture the specific
temporal change pattern of rice. However, the inherent salt and pepper issue of the SAR
images severely disturbs the temporal pattern of the SAR, which further limits the accuracy
of rice mapping based on pixel-level SAR images [34,35]. However, by averaging the
SAR image features according to the segmented parcels, the noise issue can be effectively
suppressed in object-oriented rice mapping and obtain a higher accuracy.

Further, it is encouraging that the SOI strategy can be driven solely by a few SAR
images from four key growth stages of rice, yet still achieve satisfactory classification
accuracy. It is anticipated that the SAR features from the four key growth stages of rice
reflect the major temporal change pattern during the rice development process. With
significantly less input data, the computational complexity of the procedure can be reduced,
which is important in an operational scenario. In addition, considering that long-term
time-series SAR data can effectively improve the differences between different ground
objects, especially different vegetation, and thus improve the classification accuracy, this
study does not discuss the situation when all SAR data are in the same phenological stage.

5. Conclusions

In this study, aiming at rice mapping that can be operationally implemented in cloudy
and rainy regions, a strategy by fusing SAR and optical images is proposed. The main
conclusions are as follows:

(1) The proposed SOI method can achieve accurate extraction of rice area. The method
makes full use of the parcel boundary information derived by optical images and
growth and phonological traits of rice from SAR images. The mapping accuracy of
SOI is significantly higher than PSI and POI.

(2) An adaptive rice parcel boundary extraction method based on multi-scale segmenta-
tion was proposed. A comprehensive segmentation quality index, together with an
orthogonal experiment, were used to obtain the optimal segmentation parameters
and generate the parcel boundaries for rice mapping.

(3) Further, the adaptability of SOI in the operational scenario is examined according to
a “random pick” strategy. Based on both the polarization and texture features, the
SOI method exhibited strong adaptability to the uncertainty of the acquisition time of
remote sensing images.

It should be noted that some challenges remain in the application of the established
method. For example, some regions may have different cultivation schemes (e.g., different
timing of transplanting, different plans of irrigating) and different growth period durations,
which may result in the inconsistency of temporal signals and thus hamper the implemen-
tation of the proposed SOI strategy. In addition, in areas with high spatial heterogeneity,
the issue of mixed pixels may also interfere with the rice mapping results. However, it is
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encouraging that abundant remote sensing data with constantly improving spatial and
temporal resolution provide a powerful backing of remotely sensed rice mapping. In
addition, the achievement of deep learning algorithms can also be considered in the future,
particularly in some more complicated scenarios in rice mapping.
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