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Abstract: As essential environmental parameters in the greenhouse, appropriate light and CO2 will 

improve agricultural productivity and quality. Although many related studies have been carried 

out on the intelligent regulation of these environmental factors, the regulation of light and CO2 is 

usually controlled separately, and energy consumption is rarely considered. This paper proposed a 

coordinated control strategy for greenhouse light and CO2 based on the multi-objective optimization 

model. Firstly, the experiments on the net photosynthetic rate of blueberry under different 

temperatures, photon flux density, and CO2 concentration nesting were carried out to establish a 

blueberry net photosynthetic rate prediction model based on Support Vector Regression (SVR). 

Secondly, a model for calculating the energy cost of both light and CO2 was constructed. Thirdly, 

taking the maximum net photosynthetic rate and the minimum energy cost as the objective 

functions, the Non-dominated Sorting Genetic Algorithm (NSGA-II) was leveraged to obtain the 

Pareto optimal solutions of the target regulation values of light and CO2 concentration in different 

temperature ranges. Then, the optimal values were selected based on two different strategies. 

Finally, the multi-objective optimal control strategy proposed in this paper was compared with both 

the classical threshold control strategy and the Gaussian curvature maximization control strategy. 

The results indicated that the strategy which prioritized energy saving could reduce the energy cost 

by about 22.33% and 19.08%, respectively, under the premise that the net photosynthetic rate was 

consistent. Meanwhile, the strategy that prioritized production efficiency could increase the net 

photosynthetic rate by about 8.40% and 4.42%, respectively, with the same energy cost. In 

conclusion, the proposed multi-objective optimization control can improve the greenhouse climate 

control performance and reduce cost compared with other mentioned strategies. 

Keywords: blueberry; photosynthetic rate prediction; multi-objective optimization; light and CO2 

coordination; support vector regression 

 

1. Introduction 

The optimum control of a greenhouse climate is one of the most important factors for 

the rapid development of the agriculture industry. Through the actuators to adjust the 

light, CO2, temperature, and other climate variables to maintain the ideal environment, 

greenhouse crops are set in the best growth conditions. Therefore, cultivation inside the 

greenhouse results in better quality and greater yield [1–3]. Among the mentioned factors, 

light plays a key role in establishing and regulating the internal biological clock of plants 

and is one of the important parameters affecting the formation of crop growth 

morphology and the accumulation of functional chemicals, thus determining the 

productivity of greenhouse crops [4,5]. The regulation of light intensity is also linked to 

the physiological processes of greenhouse crops, including stomatal scheduling [6] and 

leaf development [7], etc. In terms of the regulation of the light environment, existing 

studies have adopted a dynamic threshold light supplement strategy based on the 

physiological characteristics of crops [8]. Some researchers have also used genetic 
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algorithms to dynamically obtain light saturation points to build an optimal regulation 

model of photosynthesis [9]. 

CO2 works as the direct reactant of photosynthesis in a greenhouse environment [10]. 

Thus, the rise of CO2 will directly affect many physiological characteristics of crops, such 

as transpiration rate and net carbon exchange rate [11]. In terms of CO2 control, previous 

studies have focused on threshold control with fixed values [12]. These control methods 

are not accurate enough, since they ignore the changes during the control process, which 

will lead to a low utilization rate of CO2 and energy waste. To achieve efficient regulation 

of CO2, some researchers have established CO2 response curves in different light and 

temperature intervals and taken the points of maximum curvature as target values [13,14]. 

Although many related studies have been carried out on intelligent regulation from 

different perspectives, most of these are single variable control, which lacks the synergistic 

control of phosgene in this dynamic environment [15,16]. After all, due to the dependency 

between each state of the system, the difficulty of effective control will increase [17,18]. 

However, the interaction effects of microclimate factors are supposed to be considered in 

the regulation process [19]. With the development of computer performance and machine 

learning methods, many advanced approaches have been used in multi-factor 

coordinated control of greenhouse environment, and system optimization, particularly in 

industrial applications, has been significantly considered by many researchers [20,21]. The 

classical control experience combined with effective algorithms can finally realize the 

synchronous control of multiple system states of microclimate in a modern greenhouse 

[22–24]. In these studies, however, the models lack consideration of plants condition or 

energy consumption, which may lead to a worse quality of crops or higher control cost 

[25–27]. 

Thus, to overcome the aforementioned obstructions, this study explored a control 

strategy of light and CO2 supplements, considering both energy cost and net 

photosynthetic rate. Specifically, the support vector regression method was utilized to 

construct a photosynthetic rate prediction model based on temperature, light intensity, 

and CO2 concentration. At the same time, the energy cost model of greenhouse light and 

CO2 supplement was constructed. Based on the models mentioned above, the maximum 

net photosynthetic rate and the minimum energy cost were taken as the objectives. The 

multi-objective optimization of the CO2 concentration and light intensity regulation 

values was conducted to obtain economically optimal results. In our previous work, we 

have proposed a greenhouse environment multi-factor coordinated control algorithm [28–

30], which effectively solves the coordination and energy-saving control of temperature 

and humidity, and effectively reduces the cost of temperature and humidity control such 

as ventilation and heating. However, in that algorithm, the control target values of light 

and CO2 are obtained based on agricultural experience without considering the 

optimization of benefits such as energy conservation. Therefore, we will study the 

optimization of the coordinated control strategy of greenhouse light and CO2 in this paper. 

2. Materials and Methods 

2.1. Data Collection and Processing 

The experimental site was located in the southeast of Kunshan City, Jiangsu Province, 

China (31°33′ N and 121°11′ E), where the sunrise was roughly 5:00–5:50 and sunset 

was roughly 18:30–19:00. The experimental greenhouse was a Venlo-type glass 

greenhouse, which had small roof skylights. The framework was made of aluminum alloy 

material. Both the covering and side wall were made of single-layer tempered glass. Thus, 

it had the characteristics of high light transmittance, long service life, and large operating 

space. The span of the greenhouse was about 17.5 m, the ridge height was about 7.2 m, 

the land area was about 297.5 m2 , and the total volume was about 1918.875 m3 . The 

exterior and interior of the experimental greenhouse were shown in Figure 1. The 

southern highbush blueberry named “Emerald”, which was relatively resistant to 
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moisture and heat, was selected as the experiment subject and planted in the culture tank 

with sufficient water and fertilizer. The pH of the nutrient soil was controlled between 4.5 

and 5.5. The temperature requirements of blueberries in different phenological stages 

were not the same. According to the different characteristics of blueberry phenology, it 

can be roughly divided into dormant period, budding period, flowering period, fruit 

period, and flower bud differentiation period. Our study was mainly conducted in spring 

and summer, when blueberries were in the flower and fruit growth period. Based on 

planting experience, the target temperatures are 25–35 °C in the daytime and 15–22 °C in 

the night. During this experiment, the daily crop maintenance was carried out routinely 

without any additional operations. 

  
(a) (b) 

Figure 1. The exterior (a) and interior (b) of the experimental greenhouse. 

The data collection started in March and ended in August 2021. During the period, 

blueberry plants with small growth differences were selected. For each plant, the third 

functional leaf with healthy growth status was designated as the test sample. Considering 

the impact of the crop “siesta phenomenon” on the accuracy, the measuring process was 

divided into two periods: 8:00–11:30 and 14:30–17:30. The measuring device was the Li-

6400XT portable photosynthesis measurement system. The temperature gradients were 

set to 20, 24, 28, 32, 36, and 40 °C, respectively. The photon flux density gradients were set 

to 0, 50, 100, 300, 500, 700, 900, 1200, 1500, 1800, 2100, and 2400 μmol ⋅ m−2 ⋅ s−1 , 

respectively. The carbon dioxide concentration gradients were set to 0, 50, 100, 300, 400, 

500, 700, 1000, 1300, 1600, 1900, and 2200 μmol ⋅ mol−1 , respectively. In measurement, 

there might be some operation errors such as the improper position of blade clamping, 

which made the measured value deviate from the actual net photosynthetic rate of crops, 

resulting in invalid data. The corresponding technique was to eliminate the invalid data, 

re-measuring the leaf under the current environment until the three net photosynthetic 

rate measurements of blueberries were all valid. Next, the average of this dataset was 

recorded for subsequent operations. According to the above description, 1152 sets of 

blueberry net photosynthetic rate datasets were obtained, with temperature, photon flux 

density, and carbon dioxide concentration as inputs. 

2.2. Net Photosynthetic Rate Prediction Model 

Crop yield is one of the most important indicators to measure the efficiency of 

greenhouse production, but the complexity of crop physiological characteristics makes it 

difficult to predict the yield during growth. Photosynthetic rate, as the main indicator to 

measure the photosynthetic capacity of crops, has a significant nonlinear relationship with 

photon flux density, temperature, and CO2 concentration [31]. The support vector 

machine is mathematically valid and generalizing, which can be used for the construction 

of nonlinear models. [32]. Support vector regression is a generalization of a support vector 

machine [33]. Different from the Empirical Risk Minimization (ERM) principle used in 

conventional neural networks, support vector regression adopted the Structural Risk 
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Minimization (SRM) principle. By minimizing the upper bound of the generalization 

error, the support vector regression has a stronger generalization capability [34]. The basic 

idea of a support vector regression is to map data to a high-dimensional feature space 

through nonlinear mapping. Different from classical regression models, the model output 

𝑓(𝑥𝑖) is not required to be the same as the real output 𝑦𝑖 , but introduces a tolerable 

deviation ε [35]. In this study, a prediction model of blueberry net photosynthetic rate was 

constructed based on support vector regression. Temperature, CO2 concentration, and 

photon flux density, which were significantly related to photosynthetic rate, were selected 

as input 𝑥𝑖 ∈ 𝑅𝑛, and the net photosynthetic rate was selected as output 𝑓(𝑥𝑖) ∈ 𝑅𝑛. The 

model building process is shown in Figure 2. 

 

Figure 2. Flow chart of the photosynthetic rate prediction model. 

In this study, Radial Basis Function (RBF) was introduced into the modeling process, 

and thus the regression function was obtained as follows [36]: 

  𝑓(𝑥𝑖) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑘

𝑖=1 𝐾(𝑥𝑖 , 𝑥) + 𝑏, (1) 

where 
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𝐾(𝑥𝑖 , 𝑥) = 𝑒𝑥𝑝( − 𝑚‖𝑥𝑖 − 𝑥‖2), (2) 

α = （α1, α1
∗ , … , αl, αl

∗）, (3) 

In the functions above, 𝑘 stood for the number of support vectors, 𝑥𝑖 represented 

support vectors, 𝑏 stood for bias, α was the dual optimal solution, 𝐾(𝑥𝑖 , 𝑥) was the 

radial basis kernel function, and 𝑚 was the width. 

In the 1152 sets of data containing temperature, CO2 concentration, light intensity, 

and corresponding net photosynthetic rate, 922 sets of data were randomly selected for 

training (accounting for 80% of the total), and the remaining 230 sets of data were used as 

a test set to check the prediction accuracy (accounting for 20% of the total). The “fitrsvm” 

function in MATLAB was called to get the regression model. The kernel function was set 

to ‘gaussian’ or ‘rbf’ and ‘Standardize’ as ‘True’ to normalize the predictor data. Besides, 

other parameters were set as the default values. 

2.3. Cost Function of Energy Consumption in CO2 Supplement 

The increase of CO2 concentration in the greenhouse mainly depended on artificial 

replenishment. Beyond that, the organic decomposition of microorganisms in soil and the 

respiration of crops would also increase CO2 concentration. The depletion of CO2 mainly 

depended on the absorption of photosynthesis by crops. In addition to the above factors, 

air exchange happened through windows and wall cracks, which would change the 

indoor CO2 concentration. The dynamic entry and exit paths of CO2 inside the greenhouse 

are shown in Figure 3. 

 

Figure 3. Dynamic entry and exit paths of CO2 in the greenhouse. 

Based on the above analysis, the dynamic equilibrium of CO2 concentration in the 

greenhouse could be expressed as follows: 

𝑉 · ∆𝐶 = 𝑄𝑠 + 𝑄𝑎 − 𝑄𝑝 + 𝑄𝑟 ± 𝑄𝑣 ± 𝑄𝑓, (4) 

where V represented the greenhouse volume, ∆𝐶 was the change value of indoor CO2 

concentration, 𝑄𝑠  stood for the CO2 released by soil microbial decomposition, 𝑄𝑎 

represented the CO2 of external application, 𝑄𝑝  represented the CO2 of crop 

photosynthetic consumption, 𝑄𝑟 represented the CO2 produced by crop respiration, 𝑄𝑣 

stood for the CO2 exchanged between the skylight and the side window, and 𝑄𝑓 

represented the amount of change in the CO2 caused by air exchange in the crevices of 

building materials. 
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The above dynamic equilibrium of CO2 concentration in the greenhouse worked as 

theoretical analysis, and the specific parameters could be adjusted according to the actual 

operation of the greenhouse. In the Kunshan Greenhouse, where this experiment was 

conducted, blueberry plants were cultivated in plastic pots filled with nutrient soil, and 

the walkways were masonry ground with covering cloth. Therefore, CO2 released through 

ground soil and cultivation substrates was relatively limited and negligible, so 𝑄𝑠 was 

set to zero. Experimental crops were generally in the growing stage, which required 

artificial CO2 supply to promote the accumulation of photosynthetic products, and it was 

necessary to maintain a higher indoor concentration of CO2 to promote crop fruit 

accumulation. Therefore, 𝑄𝑣 was set to zero in Formula (4). In addition, considering the 

presence of photosynthesis and respiration of crops during the day, the net CO2 absorbed 

by photosynthesis of crops could be simplified as follows: 

𝑄𝑝−𝑟 = 𝑄𝑝 − 𝑄𝑟, (5) 

The net CO2 consumed by crop photosynthesis was significantly correlated with the 

total leaf area and the net photosynthetic rate intensity per unit area, which could be 

expressed as follows: 

𝑞𝑝−𝑟 = 𝐴𝑠 · 𝐿𝐴𝐼 · 𝑞𝑝𝑟, (6) 

where 𝑞𝑝−𝑟 represented the total net photosynthesis of crops per unit time, 𝐴𝑠 was the 

planted area of the greenhouse, 𝐿𝐴𝐼 represented the leaf area index, and 𝑞𝑝𝑟 was the net 

photosynthetic rate per unit area. The design architecture and construction materials of 

the greenhouse might also lead to indoor and outdoor air exchange in wall gaps, and the 

resulting CO2 change could be expressed as follows: 

𝑞𝑓 = 𝑊 · 𝑉 · (𝐶𝑖 − 𝐶𝑎𝑖𝑟), (7) 

where 𝑞𝑓 represented the amount of CO2 change resulting from air exchange in wall gaps 

per unit time, 𝑊 was the influencing factor of gap ventilation, 𝐶𝑖  represented indoor 

CO2 concentration, and 𝐶𝑎𝑖𝑟 was outdoor CO2 concentration. The value of air exchange in 

wall cracks varied greatly due to the different conditions of the greenhouse. Moreover, 

since the parameter values of the building materials were difficult to determine and may 

even change with different climate factors, relevant studies mostly refer to the empirical 

design value and then adjust it according to the actual situation [37]. 

Considering the above factors, the simplified indoor CO2 inflow and outbalance 

model for the potted blueberry glass greenhouse could be obtained as follows: 

𝑉 ∙ ∆𝐶 = 𝑄𝑎 − 𝑄𝑝−𝑟 − 𝑄𝑓, (8) 

convert the above equation to a transient dynamic change model: 

𝑞𝑎(𝑡) = 𝑉
𝑑𝐶

𝑑𝑡
+ 𝑞𝑝−𝑟(𝑡) + 𝑞𝑓(𝑡), (9) 

where 𝑞𝑎 represented the real-time supply of CO2 per unit time. In conclusion, the CO2 

consumption model of potted blueberry photosynthesis on the masonry floor was 

obtained as follows: 

𝑄𝐶𝑂2 = ∫ 𝑞𝑎(𝑡)𝑑𝑡
𝑡𝑓

𝑡0
 = 𝑉(𝐶𝑎𝑖𝑚 − 𝐶0) + ∫ (𝑞𝑝−𝑟(𝑡) + 𝑞𝑓(𝑡)) 𝑑𝑡

𝑡𝑓

𝑡0
, (10) 

where 𝑄𝐶𝑂2 stood for CO2 consumption per unit time, 𝐶𝑎𝑖𝑚 represented the target value 

of CO2 regulation, 𝐶0 represented the initial value of CO2 regulation, and [𝑡0, 𝑡𝑓] stood 

for a unit regulation period interval. 

2.4. Cost Function of Energy Consumption in Light Supplement 

The cost of light replenishment was also a large term in greenhouse cost, and the 

specific calculation formula could be described as follows [38]: 
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𝑄𝐿𝑖𝑔ℎ𝑡 = ∫ 𝜌𝑃𝐴𝑅
𝑡𝑓

𝑡0
∙ (𝐼𝑎𝑖𝑚 − 𝐼𝑠𝑢𝑛) ∙ 𝑑𝑡, (11) 

where 𝑄𝐿𝑖𝑔ℎ𝑡 was the energy consumption of supplemental light in the greenhouse, 𝜌𝑃𝐴𝑅 

represented the influence factor of light energy conversion, 𝐼𝑎𝑖𝑚 was the greenhouse light 

regulation target value, and 𝐼𝑠𝑢𝑛  represented the initial value of greenhouse light 

regulation. Considering the physiological characteristics of blueberry during the growth, 

the periods of supplementary light in this study were approximately 6:30–8:00, 16:00–

19:00. If the weather was cloudy or rainy outside, extra light would be added to ensure 

the blueberry’s light demand. 

2.5. Energy Cost Model of Light and CO2 

Based on the above analysis and the market price factors, the total energy cost model 

of supplemental light and CO2 in spring and summer for the experimental blueberry 

greenhouse can be expressed as: 
𝑄economic = 𝛼1𝑄𝐿𝑖𝑔ℎ𝑡 + 𝛼2𝑄𝐶𝑂2

= 𝛼1 ∫ 𝜌𝑃𝐴𝑅

𝑡𝑓

𝑡0

∙ (𝐼𝑎𝑖𝑚 − 𝐼𝑠𝑢𝑛) ∙ 𝑑𝑡

+ 𝛼2 (𝑉(𝐶𝑎𝑖𝑚 − 𝐶0) + ∫ (𝑞𝑝−𝑟(𝑡) + 𝑞𝑓(𝑡)) 𝑑𝑡
𝑡𝑓

𝑡0

) 

(12) 

where 𝛼1  and 𝛼2  were the energy cost coefficients of compensating light and CO2, 

respectively. The CO2 supplement in this experiment depended on the gas cylinder with 

a diameter of 0.2 m and a height of 1.2 m, which could be recycled for multiple uses and 

was not considered a consumable material. Therefore, it was only necessary to calculate 

the price of CO2 according to the market, and the energy cost coefficient 𝛼2  was 

calculated as 0.345. The replenishment light was mainly based on indoor lights, which 

required a large amount of power energy [39,40]. According to the market, the economic 

loss coefficient 𝛼1 of replenishment light was 0.6 × 10−3. 

2.6. Multi-Objective Optimization Model of Light and CO2 Coordination 

The increase in the net photosynthetic rate 𝑃𝑛  required sufficient light and CO2 

supply, which would lead to an increase in energy consumption. On the contrary, the 

pursuit of energy conservation required a reduction in energy consumption, which 

affected the photosynthesis of crops. Reasonable greenhouse regulation required 

coordination and compromise between net photosynthetic rate 𝑃𝑛  and economic loss 

𝑄𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐  to achieve the optimal overall goal as far as possible. Therefore, this study 

adopted a multi-objective optimization method to get the Pareto optimization solution. 

2.6.1. Multi-Objective Optimization Function Model 

Since the net photosynthetic rate conflicted with the economic loss and was of 

different dimensions, multi-objective optimization was selected to obtain the multi-

objective regulation value of the greenhouse environment. The maximum net 

photosynthetic rate and the minimum economic loss were set as two sub-objectives and 

combined with the above mechanism model, and the multi-objective function as shown 

below was constructed: 

𝑓1(𝑋) = 𝑄𝑒𝑐𝑜𝑛𝑜𝑚𝑖𝑐 = (𝛼1𝑄𝐿𝑖𝑔ℎ𝑡 + 𝛼2𝑄𝐶𝑂2) → 𝑚𝑖𝑛, (13) 

          𝑓2(𝑋) = 𝑃𝑛(𝐶𝑂2, 𝐼) → 𝑚𝑎𝑥, (14) 

where 𝑋 in the above model was a two-dimensional decision variable to be optimized: 

𝑋 = (𝐶𝑂2𝑎𝑖𝑚
, 𝐼𝑎𝑖𝑚), (15) 

where 𝐶𝑂2𝑎𝑖𝑚
 represented the target regulation value of indoor CO2, and 𝐼𝑎𝑖𝑚 was the 

target regulation value of indoor illumination. According to the climatic conditions and 
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blueberry growth habits of the test greenhouse, the constraint conditions of CO2 

concentration and light in the optimization process were set as follows: 

𝑚𝑖𝑛 𝐹(𝑋) = (𝑓1(𝑋), − 𝑓2(𝑋))

𝑠. 𝑡. {
𝐶𝑂2𝑚𝑖𝑛

≤ 𝐶𝑂2𝑎𝑖𝑚
≤ 𝐶𝑂2𝑚𝑎𝑥

𝐼𝑚𝑖𝑛 ≤ 𝐼𝑎𝑖𝑚 ≤ 𝐼𝑚𝑎𝑥

, (16) 

where 𝐹(𝑋) was the multi-objective function to be optimized, 𝐶𝑂2𝑚𝑖𝑛
 was the lower 

limit of the CO2 concentration, and 𝐶𝑂2𝑚𝑎𝑥
 was the upper limit of the CO2 concentration. 

The 𝐼𝑚𝑖𝑛 represented the initial light intensity, and the 𝐼𝑚𝑎𝑥 was the upper limit of the 

light intensity. 

2.6.2. Multi-Objective Optimization Algorithm 

The core of a multi-objective optimization algorithm lies in the coordination and 

compromise of each objective function so that it can achieve relatively better results as far 

as possible. In this work, NSGA-II (Non-dominated Sorting Genetic Algorithms-II) 

proposed by Deb was selected to solve the multi-objective problem. According to this 

algorithm, the fast non-dominated sorting strategy, elite strategy, and density value 

estimation strategy were introduced to improve the search performance [41]. Relevant 

theories and advantages of this algorithm could be referred to in the literature [42], and 

specific steps are shown in Figure 4. 

 

Figure 4. Steps of NSGA-II. 
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3. Results and Discussions 

All experiments were implemented on the same system with an Intel® CoreTM i5-

11300H @ 3.10 GHz CPU and a 16.00 GB RAM. The software required for the simulation 

test was MATLABTM with version R2021a. 

3.1. Verification and Analysis of the SVR Model 

According to the established SVR model, the predicted output of net photosynthetic 

rate under different light intensities and CO2 concentration was shown in Figure 5. Since 

the overall trend at different temperatures was very consistent, the relationship diagram 

under 28 °C was selected as an example. It could be seen that the influence of both photon 

flux density and CO2 on the net photosynthetic rate of crops was consistent. The increase 

in light intensity and CO2 concentration would increase the photosynthetic rate in the 

beginning, but the photosynthetic rate tended to be stable near the light saturation point. 

At this time, the addition of light and CO2 would inhibit the photosynthetic rate. 

 

Figure 5. Change of photosynthetic rate values under photon flux density and CO2 concentration. 

To verify the accuracy of the prediction model of blueberry net photosynthetic rate 

based on the support vector regression algorithm, the deviation between the measured 

value and the predicted value of the model was used as the benchmark for model 

evaluation. The validation set consists of two parts. As mentioned before, 20% of the total 

dataset was selected as the validation set. To further verify the accuracy and 

generalization ability of the blueberry net photosynthetic rate prediction model, another 

100 sets of greenhouse climate data measured from 8:00–11:30 and 14:00–18:00 in July and 

August were also added. The data types of each group in the additional validation set 

were the same as those in the original dataset, including temperature, light intensity, CO2 

concentration, and corresponding net photosynthetic rate of crops. To measure the error 

rate of the prediction, we used several statistical metrics [43,44]: Mean Absolute Error 

(MAE), Mean Relative Error (MRE), Root Mean Square Error (RMSE), and Coefficient of 

Determination (R2), which were calculated as follows: 

𝑀𝐴𝐸 =
1

𝑚
∑ |𝑦𝑖 − �̂�𝑖|

𝑚
𝑖=1 , (17) 

𝑀𝑅𝐸 =
1

𝑚
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑚

𝑖=1
, (18) 



Agronomy 2022, 12, 2988 10 of 16 
 

 

𝑅𝑀𝑆𝐸 = √
1

𝑚
 ∑ (𝑦𝑖 − �̂�𝑖)

2
𝑚

𝑖=1
, (19) 

𝑅2 = 1 −
∑ ∑ (𝑦𝑖

𝑗
− �̂�𝑖

𝑗
)𝑁

𝑖=1
𝑀
𝑗=1

∑ ∑ (𝑦𝑖
𝑗

− �̅�𝑖
𝑗
)𝑁

𝑖=1
𝑀
𝑗=1

, (20) 

The evaluation indexes of the predictive effect of the net photosynthetic rate model 

under the two validation sets are shown in Table 1 (ran five times continuously to reduce 

the impact of randomness, and the worst result was selected). 

Table 1. Evaluation index of the net photosynthetic rate prediction model. 

Validation Set 
MAE 

(𝛍𝐦𝐨𝐥 ⋅ 𝐦−𝟐 ⋅ 𝐬−1) 

MRE 
(%) 

RMSE 
(𝛍𝐦𝐨𝐥 ⋅ 𝐦−𝟐 ⋅ 𝐬−1) 

Divided 20% test set 0.49 0.24 0.62 

Appended dataset 0.33 1.06 0.38 

In the table above, the values of MAE, MRE, and RMSE for two validation sets were 

all within certain accuracy ranges. In Figure 6, the green triangle represented the 

relationship between the predicted photosynthetic rate and the measured value in the 

divided 20% test set, and the blue line represented the fitting line. The blue circle 

represented the relationship between the predicted and measured photosynthetic rates in 

the additional test set, and the blue line represented the fitting line. Due to the overlap of 

these two fit lines, we bolded the fitting line of the additional test set to ensure that it could 

be clearly seen. As the figure showed, the points in the two datasets were fairly close to the 

fitting line, and the Coefficient of Determination (R2) reached more than 0.99, indicating that 

there was a high linear correlation between the measured values and the predicted values. 

 

Figure 6. Correlation of measured and simulated values in appended dataset (blue) and divided 

20% test set (green). 

3.2. Verification and Analysis of Multi-Objective Optimization 

Based on the net photosynthetic rate prediction model and the energy cost model, a 

set of optimal solutions was obtained, namely, the Pareto Frontier. The initial population 

number of the NSGA-II optimization process was set as 100 and the maximum iteration 

number was 200. We selected the initial value 𝑋 = [400, 200], the minimum value 𝑋𝑚𝑖𝑛= 
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[0, 0], and the maximum value 𝑋𝑚𝑎𝑥 = [2200, 2400]. The solving process was run 10 times 

at each temperature, and the Pareto Frontier obtained after a random run is shown in 

Figure 7. Note that the x-axis represented the negative of photosynthetic rate. Since the 

general trends of curves at different temperatures were similar in shape, the Pareto 

Frontier at 28 °C was selected here as an example. It was obvious that the rise in 

photosynthetic rate would increase energy cost, and vice versa, which characterized the 

contradiction between multiple objectives. 

 

Figure 7. Pareto Frontier after multi-objective optimization at 28 °C. Each blue individual dot 

represented an optimal solution in the current state, and the blue curve formed was the Pareto 

Frontier of this operation. 

3.3. Comparison and Analysis 

To further verify the regulation effect of this multi-objective optimization model, six 

testing sets were divided by different temperatures at 20 °C, 24 °C, 28 °C, 32 °C, 36 °C, and 

40 °C. The CO2 concentration and light intensity of the experimental greenhouse were 

measured from 08:00 to 18:00 in two days in May 2021, and their mean values were taken 

as the initial control values. Thus, the initial value of CO2 concentration was 438  μmol ⋅

mol−1, and the initial value of light was 330 μmol ⋅ m−2 ⋅ s−1. After obtaining the optimal 

solution by multi-objective optimization, the appropriate light and CO2 target values were 

selected based on two regulatory strategies. 

According to the non-dominated solution selected, the values of energy cost and 

photosynthetic rate of blueberry were compared with those obtained from the classical 

threshold regulation and the Gaussian curvature maximization regulation, respectively. 

In this study, the threshold control strategy of the greenhouse was set as follows: when 

the indoor CO2 concentration was less than 1000  μmol ⋅ mol−1, we supplied CO2 to the 

greenhouse until the setting value was reached. Similarly, when the light intensity was 

less than 600  μmol ⋅ m−2 ⋅ s−1, we added extra light to the blueberries until the setting 

value was reached. As for the Gaussian curvature function, it was a control strategy based 

on gaussian curvature maximization: according to the Gaussian curvature function of the 

blueberry photosynthetic rate mechanism model, the fitness function was constructed. 

Next, Particle Swarm Optimization [45] was used to calculate the light intensity and CO2 

concentration corresponding to the maximum Gaussian curvature. Finally, a 

comprehensive regulation strategy of light and CO2 under different temperatures was 

established based on polynomial fitting. Compared with the maximum net photosynthetic 

rate saturation point regulation, the regulation strategy based on Gaussian curvature 

maximization was been proved to effectively improve greenhouse benefits. Further 
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details about Gaussian curvature maximization modulation can be found in the literature 

[14]. 

3.3.1. Energy Cost Strategy 

The goal of modern facility agriculture is not only to improve the yield and quality 

of agricultural products but also to reduce energy cost in the production process. To be 

eco-friendly, the selection of energy cost strategy was based on the following principles: 

when compared with threshold regulation strategy, since we knew the initial values of 

the environment and the target values of regulation (CO2: 438–1000 μmol ⋅ mol−1, Light: 

330–600 μmol ⋅ m−2 ⋅ s−1), it was not hard to calculate the photosynthetic rate and total 

cost. For example, when the temperature was 32 °C (the fourth row in Table 2), we could 

calculate that the photosynthetic rate was 15.54 μmol ⋅ m−2 ⋅ s−1 and the cost was 9.8799 

yuan. To compare the cost of each strategy, we should maintain other conditions in the 

same. Therefore, we would look for the point in Pareto Frontier which had the closest 

photosynthetic rate to that in threshold regulation. That is to say, we would find the 

solution whose photosynthetic rate value was closest to 15.54 μmol ⋅ m−2 ⋅ s−1, and select 

the corresponding decision variable values as the target values of light and CO2 

regulation. The closest net photosynthetic rate value we found in the solution set was 15.56 

μmol ⋅ m−2 ⋅ s−1, and the corresponding light and CO2 regulation values obtained were 453 

μmol ⋅ mol−1 and 1700 μmol ⋅ m−2 ⋅ s−1. Finally, the energy cost to this point was obtained 

and compared with the energy cost generated by threshold regulation. This selection 

strategy was repeated in each temperature segment, and the selection process was applied 

to Gaussian curvature maximization regulation as well. According to the above selection 

method, the comparison results of the two strategies obtained by simulation are shown in 

Tables 2 and 3, respectively. 

Table 2. Comparison of threshold regulation strategy and energy cost strategy. 

Temperature 

°C 

Threshold Regulation Strategy Energy Cost Strategy Comparison 

PPFD
  𝛍𝐦𝐨𝐥 ⋅

  𝐦−𝟐 ⋅ 𝐬−1 

CO2 
𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

PPFD
         𝛍𝐦𝐨𝐥 ⋅

         𝐦−𝟐 ⋅ 𝐬−1 

CO2

𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

Decrease 

% 

20 600 1000 11.69 9.7738 500 1333 11.80 7.6393 21.84 

24 600 1000 14.66 9.8556 469 1553 14.70 7.3487 25.44 

28 600 1000 15.81 9.8873 474 1565 15.92 7.5470 23.67 

32 600 1000 15.54 9.8799 453 1700 15.56 7.2618 26.50 

36 600 1000 14.42 9.8490 483 1352 14.45 7.2667 26.22 

40 600 1000 11.61 9.7715 469 1474 11.63 7.0602 27.75 

Note: PPFD is photosynthetic photon flux density, which refers to the number of photons per unit 

area per unit time in the wavelength range 400–700 nm. 𝑃𝑛 is the net photosynthetic rate of crops. 

Table 3. Comparison of Gaussian curvature maximization modulation and energy cost strategy. 

Temperature 

°C 

Gaussian Curvature Maximization 

Modulation 
Energy Cost Strategy Comparison 

PPFD
  𝛍𝐦𝐨𝐥 ⋅

  𝐦−𝟐 ⋅ 𝐬−1 

CO2 
𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

PPFD
         𝛍𝐦𝐨𝐥 ⋅

       𝐦−𝟐 ⋅ 𝐬−1 

CO2

𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

Decrease 

% 

20 693 1170 12.80 12.9819 557 1691 12.86 10.2524 21.03 

24 729 1244 16.66 14.3386 595 1950 16.67 12.1230 15.45 

28 763 1281 18.37 15.4850 641 1790 18.39 13.1526 15.06 

32 743 1269 17.88 14.8491 612 1766 17.91 12.2063 17.80 

36 721 1252 16.34 14.1126 585 1692 16.31 11.1850 20.74 

40 692 1175 12.68 12.9614 547 1627 12.70 9.7995 24.39 
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Under the precondition of maintaining the consistent net photosynthesis rate of 

crops, the results showed that the use of the energy cost strategy could reduce the energy 

consumption by about 22.33% and 19.08%, respectively, compared with the classical 

threshold regulation strategy and the gaussian curvature maximization control strategy. 

Therefore, the energy cost strategy was able to effectively reduce the energy consumption 

of light and CO2 to achieve the goal of energy saving. 

3.3.2. Photosynthesis Improvement Strategy 

When the economic cost before the optimization is within the acceptable range, the 

greenhouse manager hopes to improve the net photosynthetic rate by optimizing the 

setting values of both indoor carbon dioxide and light regulation. This photosynthesis 

improvement strategy was very similar to the energy cost strategy mentioned in Section 

3.3.1. The main difference was that, after calculating the photosynthetic rate and cost of 

the threshold regulation strategy, this time we did not seek for the solution with a similar 

photosynthetic rate, but with a similar cost. Next, we took the decision variable values of 

this solution as the target values of light and CO2, and compared the photosynthetic rate 

values under these two regulation strategies. This selection strategy was repeated in each 

temperature segment, and the selection process was applied to Gaussian curvature 

maximization regulation as well. The comparison results obtained by simulation are 

shown in Tables 4 and 5, respectively. 

Table 4. Comparison of threshold regulation strategy and photosynthesis improvement strategy. 

Temperature 

°C 

Threshold Regulation Strategy 
Photosynthesis Improvement 

Strategy 
Comparison 

PPFD
  𝛍𝐦𝐨𝐥 ⋅

  𝐦−𝟐 ⋅ 𝐬−1 

CO2 
𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

PPFD
         𝛍𝐦𝐨𝐥 ⋅

         𝐦−𝟐 ⋅ 𝐬−1 

CO2

𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

Increase 

% 

20 600 1000 11.69 9.7738 523 1729 12.52 9.3181 7.12 

24 600 1000 14.66 9.8556 534 1631 15.81 9.4978 7.81 

28 600 1000 15.81 9.8873 530 1783 17.11 9.8007 8.23 

32 600 1000 15.54 9.8799 542 1597 16.89 9.6943 8.67 

36 600 1000 14.42 9.8490 540 1673 15.78 9.7741 9.43 

40 600 1000 11.61 9.7715 543 1661 12.66 9.7544 9.11 

Table 5. Comparison of Gaussian curvature maximization modulation and photosynthesis 

improvement strategy. 

Temperature 

°C 

Gaussian Curvature Maximization 

Modulation 

Photosynthesis Improvement 

Strategy 
Comparison 

PPFD
  𝛍𝐦𝐨𝐥 ⋅

  𝐦−𝟐 ⋅ 𝐬−1 

CO2 
𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

PPFD
     𝛍𝐦𝐨𝐥 ⋅

    𝐦−𝟐 ⋅ 𝐬−1 

CO2

𝛍𝐦𝐨𝐥 ⋅
𝐦𝐨𝐥−1 

𝑷𝒏 
𝛍𝐦𝐨𝐥 ⋅

𝐦−𝟐 ⋅ 𝐬−1 

Cost 

Yuan 

Increase 

% 

20 693 1170 12.80 12.9819 635 1856 13.60 12.9771 6.25 

24 729 1244 16.66 14.3386 663 1839 17.28 13.8900 3.72 

28 763 1281 18.37 15.4850 723 1739 18.83 15.4737 2.50 

32 743 1269 17.88 14.8491 699 1788 18.55 14.8467 3.75 

36 721 1252 16.34 14.1126 680 1724 17.04 14.0924 4.28 

40 692 1175 12.68 12.9614 643 1694 13.44 12.8111 5.99 

The results demonstrated that without additional energy cost, the photosynthesis 

improvement strategy could increase the net photosynthetic rate of blueberries by about 

8.40% on average compared with the classical threshold control strategy, and by about 

4.42% compared with the Gaussian curvature maximization control strategy. The 
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experimental results proved that the optimization strategy could achieve reasonable 

regulation of light and CO2 to effectively improve the photosynthetic rate, thereby 

ultimately promoting product accumulation. 

4. Conclusions 

This article surveyed the state of the art of light and CO2 control in the greenhouse 

and presented a multi-objective optimization control strategy. By adopting the SVR 

approach on collected data, a prediction model of blueberry net photosynthetic rate was 

constructed, with light intensity, CO2 concentration, and temperature as inputs. The 

values of evaluation indicators were all within the ideal accuracy range, and the 

regression coefficients of the two validation sets were above 0.99, which proved that the 

net photosynthetic rate of blueberries could be predicted precisely. Since the net 

photosynthetic rate and energy cost functions were different dimensions and inherently 

conflicting, a NSGA-II multi-objective optimization algorithm was implemented to 

optimize the target value of the phosgene regulation, and the Pareto optimal solutions in 

different temperature intervals were obtained. Finally, based on different selection 

strategies, the regulation results obtained by multi-objective optimization were compared 

with the classic threshold regulation strategy and the gaussian curvature maximization 

control strategy in different temperature intervals. On the one hand, the energy cost 

strategy could save about 22.33% and 19.08%, respectively, under the premise of 

maintaining the same photosynthetic rate. On the other hand, the photosynthetic 

improvement strategy could increase the net photosynthetic rate by about 8.40% and 

4.42% on average under the premise of maintaining similar energy consumption. 

Therefore, it was proven that the coordinated control strategy proposed in this paper has 

a better control efficiency compared to both the classic threshold regulation strategy and 

the gaussian curvature maximization control strategy. Moreover, this study adopted the 

multi-objective optimization algorithm, and the result of coordinated optimization is a 

series of (multiple groups) control target values of light and CO2. Therefore, a significant 

advantage is that greenhouse managers can choose a set of optimal control target values 

of light and CO2 according to market changes: if the market price of energy is high, 

managers can select control target values of light and CO2 according to the “energy cost 

strategy” so as to reduce energy consumption; if the market price of energy is low, 

managers can select control target values of light and CO2 according to the 

“photosynthesis improvement strategy” so as to pursue a higher photosynthetic rate of 

crops and achieve higher yield. This decision-making method provides a theoretical 

reference for the comprehensive regulation of light and CO2 in the greenhouse based on 

different targets. In future work, the experimental validation of the proposed control 

strategy will be further investigated. 
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