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Abstract: Peru is one of the world’s leading exporters of cocoa beans, which directly impacts the
household economy of millions of small farmers. Currently, the expansion and modernization of the
cocoa-growing area require the zoning of the territory with suitable biophysical and infrastructural
conditions to facilitate optimizing productivity factors. Therefore, we analyzed land suitability for
cocoa (Theobroma cacao L.) production on the Peruvian mainland as a support measure for sustainable
agriculture. To this end, the climatological, edaphological, orographic, and socioeconomic criteria
determining sustainable cocoa cultivation were identified and mapped. Three modeling approaches
(Analytic Hierarchy Process—AHP, Maximum Entropy—MaxEnt, and AHP—MaxEnt combined)
were further used to hierarchize the importance of the criteria and to model the potential territory
for sustainable cocoa cultivation. In all three modeling approaches, climatological criteria stood out
among the five most important criteria. Elevation (orographic criteria) is also featured in this group.
On the other hand, San Martin and Amazonas emerged as the five regions with the largest area
“Highly suitable” for cocoa cultivation in all three modeling approaches, followed by Loreto, Ucayali,
Madre de Dios, Cusco, Junin, and Puno, which alternated according to modeling approach. From
most to least restrictive, the AHP, MaxEnt, and AHP-MaxEnt modeling approaches indicate that
1.5%, 5.3%, and 23.0% of the Peruvian territory is “Highly suitable’ for cocoa cultivation, respectively.

Keywords: agricultural zoning; agroecological zoning; analytical hierarchy process; crop suitability;
maximum entropy; multi-criteria evaluation

1. Introduction

Cocoa (Theobroma cacao L.) is grown from 100 to 1400 m a.s.l,, in landscapes ranging
from mountains to alluvial plains with dry and pre-humid environments [1]. That is, in
multiple edaphic, physiographic and climatic conditions, which originate a wide range of
agroecological environments that respond differentially to technological recommendations
and crop management options. Peru is considered one of the main producers and suppliers
of fine cocoa, which in turn is the world’s second-largest producer of organic cocoa, with
48.6% on exports of cocoa beans, of which 20% has the organic and fair-trade certification.
It is also the world’s eighth largest producer of cocoa beans, accounting for 1.7% of world
cocoa bean production. Cocoa is also the second most important alternative to illegal crops,
after coffee, which highlights its growing importance [2].

Nowadays, the expansion and modernization of the cocoa-growing area, under new
production strategies and criteria of competitiveness and sustainability, require the zoning
of the territory with appropriate biophysical conditions (climate, soil, orography) and
infrastructure (accessibility, nearby populations, etc.), so as to facilitate the optimization in
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production [3]. Agricultural zoning for cocoa cultivation becomes particularly important
in Peru as it is the fifth country with the largest number of cultivated hectares of cocoa in
Latin America and the Caribbean [2].

In that sense, the integration of remote sensing (RS), Geographic Information Systems
(GIS) and Multi-Criteria Evaluation (MCE) techniques is a support system for decision-
making problems, such as agro-zoning, which include a large set of factors or constraints [4].
This system has been widely applied to model land suitability for sustainable agriculture
and other environmental and socioeconomic sciences. For planning sustainable agricul-
ture, it was applied, for instance, for coffee [5-7], rice [8], cocoa [9-12], and combined
crops [13-15], among other crops.

Although there are different MCE techniques, the most common approach is to esti-
mate the weight of importance of each criterion using expert opinions [16] by the Analytical
Hierarchy Process (AHP) [17]. In Peru, previous studies have been reported using this
technique on specific crops such as Malus domestica in the Mala Valley (Lima Region) [18]
and Coffea arabica [19] and Solanum tuberosum [20] in Amazonas Region. However, expert
opinions have a strong influence on the results, and the weights could be biased [21]. This
concern is addressed by applying machine learning techniques to estimate the weight of
each criterion. In this regard, Species Distribution Models (SDM), such as the Maximum
Entropy (MaxEnt) approach [22], apart from modeling the potential distribution of suitable
habitat for a given species, provide valuable information on the relative contribution of
the criteria used to the model. This relative contribution may then be used as a weight of
importance in the MCE [23].

In the literature, MCE and SDM have been integrated to determine suitable areas for
sustainable aquaculture [24], priority areas for archaeological site protection [25], priority
areas for species conservation [26] and vulnerable areas within a protected area [23]. How-
ever, there is no evidence of integrated modeling (AHP and MaxEnt) on land suitability
for sustainable cocoa or other agricultural crop farming [27]. Therefore, in this study,
land suitability for sustainable cocoa cultivation in Peru was determined using AHP-only,
MaxEnt-only and combined AHP-MaxEnt modeling. To this end, three specific objectives
were implemented: (i) to map the key criteria for sustainable cocoa cultivation in Peru,
(ii) to rank the importance of the key criteria for sustainable cocoa cultivation and (iii) to
model the current potential territory for sustainable cocoa cultivation in Peru.

2. Materials and Methods
2.1. Study Area and Methodology Framework

Peru is located in the intertropical zone of South America, with an altitudinal gradient
from sea level to 6768 m a.s.l. (Figure 1). Peru covers an area of approximately 1,285,215 km?,
making it the twentieth-largest country on Earth and the third-largest in South America. It
has an enormous landscape diversity due to its geographic conditions, which in turn gives
it a great diversity of natural resources and agroecosystems. Peru, with a population of
31,237,385 inhabitants, a population density of 24.3 inhabitants/km? and an annual growth
rate of 1.07%, is the fifth most populous country in South America [28]. Of the 24 regions
of Peru, 12 have georeferenced cocoa records (Figure 1).

Figure 2 shows the methodological process to determine the suitability of the territory
for cocoa cultivation in Peru. Three modeling approaches were used: (i) AHP, (ii) MaxEnt,
and (iii) AHP—MaxEnt combination. The three approaches were worked in the GIS
environment with spatial data, expert opinion and spatial statistics.

2.2. Identification and Mapping of Criteria for Cocoa Cultivation

Different criteria were used according to their availability in national and international
spatial databases and the requirements of each modeling approach [27] (Table 1). Namely,
the AHP approach requires knowledge of specific ranges of crop suitability for each
criterion. Meanwhile, the MaxEnt approach does not need these ranges, and it is possible
to use commonly unknown criteria, such as bioclimatic criteria. For AHP modeling, a set
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of 20 criteria that condition/favors cocoa cultivation were identified based on previous
studies on agricultural land suitability [1,9-12,29] and technical manuals [30-34] on cocoa
cultivation. For the MaxEnt modeling, 33 environmental criteria were established based
on previous cocoa potential distribution modeling studies [35-39]. Of all these criteria, for
AHP-MaxEnt modeling, socioeconomic criteria were excepted.
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Figure 1. Location and elevational gradient of Peru, including cocoa occurrence.
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Table 1. Criteria used for each modeling approach.

Criteria Subcriteria Model in Which It Was Used Spatial
(1st Hierarchy AHP) (2nd Hierarchy AHP) AHP MaxEnt AHP-MaxEnt Database
Biol: Mean annual temperature X X X [40]
Bio2-Biol1: bioclimatics derived
X [40]
from temperature
Bio12: Mean annual rainfall X X X [40]
Climatological Bio13-Bio19: bioclimatics derived N [40]
from precipitation
Annual mean max temperature X X [40]
Annual mean min temperature X X [40]
Number of dry months X X [40]
Relative humidity X X X [41]
Solar radiation X [40]
pHin H,O X X X [42]
Coarse fragment content X X X [42]
Organic carbon X X X [42]
Texture X X [42]
. Total nitrogen X X X [42]
Edaphological at 0.30 m CEC—Cation excha%lge capacity X X X [42]
Bulk density X [42]
Proportion of sand particles X [42]
Proportion of silt particles X [42]
Proportion of clay particles X [42]
Elevation X X X CGIAR
Orographic Slope X CGIAR
Aspect X X X CGIAR
LULC—Land Use and Land Cover X [43,44]
Distance to urban centers X [45]
Socioeconomical Distance to roads X [46]
Distance to rivers X [45]
Distance to protected natural areas X [47]

Spatial layers of precipitation, temperature and solar radiation, with 30” spatial reso-
lution, were obtained from WorldClim 2.1 [40]. A dry month was considered as a month
where twice the monthly mean temperature was lower than the monthly precipitation,
according to the Gaussen xerothermal index [48]. Monthly point data of relative humidity,
with 10’ spatial resolution, were obtained from the Climatic Research Unit [41]. Nine
interpolation techniques (inverse distance weighted, natural neighbor, spline: regularized
and tension, ordinary kriging: spherical, circular, gaussian, linear and exponential) were
used to generate continuous relative humidity maps (250 m spatial resolution) in ArcGIS
10.5 [20]. The best interpolation technique for each month was determined based on four
statistics (coefficient of determination, mean bias error, mean absolute bias error, root mean
square error and t-Student [49]), with 23% (1030) of the point data. The spline tension
(11 months) and ordinary linear kriging (March) techniques performed best [50].

Soil physicochemical properties, with 250 m spatial resolution, were obtained from
SoilGrids 2.0 [42]. Orographic variables were derived from the 250 m spatial resolution
Digital Elevation Model, downloaded from the CGIAR Consortium for Spatial Information
(www.srtm.csi.cgiar.org/; accessed on 17 January 2022). The Land Use and Land Cover
(LULC) base map was obtained from the Copernicus Global Land Service-Land Cover
(CGLS-LC100)-Collection 3-2019 at 100 m spatial resolution [43]. In this map, land uses
(urban area, agricultural area and secondary vegetation) from the National Ecosystem Map
of Peru [44,51], LULC maps from Ecological and Economic Zoning studies of 14/24 regions
(Amazonas [52], Ayacucho, Cajamarca, Cusco, Huancavelica, Huanuco, Junin, Lambayeque,
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Madre de Dios, Piura, Puno, San Martin, Tacna and Ucayali) and from a local LULC map
(province of Rodriguez de Mendoza [53]) were incorporated.

Urban polygons were extracted from the final LULC map, and population centers
(points) were obtained from the Ministry of Education [45]. We used the road network from
the Ministry of Transport and Communications [46] and the rivers from the 341 national
charts of the National Geographic Institute [45]. Then, distances to roads, rivers and towns
were calculated using Euclidean distance. We also used the protected areas and their buffer
zones updated to 2022 by the National Service of Natural Areas Protected by the State [47].

In summary, 42 base layers were prepared in a raster model, with one thematic map
for each sub-criterion of spatial suitability. These were standardized at a spatial resolution
of 250 m and in the WGS84 geographic coordinate system.

2.3. Modelling Approach with the Analytical Hierarchical Process—AHP
2.3.1. Construction of Hierarchies and Thresholds of Criteria Suitability

In the AHP, the problem/objective is hierarchically structured into different levels
comprising a predefined number of elements [54]. A hierarchy was constructed consisting
of 20 sub-criteria (2nd hierarchy), grouped within four criteria (1st hierarchy) (Table 1). The
subcriteria were reclassified according to thresholds of the suitability of the territory for
cocoa cultivation (3rd hierarchy, Table 2). The commonly used approach to classifying land
suitability thresholds is “FAO: A framework for land evaluation” [55]: Highly suitable,
Moderately suitable, Marginally suitable, Currently unsuitable and Permanently unsuitable.
In this study, as in other studies [18-20], the last two levels were combined since it is difficult
to establish internal limits for these two levels.

Table 2. Suitability thresholds of key criteria for cocoa cultivation in Peru, AHP model.

Land Suitability Classes (3rd Hierarchy AHP)

Criteria/Subcriteria . . . . . Not Adapted
Highly Suitable Moderately Suitable Marginally Suitable Suitable From
Climatological
Mean annual temperature (°C) 25-28 22-25/28-32 20-22/32-35 <20/>35 [10,29-31]
Annual mean min temperature (°C) 18-21 15-18/>21 12-15 <12 [11,12,32]
Annual mean max temperature (°C) 28-30 30-32/25-28 >32/22-25 <22 [11,12,32]
Mean annual rainfall (mm) 1600-2500 2500-3500/1400-1600  1200-1400/3500-4400  <1200/>4400 [30,31]
Number of dry months 0-2 3 4 >4 [12,32]
Relative humidity (%) 70-80 80-85/60-70 85-90/50-60 >90/<50 [11,33,34]
Edaphological at 0.30 m
pH in H,O 6-7 5-6/7-7.6 42-5/7.6-8.2 <42/>82 [29-32,34]
Texture ! SiCL, CL, Sil L, SCL, SC Si, SL, C LS, s, SiC [30-32]
Coarse fragment content (%) <15 15-35 35-55 >55 [10,30,31]
Organic carbon (%) >1.5 0.8-1.5 <0.8 - [30-32]
CEC (cmol/kg) >24 20-24 16-20 <16 [10]
Total nitrogen (%) >0.18 0.15-0.18 0.1-0.15 <0.1 [10]
Orographic
Elevation (m asl) 400-800 0-400/800-1200 1200-1600 >1600 [1,34]
Slope (%) <8 8-16 16-30 >30 [29-32]
Aspect N, NE, NW, Flat W E SE, SW S [19,56]
Socioeconomical
2 0, 50-90,
CGLS-LC100 40 20 30 ~100 [19]
Ecosystems of Peru  Agricultural area - Secondary vegetation =~ Urban/built [20]
LULC Agricultural Ma
gricy p Agriculture - - -
of Peru
ZEE Agriculture - Cattle raising Urban/built [20]
Global urban _ B _ Urban/built

borders
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Table 2. Cont.

Land Suitability Classes (3rd Hierarchy AHP)

Criteria/Subcriteria . . . . . Not Adapted
Highly Suitable Moderately Suitable Marginally Suitable Suitable From
Socioeconomical

Distance to National-axis 0-6 6-9 9-12 >12 [19,20]

ds (km) Departmental 04 4-8 8-10 >10 [19,20]

roads {km. Local 0-2 24 48 >8 [19,20]
Distance to rivers (km) 0-0.5 0.5-2 2-5 >5 [19]
Distance to urban Urban areas 0-3 3-6 6-10 >10 [19]
centers (km) Population centers 0-1 1-3 3-5 >5 [19]
Distance to protected natural areas Out - Buffer zone Within [19]

1'S: Sand, LS: Loamy sand, SL: Sandy loam, L: Loam, SiL: Silt loam, Si: Silt, CL: Clay loam, SCL: Sandy clay
loam, SiCL: Silty clay loam, SC: Sandy clay, SiC: Silty clay, C: Clay. 2 CGLS-LC100 [43]: 0—No data, 20—Shrubs,
30—Herbaceous vegetation, 40—Cropland, 50—Urban/built up, 60—Bare/sparse vegetation, 70—Snow and ice,
80—water bodies, 90—Herbaceous wetland, and >100—all the forests.

2.3.2. Determination of Importance Weights of Criteria

The initial development of the first and second hierarchies required the construction of
Pairwise Comparison Matrices (PCM), where cocoa experts compared one criterion against
the others (pairwise) and established a degree of importance between them [7]. This section
is not dealt with here but has been extracted and is discussed in the companion article to
this one [27].

2.3.3. AHP Sub-Model Generation and AHP Suitability Modeling

The final development of the first and second hierarchies consisted of integrating the
re-classified thematic maps (3rd hierarchy based on Table 2), according to the hierarchical
group, by weighted superposition [19,20,57]. The resulting suitability depended on the
reclassified map pixel score and the sub-criterion importance weight calculated by PCM.
The integration of sub-criteria generated the climatological, edaphological, orographic and
socioeconomic suitability sub-models, and the integration of these sub-models generated
the final suitability model.

2.4. Modelling Approach with Maximum Entropy—MaxEnt
2.4.1. Georeferenced Cocoa Records

Georeferenced records were obtained from iNaturalist (www.inaturalist.org/observations;
accessed on 9 January 2022), TROPICOS Missouri Botanical Garden (www.tropicos.org;
accessed on 9 January 2022) and GBIF Global Biodiversity Information Facility (www.gbif.
org/; accessed on 9 January 2022) through three QGIS 3.10 plugins (GBIF occurrences,
Species Explorer and Natusfera) [35,36]. These were complemented with georeferenced
records of native organic cocoa [58]. To remove spatial sampling bias and improve model
performance [59], georeferenced records were filtered to a 250 m grid (equal to the spatial
resolution of the criteria). The spatial filter reduced the georeferenced records from 546 to
196 (Figure 1).

2.4.2. Selection of Environmental Criteria

Collinearity between criteria causes overfitting problems, increases uncertainty, and
decreases the statistical power of the model [60]. Therefore, using the ‘removeCollinearity’
function of the ‘virtualspecies’ package [61] in R 3.6, (i) Pearson’s correlation coefficients
between criteria were calculated, from which (ii) a distance matrix was calculated, which
in turn was used to (iii) construct a hierarchical cluster dendrogram. The criteria were
grouped according to an r > 0.7. This threshold is an acceptable measure to minimize
multicollinearity of the adjusted models [60].

In order to select one important criterion per cluster, we ran a preliminary MaxEnt
model (the setup is explained in Section 2.4.3) using all criteria, then we selected the
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criterion with the best performance in the Jackknife test [62] (i.e., the smallest difference
in regularized training gains obtained from a model generated with all criteria except
the criterion of interest, and a model generated with just the criterion of interest [63]). It
was thus selected the following criteria, three orographic (elevation, slope and aspect),
three bioclimatic (Bio04—Seasonality of temperature, Biol2—Annual precipitation, Bio19—
Precipitation of the coldest quarter), and seven edaphological (CEC, Organic carbon, Bulk
density, Total nitrogen and Coarse fragments, silt and, sand contents).

2.4.3. Modelling the Potential Distribution

The cocoa potential distribution model was generated by the Maximum Entropy prin-
ciple algorithm [22], implemented in MaxEnt 3.4.4 (https:/ /biodiversityinformatics.amnh.
org/open_source/maxent/; accessed on 21 February 2022). 75% and 25% of the georefer-
enced records (randomly selected) were used for training and validation of each model,
respectively [22]. The algorithm was run using 100 replicates over 1000 iterations with
different random partitions (Bootstrap method), a convergence threshold of 0.00001 and
10000 maximum background points [63,64]. Other default settings were kept, as MaxEnt is
able to select the appropriate function for the number of samples used for a model [60].

Model performance was evaluated by the Area Under the Curve (AUC), calculated
from the Receiver Operating Characteristic [22]. Five levels of performance were differenti-
ated according to the AUC [65]: excellent (>0.9), good (0.8-0.9), accepted (0.7-0.8), poor
(0.6-0.7) and invalid (<0.6). The Cloglog output format of the model generated a map
of continuous probability values for the potential cocoa distribution ranging from 0 to
1 [66]. These were reclassified into four ranges [63,64]: ‘Highly suitable’ (>0.6), ‘Moderately
suitable’ (0.4-0.6) and ‘Marginally suitable’ (0.2-0.4) potential distribution, as well as Not
suitable distribution (<0.2).

2.5. AHP-MaxEnt Modeling Approach

Reclassified thematic maps (based on Table 2) were integrated by weighted over-
lay [19,20,57]. The resulting suitability depended on the reclassified map pixel score and
the sub-criterion importance weight. This weight, unlike the AHP model (Section 2.3.3),
was not obtained by expert PCM (Section 2.3.2). For this model, a MaxEnt model was
generated (the modeling setup was explained in Section 2.4.3), including criteria for this
model (Table 1), obtaining the contribution percentage to the model. Then, this contribution
percentage was assumed as the importance weight [23]. The integration of sub-criteria by
weighted overlay [19,20,57] generated the final land suitability model for cocoa cultivation.

3. Results
3.1. Model Based on the Analytical Hierarchical Process—AHP
3.1.1. Suitability Map of Subcriteria

Figure 3 and Appendix A, Table A1l show the reclassified maps and areas according
to suitability thresholds (Table 2) of the climatological, edaphological, orographic and
socioeconomic subcriteria. The subcriteria with the largest ‘Highly suitable” area with
respect to their criteria group are the number of dry months (970,538.09 km?, 75.3%), or-
ganic carbon (1,178,174.42 km?, 91.4%), slope (814,094.16 km?, 63.2%) and protected areas
(911,644.79 km?, 70.7%). While those with the highest ‘Not suitable’ area are annual pre-
cipitation (545,675.95 km?, 42.3%), CEC (440,187.65 km?, 34.2%), elevation (438,500.97 km?,
34.0%), and land cover and land use (824,499.95 km?, 64.0%). In all maps, 1.4% (18,477.30 km?)
of the Peruvian territory was discriminated from the analysis, corresponding to a mask of
main water bodies, glaciers and urban areas.
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Figure 3. Suitability maps of the climatological (a—f), edaphological (g-1), orographic (m—o) and
socioeconomic (p-t) subcriteria for cocoa cultivation in Peru.



Agronomy 2022, 12, 2930

9 of 20

3.1.2. Submodels and Land Suitability Models

In the AHP model, climatological (35.7%) and edaphological (29.1%) are the most
important criteria, followed by socioeconomic (18.2%) and orographic (17.0%) (Companion
article to this one [27]). On the other hand, the subcriteria, annual precipitation, CEC, ele-
vation and distance to the water network scored the highest weighting with respect to their
group of criteria (Table 3). With the weighted overlay of sub-criteria, suitability submodels
were generated for each hierarchical group. Indeed, climatological (363,379.34 km?, 28.2%)
and edaphological (290,845.16 km?, 22.6%) are the sub-models with the highest ‘Highly
suitable’ areas for cocoa cultivation (Figure 4).

Table 3. Weight of importance (%) and relative contribution of subcriteria to land suitability modeling
for cocoa cultivation.

AHP Model 2 MaxEnt Model ! AHP-MaxEnt Model !
Bio12: Mean 99 I Bio19: Precipitation T4 IR ’Annual mean 405
annual rainfall of coldest quarter min temperature
Elevation 9.7 [l Elevation 23.6 NN Number of dry months ~ 14.2 Il
CEC 71 M Biol2: Mean ¢, g Elevaton 104 1l
annual rainfall
Relative humidity 6.7 W Biod: Temperature 5, g Relative humidity 74 W
seasonality
Texture 6.0 M Slope 42 1 pHinH,O0 56 W
Proportion of Biol: Mean annual
Number of dry months 5.8 M . . 3.0 i 42 |
silt particles temperature
Total nitrogen 55 N Coarse fragment 30 I Bio12: Mean an'nual 33 I
content rainfall
Distance torivers 5.0 N Aspect 30 1 Aspect 25 |
Biol: Mean ., (g Organic carbon 26 | CEC 21 |
annual temperature
Annualmean . o g CEC 25 | Slope 21 |
min temperature  ——
Slope 46 1 Bulk density 20 | Texture 20 |
. Proportion of .
pHinH,0 45 |1 sand particles 1.5 | Organic carbon 1.7 |
Annual mean 41 1 Total nitrogen 15 | Coarse fragment 15 |
max temperature content
Organic carbon 4.1 1 Biol: Mean anmnual * Total nitrogen 1.3 |
temperature
Bio2, Bio3, Annual mean max
LULC 41 | Bio5-Bioll, — * romverature L |
Bio13-Bio18 emperature
Distance toroads 3.6 | Relative humidity *
Distance toPNA 34 | Solar radiation *
Aspect 27 | pH in H,O *
Distance to urban 21 1 Proportion of clay .
centers ’ particles
Coarse fragment 20 |
content

1 Italics = Climatological; Bold = Edaphological; Underlined = Orographic; Normal = Socioeconomical. 2 Adapted
from [27]. * Initially considered but removed from final suitability modeling by modeling approach.

A weighted overlay of sub-models generated an AHP model of land suitability for
cocoa cultivation in Peru (Figure 5a). Here, 1.5% (19,437.63 km?), 80.6% (1,038,036.17 km?),
16.5% (211,982.87 km?), and 0.05% (630.04 km?) showed, respectively ‘Highly suitable’,
‘Moderately suitable’, ‘Marginally suitable” and ‘Not suitable’ territory for cocoa culti-
vation (Appendix A, Table A2). Regarding regions, San Martin (4732.75 km?), Ucay-
ali (2700.82 km?), Amazonas (2627.36 km?), Cusco (2351.81 km?), Junin (2128.12 km?),
Huénuco (1928.73 km?), and Madre De Dios (1340.31 km?) have the largest cocoa-growing
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areas with ‘Highly suitable’ land, on the contrary, Loreto (708.86 km?), Pasco (646.19 km?),

Cajamarca (255.28 km?), Ayacucho (12.82 km?), and Puno (4.57 km?) have the smallest
areas (Table 4).

Al
0 100 km

(a)
Climatological
suitability

(b)
Edaphological
suitability

(0
Orographic
suitability

(d)
Socioeconomical
suitability

(e) Submodel suitability area (km?)
Climatological suitability gf¥}

363,403.80 91,258.09

45.16 875,533.01

Edaphological suitability | 5.1
Orographic suitablit 3259693

Socioeconomical suitability
@ Highly suitable @ Moderately suitable (DMarginally suitable @ Not suitable

Figure 4. Suitability maps of edaphological (a), orographic (b), climatological (c) and socioeconomic
(d) conditions, and (e) their respective areas, for cocoa cultivation in Peru.

(@)

(c)

AHP AHP-MaxEnt
model model
| 0.05%
16.5%
I1.5%

@ Highly suitable @ Moderately suitable (OMarginally suitable @ Not suitable

Figure 5. Land suitability map for cocoa cultivation in Peru, AHP model.
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Table 4. ‘Highly suitable’ area (km?) of land suitability for cocoa cultivation in Peru, based on regions
and modeling approaches.

AHP Model MaxEnt Model AHP-MaxEnt Model
San Martin ~ 4732.75 Ml Madre De Dios  26,285.36 | ENEINEEIN Ucayali  92,224.56 [N EINEEIEENEERIE N ENR
Ucayali 270082 1l Loeto 1982718  WEEEN MO 7506135 NN
Amazonas 262736 SanMartin 982990 [l Loreto  60,526.92 [N ENINEEINEEIRNRNNNN
Cusco 2351.81 | Amazonas 410707 M San Martin -~ 18,009.91 [ INNNNIN
Junin 2128.12 | Puno 3149.39 | Amazonas 11,913.73 il
Huénuco 192873 | Cajamarca 169455 | Cusco 10,873.61 Il
Madre De Dios ~ 1340.31 | Junin 774.32 | Huinuco 934231
Loreto  708.86 | Cusco 751.75 | Pasco 717336 M
Pasco 64619 | Ucayali 485.92 Puno 543540 M
Cajamarca  255.28 Pasco 450.47 Junin 5109.47 [ |
Ayacucho 12.82 Huanuco 174.66 Cajamarca 543.78 |
Puno 4.57 Tumbes 103.31 Ayacucho 131.31
Ancash 0 Lima 51.86 Ancash 0
Apurimac 0 Ancash 39.34 Apurimac 0
Arequipa 0 La Libertad 25.58 Arequipa 0
Callao 0 Piura 19.48 Callao 0
Huancavelica 0 Ayacucho 16.90 Huancavelica 0
Ica 0 Callao 0.12 Ica 0
La Libertad 0 Arequipa 0.05 La Libertad 0
Lambayeque 0 Apurimac 0 Lambayeque 0
Lima 0 Huancavelica 0 Lima 0
Moquegua 0 Ica 0 Moquegua 0
Piura 0 Lambayeque 0 Piura 0
Tacna 0 Moquegua 0 Tacna 0
Tumbes 0 Tacna 0 Tumbes 0

3.2. Maximum Entropy Model—Maxent
3.2.1. Model Performance and Importance of Sub-Criteria

The average AUC over 100 MaxEnt replicates 0.916, with a standard deviation of 0.008,
indicating an excellent predictive performance of the model. According to the Jackknife
test of variable importance, the Elevation is the environmental variable with the highest
gain when used in isolation; it, therefore, seems to have the most useful information itself.
Elevation, when omitted, is also the environmental variable decreasing the gain the most,
and therefore appears to have the most information missing in the other variables. It
was found that 76.7% of the potential cocoa distribution is driven by four environmental
variables, namely Bio19-Precipitation of the coldest quarter (41.4), Elevation (23.6%), Bio12—
Annual precipitation (6.0%) and Bio04-Seasonality of temperature (5.7%) (Table 3). At the
same time, Sand Content (1.5%) and Total Nitrogen (1.5%) contributed the least.

3.2.2. Potential Distribution

Areas of ‘high’ potential distribution probability for cocoa were identified mainly
in the lowlands of the Peruvian Amazon (Figure 5b). Areas of ‘high’, ‘moderate’, ‘low’
and ‘no potential’ cocoa distribution cover 5.3% (67,787.22 km?), 7.2% (92,791.09 km?2),
20.3% (261,335.27 km?) and 65.8% (848,173.42 km?) of Peru’s territory, respectively (Appendix A,
Table A3). On the regional distribution, Madre De Dios (26,285.36 km?), Loreto (19,827.18 km?),
San Martin (9829.90 km?), Amazonas (4107.07 km?), Puno (3149.39 km?), and Cajamarca
(1694.55 km?) have the largest areas with ‘high’ potential distribution for cocoa cultivation
(Table 4).

3.3. Model Based on AHP-MaxEnt
3.3.1. Importance and/or Weights of Subcriteria

The average AUC for the 100 MaxEnt replicates 0.920, and the standard deviation
is 0.007, suggesting an excellent predictive performance of the model. It was found that
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72.7% of the potential cocoa distribution is driven by four environmental variables, namely,
Mean annual minimum temperature (40.7%), Number of dry months (14.2%), Elevation
(10.4%) and Relative humidity (7.4%) (Table 3). While Coarse Fragment Content (1.5%),
Total Nitrogen (1.3%), and Mean Annual Maximum Temperature (1.1%) contributed the
least. The subcriteria, mean annual minimum temperature (40.7%), pH in H,O (5.6%), and
elevation (10.4%) had the highest weighting within their criteria group; not-withstanding,
mean annual maximum temperature (1.1%), Total nitrogen (1.3%), and Terrain slope (2.1%)
were the least weighted.

3.3.2. Land Suitability Model

With the weighted overlay of subcriteria, it was generated the land suitability model for
cocoa cultivation in Peru (Figure 5c). In Peru, 23.0% (296,545.69 km?), 37.4% (482,489.88 km?),
35.2% (453,379.97 km?), and 2.9% (37,671.17 km?) of the territory featured ‘Highly suitable’,
‘Moderately suitable’, ‘Marginally suitable’, and ‘Not suitable’, respectively (Appendix A,
Table A4). Regionally, Ucayali (92,224.56 km?), Madre De Dios (75,261.35 km?), Loreto
(60,526.92 km?), San Martin (18,009.91 km?), Amazonas (11,913.73 km?), Cusco (10,873.61 km?),
and Huanuco (9342. 31 km?) have the largest areas with “Highly suitable’ land for cocoa
cultivation, compared to Pasco (7173.36 km?), Puno (5435.40 km?), Junin (5109.47 km?),
Cajamarca (543.78 km?), and Ayacucho (131.31 km?) showing the smallest ‘Highly suitable’
areas (Table 4).

4. Discussion

Cropland suitability analysis based on different modeling approaches has been well
documented [67-70], and despite the potential gains achieved for crop zoning on an
individual basis with MCE approaches such as AHP [19,20,71], and with SDM approaches
such as MaxEnt [23,72], the integration of both models has recently become an important
tool to enhance various factors of importance [73,74], regardless of individual suitability
adjustment values. Therefore, for the first time in this research, high potential suitability
cocoa lands in Peru are documented based on three models with (i) AHP, (ii) Maxent and
(iii) AHP-MaxEnt approach.

There were 42 hierarchical key sub-criteria for sustainable cocoa cultivation in Peru,
including 20, 33, and 15 for the AHP, MaxEnt, and AHP-MaxEnt modeling approaches, re-
spectively. Although each model has different evaluation criteria [75], the three approaches
showed similarities in their results regarding the most important criterion. Climatological
criteria stood out in the top four positions of the most important criteria in all three model-
ing approaches. Elevation (orographic criterion) is also featured in this group. Differences
in criteria used to respond to the need for input information in each approach. Namely,
the EMC agro-zoning approaches, such as AHP, require input on specific ranges of crop
suitability for each criterion. The commonly used classification guide for land suitability
thresholds is the “FAO: Framework for Land Evaluation” [55], and ranges exist for a wide
list of crops [30-32]. Meanwhile, machine learning modeling (~SDM) approaches such as
MaxEnt has no need for these ranges, and it is possible to use a larger number of commonly
unknown criteria, such as WorldClim’s bioclimatic criteria [40].

However, when using the MaxEnt approach, individually or in combination, it is
advisable not to include socioeconomic variables, as we did in this study. Since this species
distribution modeling is based on points of occurrence of the species in naturally suitable
areas, with no human interaction. In common platforms (GBIF, iNaturalist, TROPICOS,
speciesLink and others) for obtaining occurrence data for species modeling, there is no
differentiation between wild and cultivated collections regarding crops [39]. Socioeconomic
variables, though not supported by the MaxEnt model features, are still relevant and could
be used as a restriction mask for MaxEnt and AHP-MaxEnt results.

It is assessed that the most suitable cocoa areas in Peru are mainly explained by the
climatological criteria and elevation in the three approaches. Compared to previous studies
on cocoa land suitability, using MCE [1,9-12,29] or SDM [35-39], this study included a
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greater number of sub-criteria (42 sub-criteria). On the one hand, this is because of the
three approaches used, and on the other hand, in such studies, the large range of subcriteria
depends on the study scope and spatial data availability [19,20]. In future studies, for
example, economic (benefit-cost, productivity, crop rate of return or other [76]) and social
(household skill level, labor availability, access to information, poverty rate or other [77])
subcriteria, not considered here for unavailable spatial data, may be included; and of
course, crop risk maps such as disease [19,36] or cadmium (Cd) in the soil [78] may be
incorporated, especially Cd due to its detrimental impact on cocoa [79]. However, an
important issue when integrating more criteria is to consider that there will be a greater
spatial heterogeneity of the data sources, which will ultimately influence the results [80].

The AHP approach determined that Biol2—Annual precipitation, elevation, and
CEC are the top three sub-criteria predicting the model with 26.7% contribution. This
approach allowed flexible decision-making by groups of sub-criteria, which can easily
use both intangible and tangible variables in a systematic way [81]. In Peru, for example,
this approach provides a structured and comparatively simple solution to multi-criteria
decision-making problems on cocoa crop suitability. Despite the fact that the importance
weights estimated by experts in the AHP approach may be influenced by respondents’
subjectivity [21], the findings demonstrate a much more homogeneous distribution of
weights, and the importance is no longer concentrated on three or four criteria such as the
other two approach-es using MaxEnt’s machine learning [22].

Since MaxEnt effectively addresses the suitability effects of variable environmental
factors [82], it allowed us to quantitatively relate the model to potential areas [83], whereby
5.3% of the territory is highly suitable for cocoa cultivation based on 18 variables. This
model showed that the combined contribution of the variables Bio19—Coolest quarter
precipitation, elevation, and Biol2—Annual precipitation reached up to 71%.

In the third modeling approach (AHP-MaxEnt), the sub-criteria of minimum mean
annual temperature, number of dry months, and elevation are matched by a 65.3% con-
tribution to the iterative process with 15-variables model building. Thus, AHP-MaxEnt
successfully addressed the uncertainty of expert opinion weighting bias when using the
AHP-only model [23] while further boosting the climatic information provided by the
MaxEnt model, thereby identifying up to 23% of highly suitable areas for cocoa cultivation
in Peru.

The results of the combined AHP-MaxEnt approach show higher fractions of ‘Highly
suitability” areas, compared to the AHP and MaxEnt only, because assembly allowed
adjusting the value of moderately suitable areas with respect to the subcriteria used in
the AHP model. By assuming the expert criteria, the farmer can improve agricultural
practices to enhance yields in highly suitable areas with techniques that improve the CEC
and achieve values greater than 24 cmol/kg [30-32] in optimal cocoa altitudes between
400-800 [1,34], and with drainage practices, infiltration ditches or installation of technician
irrigation if necessary to meet cocoa optimal water requirement between 1600-2500 mm
per year [30,31].

In the three modeling approaches, San Martin and Amazonas were among the five
regions with the largest ‘Highly Suitable” area for cocoa cultivation, followed by Loreto,
Ucayali, Madre de Dios, Cusco, Junin and Puno, having alternating positions according to
the modeling approach. These regions have also recorded the highest production but have
not the highest yields; even Cusco (366 kg/ha) and Amazonas (642 kg/ha) lie below the
national yield average of 720 kg/ha [2]. Furthermore, despite being areas with lower Cd
estimated in soil [78], forest losses also affect these regions, about 70% are patches of less
than 5 ha (small-scale agriculture) [84].

According to the AHP approach, the regions have a significantly smaller "Highly
Suitable” area. It may be due to the socioeconomic criteria only used in this approach,
restricting the naturally suitable areas (climate, edaphology and orography) as identified
in the other approaches, but with no accessibility or infrastructure conditions. However,
although limited spatial information may constrain crop-land suitability assessment, future



Agronomy 2022, 12, 2930

14 of 20

modeling studies could include new variables that influence socioeconomic performance,
such as farm size, expertise in cocoa, and partnership involvement in associations [3,85].
This will also allow taking advantage of the potential of the AHP approach to assigning
weights/scores and add criteria and alternatives to important social, political, economic
and technical variables, and a variety of objectives, criteria and alternatives [81], thus
exploiting the potential of the ensemble models [3].

From most to least restrictive, the AHP, MaxEnt, and AHP-MaxEnt modeling ap-
proaches indicate that 1.5% (19,437.63 km?), 5.3% (67,787.22 km?), and 23.0% (296,545.69 km?)
of the Peruvian territory is ‘Highly suitable” for cocoa cultivation, respectively. However,
the marked difference between these areas may be due to the different criteria and modeling
contribution weights. Therefore, future studies would identify whether the high differences
hold when using the same criteria for the three modeling approaches. The MaxEnt and
AHP-MaxEnt approaches present a greater ‘Highly suitable’ range in the Amazonian
regions of Peru. Namely, the centers of origin of cocoa are located in South America’s
Amazon [86], and for these approaches, we used cocoa collection points of occurrence
from that area. Notwithstanding, the AHP model discriminated the ‘Highly suitable’ areas
because, in the Amazon, there are currently no conditions of accessibility or infrastructure
for cocoa production (AHP—socioeconomic variables).

From an economic production approach, it is recommended to use the most restrictive
model for the success of the crop. On the other hand, regarding the conservationist
approach, for germplasm collection and/or genetic conservation purposes, it is suggested
to use the least restrictive model in order to study a larger area and apply a precautionary
principle [62]. Furthermore, using the area (4013.21 km?) identified as ‘Highly suitable’ in
the three models is also recommended to ensure crop cultivation success.

The gap between the statistic of 1300 km? of cocoa cultivated area in Peru [2] and
the estimated potential ‘Highly Suitable’ area in this study is significant. Yet, a national
cocoa cultivated area map is needed to identify the regions with a spatial gap. In fact,
44.0% (8560.41 km?), 14.9% (10,070.01 km?), and 7.0% (20,759.83 km?) of the ‘Highly suitable’
area from the AHP, MaxEnt, and AHP-MaxEnt modeling approaches matches the national
agricultural area map (11,6497.16 km?) [87], respectively. This suggests that currently,
non-cocoa agricultural areas may also be reconverted to cocoa farms.

5. Conclusions

There were 42 hierarchical key sub-criteria for sustainable cocoa cultivation in Peru,
including 20, 33, and 15 for the AHP, MaxEnt, and AHP-MaxEnt modeling approaches,
respectively. This sub-criteria were grouped into climatological, edaphological, orographic,
and socioeconomic criteria. Indeed, climatological criteria stood out among the top four
most important criteria in the three modeling approaches. Elevation (orographic criterion)
is also featured in this group. San Martin and Amazonas regions had the largest area
‘Highly suitable’ for cocoa cultivation among the top five regions, according to the three
modeling approaches. These two regions were followed by Loreto, Ucayali, Madre de
Dios, Cusco, Junin and Puno, which alternated depending on the modeling approach.
From most to least restrictive, the AHP, MaxEnt, and AHP-MaxEnt modeling approaches
report that 1.5%, 5.3%, and 23.0% of the Peruvian territory is ‘Highly suitable” for cocoa
cultivation, respectively.

The study will provide decision support for sustainable agricultural cocoa production
in Peru, as well as an opportunity to improve agricultural planning by providing much-
needed information to farmers and agricultural planners. The methodological approach
used in this research integrates AHP and MaxEnt for land suitability analysis for cocoa
cultivation, and it can definitely be applied to other cocoa-growing areas of the world,
with the appropriate adjustments to local realities. This methodology can also be applied
to other crops of nutritional, economic and environmental importance in Peru. The land
suitability analysis identifies areas with suitable crop development, contributing in this way
to not overexploiting soil resources and, consequently, practicing sustainable agriculture.
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This study has shown that SDM (particularly MaxEnt) could be used together with
MCE models (specifically AHP) in a complementary approach, providing a more robust
method for land evaluation for agriculture. Additional case studies would be advantageous,
and there is also the potential to explore other SDMs in addition to Maxent. The SDM
provides additional information to support the MCE approach that would otherwise be
difficult to acquire.
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Appendix A

Land suitability areas for cocoa cultivation in Peru, in terms of sub-criteria and for
each Peruvian region according to the modeling approach.

Table A1l. Suitability area of subcriteria for cocoa cultivation in Peru, AHP model.

Highly Suitable Moderately Suitable Marginally Suitable Not Suitable
Criteria/Subcriteria
km? % km? % km? % km? %
Climatological
Mean annual temperature 495,696.05 38.5 211,336.61 16.4 61,939.16 4.8 501,135.87 38.9
Annual mean min temperature 323,401.20 25.1 433,151.18 33.6 95,775.96 74 417,779.31 324
Annual mean max temperature 124,463.94 9.7 610,457.37 474 177,066.49 13.7 358,119.86 27.8
Mean annual rainfall 402,160.95 31.2 275,838.57 214 46,432.18 3.6 545,675.95 423
Number of dry months 970,538.09 75.3 39,724.27 3.1 38,972.61 3.0 220,872.67 17.1
Relative humidity 422,733.62 32.8 604,382.27 46.9 236,748.40 18.4 6319.39 0.5
Edaphological at 0.30 m
pH in H,O 284,809.84 22.1 333,425.91 25.9 615,584.49 47.8 36,363.58 2.8
Texture 463,633.52 36.0 534,435.04 415 250,084.29 19.4 22,031.38 1.7
Coarse fragment content 812,754.45 63.1 456,692.84 35.4 736.40 0.1 0.0 0.0
Organic carbon 1,178,174.42 914 78,533.32 6.1 13,476.01 1.0 0.0 0.0
CEC 190,558.84 14.8 221,422.78 17.2 418,014.65 324 440,187.65 34.2
Total nitrogen 1,025,291.05 79.6 144,885.17 11.2 79,769.70 6.2 20,238.07 1.6
Orographic
Elevation 112,490.36 8.7 662,751.90 514 56,421.60 44 438,500.97 34.0
Slope 814,094.16 63.2 210,170.69 16.3 199,388.82 15.5 46,510.98 3.6
Aspect 464,149.07 36.0 327,161.32 25.4 320,736.76 249 158,118.11 12.3
Socioeconomical
LULC 73,007.50 5.7 117,842.57 9.1 254,814.97 19.8 824,499.95 64.0
Distance to urban centers 259,032.66 20.1 323,477 .46 25.1 160,753.82 12.5 526,900.84 409
Distance to roads 465,633.65 36.1 153,914.95 11.9 87,072.91 6.8 563,562.33 43.7
Distance to rivers 615,475.80 47.8 437,734.36 34.0 148,793.14 11.5 68,180.82 5.3

Distance to protected natural areas 911,644.79 70.7 0.00 0.0 133,880.37 10.4 224,658.54 174
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Table A2. Land suitability for cocoa cultivation in Peruvian regions, AHP model.

Highly Suitable Moderately Suitable Marginally Suitable Not Suitable Non-Classified
Regions
km? % km? % km? % km? % km? %
Amazonas 2627.36 6.7 34,035.21 86.6 2366.54 6.0 0.00 0.0 277.35 0.7
Ancash 0.00 0.0 24,959.06 69.4 9987.54 27.8 0.00 0.0 1015.65 2.8
Apurimac 0.00 0.0 14,305.92 67.8 6729.24 31.9 0.00 0.0 78.99 0.4
Arequipa 0.00 0.0 21,537.55 34.0 40,332.23 63.8 496.06 0.8 890.04 14
Ayacucho 12.82 0.0 27,761.70 63.8 15,582.39 35.8 3.90 0.0 143.01 0.3
Cajamarca 255.28 0.8 26,147.56 79.1 6502.76 19.7 0.00 0.0 139.07 0.4
Callao 0.00 0.0 51.47 36.4 7.45 53 0.00 0.0 82.49 58.3
Cusco 2351.81 3.3 52,497.77 72.8 16,216.07 22.5 0.00 0.0 1010.49 14
Huancavelica 0.00 0.0 16,789.43 76.1 5165.07 234 0.00 0.0 110.54 0.5
Huéanuco 1928.73 52 31,166.61 83.8 3852.00 10.4 0.00 0.0 253.19 0.7
Ica 0.00 0.0 8653.51 41.0 12,269.83 58.2 0.79 0.0 156.63 0.7
Junin 2128.12 4.8 36,898.31 83.9 4512.84 10.3 0.00 0.0 458.03 1.0
La Libertad 0.00 0.0 15,465.58 61.1 9700.39 38.3 0.00 0.0 130.00 0.5
Lambayeque 0.00 0.0 7683.17 53.6 6359.99 44.3 0.00 0.0 299.15 2.1
Lima 0.00 0.0 20,490.05 58.6 13,274.72 37.9 0.00 0.0 1225.23 3.5
Loreto 708.86 0.2 367,167.06 97.9 331.10 0.1 0.00 0.0 6908.97 1.8
Madre De Dios 1340.31 1.6 82,533.63 97.0 640.25 0.8 0.00 0.0 531.67 0.6
Moquegua 0.00 0.0 3993.39 25.3 11,551.11 73.1 82.89 0.5 179.92 1.1
Pasco 646.19 2.7 21,202.58 87.9 2092.50 8.7 0.00 0.0 172.68 0.7
Piura 0.00 0.0 20,674.83 57.3 13,867.65 38.5 0.00 0.0 1522.58 42
Puno 4.57 0.0 53,726.91 79.1 13,068.23 19.2 0.00 0.0 1163.11 1.7
San Martin 4732.75 9.3 40,866.60 80.2 5099.64 10.0 0.00 0.0 262.27 0.5
Tacna 0.00 0.0 3835.20 23.8 11,919.89 74.1 46.4 0.3 281.58 1.8
Tumbes 0.00 0.0 4169.10 88.9 410.28 8.7 0.00 0.0 110.89 24
Ucayali 2700.82 2.6 101,423.98 96.3 143.18 0.1 0.00 0.0 1073.78 1.0
Peru 19,437.63 1.5 1,038,036.17 80.6 211,982.87 16.5 630.04 0.05 18,477.30 14
Table A3. Potential distribution of cocoa in Peruvian regions, MaxEnt model.
Highly Suitable Moderately Suitable =~ Marginally Suitable Not Suitable Non-Classified
Regions k 2 o, 2 [ 2 o, 2 o 2 o,
m Yo km %o km Yo km Yo km %o
Amazonas 4107.07 10.4 8039.43 20.5 11,974.36 30.5 14,908.26 379 277.35 0.7
Ancash 39.34 0.1 80.84 0.2 231.55 0.6 34,594.89 96.2 1015.63 2.8
Apurimac 0.00 0.0 0.00 0.0 0.00 0.0 21,035.16 99.6 78.99 0.4
Arequipa 0.05 0.0 0.45 0.0 5.34 0.0 62,360.05 98.6 890.00 1.4
Ayacucho 16.90 0.0 161.15 0.4 516.10 1.2 42,666.66 98.1 143.02 0.3
Cajamarca 1694.55 51 1000.71 3.0 2436.93 74 27,773.40 84.0 139.07 0.4
Callao 0.12 0.1 0.06 0.0 1.27 0.9 57.46 40.6 82.49 58.3
Cusco 751.75 1.0 3591.87 5.0 6685.78 9.3 60,036.25 83.3 1010.48 1.4
Huancavelica 0.00 0.0 0.00 0.0 4.8 0.0 21,949.70 99.5 110.54 0.5
Huanuco 174.66 0.5 1651.59 44 7839.97 21.1 27,281.12 733 253.18 0.7
Ica 0.00 0.0 0.23 0.0 3.36 0.0 20,920.58 99.2 156.60 0.7
Junin 774.32 1.8 3557.1 8.1 6441.02 14.6 32,766.83 745 458.02 1.0
La Libertad 25.58 0.1 88.28 0.3 267.96 1.1 24,784.18 98.0 129.98 0.5
Lambayeque 0.00 0.0 9.32 0.1 44494 3.1 13,588.92 94.7 299.13 2.1
Lima 51.86 0.1 115.09 0.3 311.33 0.9 33,286.51 95.1 1225.20 35
Loreto 19,827.18 53 31,559.59 8.4 140,822.04 375 175,998.12 46.9 6909.06 1.8
Madre De Dios  26,285.36 30.9 23,172.08 27.2 22,018.65 259 13,038.19 153 531.59 0.6
Moquegua 0.00 0.0 0.00 0.0 0.76 0.0 15,626.63 989 179.92 1.1
Pasco 450.47 1.9 2859.58 119 6003.89 249 14,627.35 60.7 172.67 0.7
Piura 19.48 0.1 132.9 0.4 1079.19 3.0 33,31093 924 1522.57 42
Puno 3149.39 4.6 1572.31 2.3 2668.18 3.9 59,409.85 874 1163.09 1.7
San Martin 9829.90 19.3 9625.48 18.9 13,939.97 274 17,303.63 34.0 262.27 0.5
Tacna 0.00 0.0 0.00 0.0 0.12 0.0 15,801.38 98.2 281.57 1.8
Tumbes 103.31 22 110.1 2.3 382.53 8.2 3983.41 84.9 11091 24
Ucayali 485.92 0.5 5462.94 52 37,255.24 354 61,063.97 58.0 1073.69 1.0

Peru 67,787.22 5.3 92,791.09 7.2 261,335.27 20.3 848,173.42 65.8 18,477.03 1.4
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Table A4. Land suitability for cocoa cultivation in Peruvian regions, AHP-MaxEnt model.

Highly Suitable Moderately Suitable Marginally Suitable Not Suitable Non-Classified
Regions
km? % km? % km? % km? % km? %
Amazonas 11,913.73 30.3 16,080.17 40.9 11,035.21 28.1 0.00 0.0 277.35 0.7
Ancash 0.00 0.0 3698.66 10.3 31,241.36 86.9 6.57 0.0 1015.65 2.8
Apurimac 0.00 0.0 28.43 0.1 20,915.26 99.1 91.48 0.4 78.99 04
Arequipa 0.00 0.0 2344.36 3.7 38,506.10 60.9 21,515.40 34 890.04 14
Ayacucho 131.31 0.3 142491 3.3 38,317.92 88.1 3486.68 8.0 143.01 0.3
Cajamarca 543.78 1.6 6555 19.8 25,801.48 78.1 5.33 0.0 139.07 0.4
Callao 0.00 0.0 33.31 23.6 25.61 18.1 0.00 0.0 82.49 58.3
Cusco 10,873.61 15.1 12,867.98 179 46,907.22 65.1 416.84 0.6 1010.49 14
Huancavelica 0.00 0.0 139.20 0.6 21,609.48 97.9 205.81 0.9 110.54 0.5
Huanuco 9342.31 25.1 8066.40 21.7 19,533.25 52.5 5.38 0.0 253.19 0.7
Ica 0.00 0.0 1985.98 94 18,077.74 85.8 860.42 41 156.63 0.7
Junin 5109.47 11.6 12,203.67 27.7 26,226.12 59.6 0.00 0.0 458.03 1.0
La Libertad 0.00 0.0 5857.69 23.2 19,301.92 76.3 6.36 0.0 130.0 0.5
Lambayeque 0.00 0.0 12,371.14 86.3 1670.14 11.6 1.89 0.0 299.15 2.1
Lima 0.00 0.0 1266.71 3.6 32,163.85 91.9 334.21 1.0 1225.23 3.5
Loreto 60,526.92 16.1 307,662.24 82.0 17.90 0.0 0.00 0.0 6908.94 1.8
Madre De Dios 75,261.35 88.5 8251.35 9.7 1001.44 1.2 0.00 0.0 531.72 0.6
Moquegua 0.00 0.0 218.60 14 9533.01 60.3 5875.78 37.2 179.92 1.1
Pasco 7173.36 29.7 7435.32 30.8 9332.53 38.7 0.06 0.0 172.68 0.7
Piura 0.00 0.0 26,559.96 73.6 7978.70 22.1 3.84 0.0 1522.58 4.2
Puno 5435.40 8.0 6332.45 9.3 54,856.01 80.7 175.86 0.3 1163.10 1.7
San Martin 18,009.91 35.3 23,806.63 46.7 8882.46 17.4 0.00 0.0 262.27 0.5
Tacna 0.00 0.0 739.35 4.6 10,382.87 64.6 4679.27 29.1 281.57 1.8
Tumbes 0.00 0.0 4538.01 96.8 41.36 0.9 0.00 0.0 110.89 2.4
Ucayali 92,224.56 87.5 12,022.37 114 21.05 0.0 0.00 0.0 1073.78 1.0
Peru 296,545.69 23 482,489.88 37.4 453,379.97 35.2 37,671.17 29 18,477.30 14
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