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Abstract: In the academic world, ginseng (Panax ginseng C. A. Meyer) has received much attention as
the most representative element of Chinese medicine. To address the lack of traditional algorithms in
the identification of ginseng appearance quality and further improve the manual identification on
ginseng, we propose a grading method of ginseng appearance quality based on deep learning, taking
advantage of the benefits of deep learning in the image identification. Firstly, we substituted Leaky
ReLU for the conventional activation function ReLU to enhance the predictive power of the model.
Secondly, we added an ECA module to the residual block, which allowed attention to be focused on
the input object to capture more precise and detailed features. Thirdly, we used the focal loss function
to solve the problem of an imbalanced dataset. Then, the self-constructed dataset was processed with
data enhancement and divided into four different classes of ginseng. The dataset was trained on a
model with transfer learning to finally obtain the best model applicable to the identification of ginseng
appearance quality. The experiments showed that, compared with the classical convolutional neural
network models VGG16, GoogLeNet, ResNet50 and Densenet121, the proposed model reported the
best performance, its accuracy in the test set was as high as 97.39%, and the loss value was 0.035. This
method can efficiently classify the appearance quality of ginseng, and has a significant value in the
field of ginseng appearance quality identification.

Keywords: appearance quality identification of ginseng; deep learning; attention mechanism;
activation function; loss function

1. Introduction

Ginseng (Panax ginseng C. A. Meyer) is the dried root and rhizome of ginseng of the fam-
ily Wujia, which has the effects of tonifying the kidneys, calming the mind, nourishing the
brain, brightening the eyes, and beneficial to intellectual development [1]. It is referred to
as the “king of all herbs” since it is a priceless Chinese herb and tonic [2]. The appearance of
particular ginseng features is the key factor used in the traditional method of ginseng iden-
tification to assess its quality. The literature [3] also demonstrates that there is a correlation
between the appearance of ginseng’s characteristic traits and its main chemical components.
Empirical identification of ginseng quality based on “identifying the appearance and shape
to discuss the quality” is a scientific method [4–6] that is particularly effective. However,
it has shortcomings. To identify a ginseng specimen, a connoisseur must first carefully
observe all aspects of the ginseng plant under exam, which requires a lot of time and effort.
Secondly, ginseng with high economic and therapeutic value may be damaged, since the
manual identification process has a tendency to harm the plant. In the end, manual recogni-
tion is subject to some degree of subjective influence. This frequently leads to inconsistent
identification criteria and incorrect identification outcomes [7]. At present, there is a lack of
sufficient attention to the study of ginseng characteristics. The 2020 edition of the Chinese
Pharmacopoeia also includes descriptions and specificities of ginseng phenotypic features;
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however, in practice, the general public will still not be able to tell ginseng quality by its
appearance. With the rapid advancement of computer technology, artificial intelligence
technology has slowly begun to be integrated in traditional Chinese medicine identification.
The “Fourteenth Five-Year Plan for the Development of Chinese Medicine Informatiza-
tion” announced in 2022 makes it very obvious that informational means must be used to
advance the modernization of Chinese medicine.

Deep learning is close to the way humans learn by mimicking the neural networks of
the human brain, using a hierarchical network model structure to gather information about
the appearance and sound of things, to perceive and understand them, and to generate
appropriate behaviors. Its development in the field of computer vision is more complete
than in other areas and has produced some outcomes [8]. LECUN et al. [9] proposed
LeNet, which is the most representative convolutional neural network and consists of a
Conv layer, a pooling layer, and a fully connected layer. When the network was initially
used to accurately classify handwritten datasets, it established the stage for the later
development of convolutional neural networks. With the AlexNet [10] network winning
the ImageNet (large visualization database) competition in 2012, a number of classical
deep convolutional neural networks have emerged, such as VGG [11], GoogLeNet [12],
ResNet [13], DenseNet [14], etc. They outperform conventional approaches in picture
identification and offer greater advantages. These networks are already extensively utilized
in the fields of Chinese medicine and plant identification, despite the fact that they have not
yet been employed to identify the appearance and quality of ginseng. Dyrmann et al. [15]
adopted a method for identifying plant species in color images using convolutional neural
networks and were able to identify 22 weed and crop species with an accuracy of 86.2%.
Lee et al. [16] designed a deep learning method for the quantitative discrimination of
leaves by gathering data on leaf features and analyzing them through convolutional neural
networks and deconvolutional networks. The results of the study demonstrated that
using deep learning methods can further increase the identification efficiency of plant
classification based on the leaf. Liu et al. [17] applied the Inception structure and introduced
dense connectivity to successfully achieve the classification and identification of six grape
diseases, and the final model accuracy was 97.22%. Liu Wei et al. [18] combined Xception
and DenseNet to propose the new image identification model DxFusion, which was able to
accurately identify 60 Chinese herbs. Li Dongming et al. [19] used a deep learning strategy
with the residual network and densely linked network to eventually identify and categorize
five distinct origins of the Saposhnikovia divaricate.

Ginseng appearance quality identification is a fine-grained classification task. There-
fore, considering the above research analysis, we attempted to apply deep learning tech-
niques to the field of ginseng appearance quality identification and enhance ResNet50
according to the characteristics of ginseng. We finally propose an algorithm that can be
effective, quick, and precise for grading the appearance and quality of ginseng.

2. Data Pre-Processing
2.1. Dataset Construction

After analyzing various ginseng varieties, we chose to employ white ginseng (a prod-
uct made from fresh garden ginseng that was cleaned and dried or dried in the sun) as the
experimental subject due to the complex morphological structure of the herb and market
demand. The experimental data were gathered in September 2021 at the School of Chinese
Herbal Medicine, Jilin Agricultural University, from the same batch of white ginseng. To fa-
cilitate the image collection, the white ginseng batch was assigned a serial number and
scored by experts in accordance with the guidelines for white ginseng in the document
“Group Standard for Ginseng of Jilin Daoji Herbs” which was released by the Tonghua
Ginseng Industry Association on 10 September 2021 (as in Table 1). Ginseng of a standard
lower than the principal, first-class, and second-class was rated as inferior.

The specimens were then photographed according to their ratings by using a small
HD folding studio box (Sutefoto., Guangdong, China). A mobile phone camera (Apple.,
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Cupertino, CA, USA) was positioned at the top of the studio box, perpendicular to the
ginseng, at a height of 40 cm, guaranteeing that all samples were essentially photographed
in the same position. The photographs of the white ginseng were gathered from various
angles and backgrounds, and each image had a resolution of 1024 × 1024 pixels, with
distinct image details. A total of 549 images of the principal white ginsengs, 790 images of
the first-class white ginsengs, 600 images of the second-class white ginsengs, and 290 images
of the inferior white ginsengs were saved after numerous photos were shot and gathered.

Table 1. Scoring criteria.

Project Principal First-Class Second-Class

Rutabaga
Complete with rutabaga and

ginseng (Panax ginseng C. A. Meye)
fibrous roots

The rutabaga and ginseng fibrous
roots are more complete

Rutabaga and ginseng with
incomplete fibrous roots

Surface
Yellowish white or greyish yellow,

without water embroidery or
guttering

Yellowish white or greyish yellow,
or with water rust or guttering

Yellowish white or greyish yellow
with rust and guttering

Breakage Scar None Mild Have

Branching out No small ginseng or ginseng whiskers are allowed to be caught by those with branching roots, no tied tails or
lightly tied tails or tied tails

Section Section pale yellowish white, pink
Texture Hard, powdery, no hollow
Odor Unique aroma, taste slightly bitter, sweet

Main Root Cylindrical
Insects Mildew Impurities None

2.2. Data Enhancement

When the number and quality of the data were higher during the deep learning
training phase, the model was more generalizable. As a result, the upper limit of the model
learning was directly determined by the data. During the collection of the data, most of the
photographs had difficulty in reproducing the full scene of the environment in which the
samples were positioned, and the number of photographs taken was small. Because of this,
we needed to perform data enhancement on the collected photos [20]. In this paper, two
types of enhancement were adopted: offline enhancement and online enhancement.

The offline enhancement method applies random rotation, random adjustment of
contrast, and random adjustment of brightness to expand the dataset. Following offline
augmentation, the data were increased to 6131 frames. Information on the dataset is shown
in Figure 1.
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The online enhancement method uses the PIL (Python Image Library) module in the
Python image library to uniformly crop a given image to 256 pixels by 256 pixels before
each training round; then the images are processed using the center crop method, and
finally the normalization is completed. This could indirectly increase the amount of training
data by increasing the diversity of the image samples used in the training process.

2.3. Dataset Partitioning

To eliminate the serendipity of the experimental results, all training in this paper was
conducted by using the five-fold cross-validation method. A randomly selected 80% of the
dataset was used as the training set, and 20% of it as the test set. That is, 1225 images were
used as validation data each time, while 4906 images were extracted from the training set as
training data, and the validation data were not repeated. The final results were the average
of five experiments, and the breakdown of the data for each class is shown in Table 2.

Table 2. Dataset partition.

Level Training Set Image Verification Set Image

Principal 1225 306
First-class 1396 348

Second-class 1589 397
Inferior 696 174

3. Building the Network Model
3.1. Resnet50 Model

He et al. proposed ResNet in 2015 [13], in which the residual block is an important
structure. It enhances the transfer of features by introducing shortcut connections in the
convolutional neural network, so that the next layer contains more information about the
image. The + residual block consists of a Convolution Layer (Conv), a Batch Normalization
Layer (BN), and a Rectified Linear Units Layer (ReLU). The structure of the residual block
used by ResNet50 is shown in Figure 2. Here, x is the input to the network, and F(x) repre-
sents the output after three Conv layers of processing. As the depth of the neural network
increases, the image information in the feature map decreases layer by layer. Therefore, it is
merged with the original output through the mapping of shortcut connections before being
delivered to the subsequent layer F(x) + x The issue that typical deep learning algorithms
cause the network to burst and disappear as the number of layers grows, making the
model difficult to converge, is resolved by this operation. The main branch contains three
Conv layers, the first being a 1 × 1 Conv layer to compress dimensionality, the second a
3 × 3 Conv layer, and the third a 1 × 1 Conv layer to reduce dimensionality. This greatly
maintains accuracy and reduces the computational effort [21].
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3.2. Improving the Resnet50 Model
3.2.1. Using the Leaky ReLU Activation Function

Using activation functions in neural networks can increase the non-linear variability
of the neural network model. The traditional ResNet uses a ReLU activation function. It is
characterized by fast computing speed and good performance. Its function expression is
shown in Equation (1).

ReLU(x) =


0, x ≤ 0

x, x > 0
(1)

As can be seen in Figure 3, the gradient of this interval is constant when x of the ReLU
function is greater than 0, thus alleviating the gradient disappearance problem. However,
when the input value is negative during training, the function will reach hard saturation,
resulting in the weights not being updated, i.e., the neuron death phenomenon.
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To address this problem, we replaced the ReLU activation function with a Leaky
ReLU [22]. The Leaky ReLU function has the characteristics of being able to achieve hard sat-
uration, fast computation, and quick convergence compared to the conventional activation
functions Sigmoid and Tanh. Its expression is shown in Equation (2).

Leaky ReLU(x) =
{

x, x ≥ 0
αx, x < 0

(2)

where α is the value of the gradient, the default setting being α = 0.5. The capacity of the
Leaky ReLU function to preserve the gradient when the input information is less than 0
gives it an advantage over the ReLU function, allowing the parameters to continue to be
updated, as can also be seen from the comparison chart in Figure 3. By doing this, the
network’s interpretability will be enhanced, and any data loss will be prevented.

3.2.2. Adding an Attention Mechanism

The use of an attention mechanism in convolutional neural networks has been much
favored in recent years, as it can substantially improve a network performance by refining
the feature mapping [23–25]. The channel attention mechanism has demonstrated the most
potential for enhancing network performance among the available attention mechanisms.
One of its representative networks is the Squeeze and Excitation Network (SENet) that
incorporates the SE module (Squeeze and Excitation) [26]. However, the feature extraction
process’s dimensionality reduction has negative effects on channel attention prediction and
ineffectively captures the dependencies between all channels. Therefore, Wang et al. then
proposed a new efficient channel attention network, i.e., the ECA-Net (Efficient Channel
Attention for Deep Convolutional Neural Networks), in 2019 [27]. The structure of the ECA
module is shown in Figure 4. Without dimensionality reduction, the ECA module has the
ability to adaptively choose one-dimensional convolutional kernels. Here is how it works.
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(1) Input features: Given an input feature image X of size H ×W × C, the input image
is subjected to Global Average Pooling (GAP) to obtain all the feature information
without dimensionality reduction.

(2) Calculation: The one-dimensional convolution operation with a convolution kernel
of size k is used to efficiently complete the cross-channel information interaction and
obtain the weights of each channel ω, as shown in Equation (3).

ω = δ(C1Dk(y)) (3)

where δ represents the sigmoid activation function, and C1D represents the one-dimensional
convolution. The number of channels C is proportional to the one-dimensional convolution
with kernel k, as shown in Equation (4).

C = 2(γ∗k−b) (4)

The final kernel size k can be determined adaptively using Equation (5).

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(5)

where t is the nearest odd number to |t|odd, b is 1, and γ is 2.

(3) Output features: The weights of each channel are obtained using the sigmoid function,
and the input feature maps are channel-weighted to finally obtain the feature maps
under different weights.

Since backpropagating the feature information is vulnerable to gradient dissipation
close to the input layer, it is challenging to boost the network model’s efficiency. The major-
ity of ginseng plants share a similar shape and have fine textures and dense roots, which
can affect their identification after downsampling and makes it difficult to extract detailed
features from the network. Therefore, we improved the original residual block by adding
the ECA module before the feature overlay, as shown in Figure 5. With the addition of the
ECA module, the network enhanced the learning of channel attention features for each
Conv block, and focusing the attention on hard-to-identify ginseng images allowed the
features to be reused. As a result, the network model performed significantly better.
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3.2.3. Introduction of a Focal Loss Function

The focal loss function (Focal Loss) [28] is the main solution to the problem of the
existence of imbalances in the classification dataset and of mining difficult samples. It is
based on an enhancement of the cross-entropy loss function [29]. Ordinary cross entropy
states that for positive samples, the output probability increases, and the loss decreases;
for negative samples, the output probability decreases, and the loss increases. In this case,
the loss function improved slowly over the iterative process of a large number of simple
samples and might not be able to optimize to the optimum. The original base was increased
by the adjustment factor γ(γ > 0). Its formula is shown in Equation (6); by reducing the
loss of easy-to-classify samples, it concentrates more on complex, incorrectly classified
samples. When γ is 0, we have the cross-entropy loss function.

L f l =

{
−(1− y′)γ log y′, y = 1
−y′γ log(1− y′), y = 0

(6)

In addition to this, a balancing factor α was introduced to compensate the unequal
distribution of positive and negative samples; its formula is given in Equation (7).

L f l =

{
−α(1− y′)γ log y′, y = 1

−(1− α)y′γlog(1− y)′, y = 0
(7)

Due to the minimal number of inferior samples in the constructed ginseng dataset and
the lack of distinctive features between different ginseng species, to reduce the weight of
the negative samples in the training, a focal loss function was introduced; this allowed the
model to obtain more accurate classification results.

3.2.4. Structure of the Ginseng Appearance Quality Grading Model

The classical ResNet consists of three parts: the input, the convolution, and the output.
First, the data enter the network and go through the input section. Then, they go through
the intermediate 1, 2, 3, and 4 Conv layer sections. Finally, the data go to the averaging
pooling and fully connected layers to acquire the result. In this study, the original ResNet50
was reconstructed using the three suggested strategies for improvement. The enhanced
network structure is shown in Figure 6.

The input feature map of this network first passes through a 7 × 7 Conv layer, pre-
serving the image’s original features over a substantial area. Then, after the BN (BatchNor-
malization) layer and the Leaky ReLU activation function, the features are extracted from
the feature map using a 3 × 3 maximum pooling layer and compressed into a feature map
with a channel count of 64. The feature map enters four layers in turn. Each layer consists
of a Conv block and a variable number of ID (Identity) blocks. One Conv block and two ID
blocks make up the first layer, one Conv block and three ID blocks make up layer 2, one
Conv block and five ID blocks make up layer 3, and one Conv block and two ID blocks make
up layer 4. Each Conv block and ID block adds the ECA module as indicated in Figure 6b,c.
Eventually, a feature map with a channel count of 2048 is produced by successively passing
the shallow spatial information and the underlying semantic information. The constructed
model employs a global average pooling layer to optimize the network structure and adds
a discard layer before the fully connected layer to prevent overfitting. The feature map is
finally sent to the fully connected layer prediction to obtain the classification result.
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3.3. Model Training for Transfer Learning

Transfer learning [30] involves moving pre-trained model parameters to a newly
constructed model and sharing the newly learned knowledge with the new model in order
to accelerate and optimize the learning speed of the model and bring it to convergence
in the shortest possible time. Due to the fact that the model training used a supervised
learning approach, a substantial amount of data samples were needed once the ginseng
appearance quality grading model had been constructed. We had a limited number of
samples, which made it challenging to set up the deep network training. However, the use
of transfer learning methods could effectively improve the accuracy and generalization of
the model. First, the constructed ginseng appearance quality grading model was initialized
by loading the dataset from ImageNet. After that, the trained weights were transferred to
the enhanced Conv layer. Finally, the ginseng dataset was loaded into the network, and
then all layers aside from the fully connected layer were frozen and continuously fine-tuned
for training until the optimal model was obtained [31].

4. Experimental Validation and Analysis of the Results
4.1. Experimental Setup and Analysis of the Results

We implemented our approach based on PyTorch. The processor of the experimental
workstation was Xeon 4210 (8-core 2.45 GHz) (Intel., Santa Clara, CA, USA); the memory
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was 64 G. the GPU was NVIDIA GeForce GTX 1080 ti (NVIDIA., Santa Clara, CA, USA); the
running memory was 11 GBRAM. The software experimental configuration environment
was Ubuntu 16.04; Python 3.7.0; Pytorch 1.10.1; CUDA 10.2. The specific parameter settings
in the experiment are shown in Table 3.

Table 3. Model parameter settings.

Parameter Set Up

Optimizer Adam
Learning rate 0.0001
Weight decay 0.0001

Batch size 32
Epoch 50

Loss function Focal Loss

To confirm the validity of the model, we compared the improved model with the classi-
cal convolutional neural network models VGG16, GoogLeNet, ResNet50, and DenseNet121.
The accuracy rates increased by 3.76, 2.61, 2.45, and 1.88 percentage points, and the loss
values decreased by 0.091, 0.042, 0.031, and 0.022 percentage points, as shown in Table 4.
The comparison graph in Figure 7 shows that the improved model showed the highest
recognition accuracy and the lowest loss value when compared to the other models as well
as the shortest training time per round, and could quickly converge to find the optimal
value; it also reached convergence quickly to find the optimal value. This demonstrated the
superior performance of the model, indicating that it would provide a valuable reference
for the subsequent application in ginseng appearance quality identification.

Table 4. Comparison of the experimental results of various models.

Model Accuracy/% Loss Convergence/Epoch Training Time
per Round/s

VGG16 93.63 0.126 22 20
GoogLeNet 94.78 0.077 18 18
ResNet50 94.94 0.066 15 22

DenseNet121 95.51 0.057 12 25
Our model 97.39 0.035 5 19
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4.2. Impact of Attention Mechanisms on the Model Performance

In our experiments, we found that the addition of different attention mechanisms also
had some effects on the model’s performance when all other factors were equal. As shown
in Table 5, the model improved its recognition accuracy by 0.74, 1.31, and 1.72 percentage
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points, and the loss values decreased by 0.002, 0.02, and 0.021 percentage points, respec-
tively, with the addition of the Leaky ReLU activation function alone and then the addition
of the SE channel attention mechanism [26], the CBAM (Convolutional Block Attention
Module) convolutional attention mechanism [32], and the ECA efficient channel attention
mechanism. While the loss values decreased by 0.002, 0.02 and 0.021 percentage points,
the recognition accuracy increased by 0.74, 1.31 and 1.72 percentage points, respectively.
In contrast, the addition of the SK (Selective Kernel) attention mechanism [33] resulted in a
2.857 percentage point decrease in identification accuracy and a concomitant 0.019 increase
in loss value. The results showed that the ECA mechanism had a more significant role in
improving the performance of the network model than the other attention mechanisms.
However, the results of incorporating the SK attention mechanism also demonstrated that
the introduction of an attention mechanism into the network model does not guarantee an
accurate identification; therefore the choice of the attention mechanism needs to be made
appropriately for different tasks.

Table 5. Comparison of the results obtained with different attention mechanisms.

Model Accuracy/% Loss

No attention 95.67 0.056
SE 96.41 0.054

CBAM 96.98 0.036
SK 92.82 0.075

ECA 97.39 0.035
Note: SE is Squeeze and Excitation; CBAM is Convolutional Block Attention Module; SK is Selective Kernel.

Furthermore, the visualization images obtained by the tool Grad-Cam [34] provided a
more intuitive view of the regions of the network’s attention to the feature maps before and
after the addition of the ECA mechanism. Figure 8 clearly demonstrates how effectively the
ECA mechanism module we introduced could capture the ginseng features. It overcame
the conflict between performance and complexity by using fewer parameters. To enhance
the feature representation of the network model, it efficiently made use of the ability
of convolutional neural networks to capture details about neighborhoods. The complex
texture of ginseng and slight variations in appearance could also be used to effectively
address the negative impact on experimental accuracy.
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4.3. Effect of the Activation Function on the Model Performance

The selection of an activation function is also crucial during the training process, since
it has a significant impact on how well the same model performs. During the experiment,
we replaced the Leaky ReLU activation function with three activation functions, ReLU,
Sigmoid, and Tanh. The accuracy and loss values employing the two activation functions
Sigmoid and Tanh differed significantly from those obtained with ReLU, as shown in
Table 6. In contrast to the ReLU activation function, the Leaky ReLU function showed an
improvement in accuracy of 0.63 and a reduction in loss value of 0.023. There are two
reasons for this result: (1) the Leaky ReLU activation function could transmit negative
weights, which makes the model more capable of pushing information; (2) the Leaky ReLU
activation function transmitted more detail information, such as texture, line, and color of
ginseng, to extract feature detail information that was not easily extracted by the network,
which led to a substantial improvement in model performance.

Table 6. Experimental comparison results of different activation functions.

Activate Function Accuracy/% Loss

Sigmoid 63.84 0.308
Tanh 75.76 0.216
ReLU 96.76 0.058

Leaky ReLU 97.39 0.035

4.4. Effect of the Loss Function on the Model Performance

To investigate the effect of various loss functions on the model performance, we se-
lected a cross-entropy loss function for comparison. Although the cross-entropy loss
function convergence effect is very good, but it still has limitations: in real applications,
containing the complex background information of an image—such as, in this case, the fact
that the number of ginseng pixels was much smaller than the number of background
pixels—can lead to prevailing background information in the cross-entropy loss function
composition; therefore, the network model is clearly biased, resulting in a decline in recog-
nition effect. As can be seen in Table 7, the accuracy of the model utilizing the focal loss
function increased to some extent both before and after the improvement, with a significant
decrease in the loss values. This indicated that the introduction of a focal loss function
could adequately address the problem of sample imbalance in the dataset and has a positive
influence on the final classification of the model.

Table 7. Experimental comparison of the results obtained with different loss functions.

Model Loss Function Accuracy/% Loss

ResNet50
Cross entropy Loss 94.78 0.176

Focal Loss 94.94 0.066

Our model
Cross entropy Loss 97.22 0.119

Focal Loss 97.39 0.035

4.5. Model Evaluation

In image classification, the prediction results of a classification model are frequently
represented as a confusion matrix, from which the metrics Accuracy, Recall, and Precision
are derived:

Accuracy =
TP

TP + FN + FP + TN
(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)
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where TP (true positive) is the number of ginseng specimens accurately identified, FP (false
positive) is the number of ginseng specimens incorrectly identified, FN (false negative)
is the number of ginseng specimens identified as other types of ginseng, and TN (true
negative) is the number of other ginseng specimens accurately identified.

In the confusion matrix in Figure 9, 1 represents the principal ginseng, 2 the first-class
ginseng, 3 the second-class ginseng, and 4 the inferior ginseng; the horizontal coordinates
represent the true category, and the vertical coordinates represent the predicted category.
According to the confusion matrix in Figure 9, the ResNet50 model has an overall accuracy
of 94.94% for the test set, an overall recall of 94.37%, and an accuracy of 94.99%. The overall
accuracy of our proposed model’s test set was 97.39%, while its overall recall was 97.03%,
and its accuracy was 97.29%.
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In Table 8, the improved model enhanced the recall of all four types of ginseng to
different degrees compared to the original model. However, the model still showed a large
error in the identification of “inferior” ginseng; thus, improving the identification rate of
inferior ginseng will be the focus of our future research.

Table 8. Recall and accuracy of ginseng classification by class before and after model improvement.

Level Model Recall/% Precision%

Principal
ResNet50 99.02 97.74

Our model 99.35 99.67

First-class
ResNet50 93.10 93.37

Our model 96.56 96.83

Second-class
ResNet50 95.72 94.29

Our model 97.98 96.77

Inferior
ResNet50 89.66 94.55

Our model 94.25 95.91

5. Discussion

Ginseng is a traditional Chinese medicine also used as food and is also a common
health care medicine, very appreciated by people. The identification of the quality of
ginseng is therefore of paramount importance and is an important area of concern for
the majority of researchers in this field, today. The traditional methods of identifying the
appearance and quality of ginseng do not offer advantages in the age of artificial intelligence;
therefore, after learning about the achievements of convolutional neural networks in the
field of image processing, we decided to use ResNet50 as a base model to improve the
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evaluation of ginseng quality based on the small differences in features and details found
in ginseng plants of different levels of quality. However, as can be seen from the confusion
matrix with the original model, inferior ginseng had the lowest recognition accuracy, which
also reflects the need to further improve the model’s ability to extract features in order
to provide better recognition results when using a ginseng dataset with highly similar
specimens. We subjected the improved model to multiple ablation experiments on the
ginseng dataset, and the results showed that the improved ResNet50 outperformed other
models mainly in terms of accuracy and loss values and offered greater advantages in terms
of convergence speed and stability; it also showed a slightly faster training time per round
than the other models. The model performance was further improved with a recognition
accuracy of 97.39%. We also proved through experiments that the method could improve
the identification accuracy without damaging the appearance of the ginseng specimens
and basically met the identification needs.

6. Conclusions

The focus of our future research is on the further optimization of this model structure,
with reference to the needs of realistic applications, focusing on reducing the weight of
the model so that it could still achieve effective classification tasks with fewer parameters.
As this study was only about the classification of white ginseng specimens of different
quality, we will next construct a dataset for ginseng from different origins and different
years to analyze the effect of the appearance characteristics of ginseng from different
backgrounds on its classification. In addition, we will deploy the model on mobile devices
for use in public promotion, market supervision, and industrial production. We will make
it easier and faster for people to identify the quality of ginseng, thus improving public
awareness, market supervision, and industrial production efficiency. This will provide a
better solution to the problem of identifying the appearance of ginseng quality in theory
and practice.

In this paper, the traditional ResNet50 network was improved according to the charac-
teristics of ginseng. Our conclusions are as follows.

First of all, we constructed a ginseng dataset and classified the data to identify samples
of four different quality levels: principal, first-class, second-class, and inferior ginseng.
Data augmentation was then performed on the dataset to extend it. Then, we replaced the
traditional activation function ReLU with the Leaky ReLU activation function to enhance
the expressiveness of the model. We also introduced the ECA mechanism module on the
residual block to increase the model’s sensitivity to ginseng pixels and better capture the
ginseng specimens’ features. Additionally, the focal loss function was introduced to balance
the dataset, and the idea of transfer learning was used to train the model. Finally, our
proposed model showed greater advantages in different aspects compared to the classical
convolutional neural network models Vgg16, GoogLeNet, ResNet50, and Densenet121.
Many comparison experiments clearly showed that the method proposed in this paper
had a beneficial impact on the model performance. Compared with the original model,
the accuracy and loss value of the improved model were the best. In addition, with the
significant improvement of the model performance indicators, the accuracy and overall
recall rate were also improved. These results also validated the effectiveness and feasibility
of the improvements to the original model. In future studies, we plan to further optimize
the model and combine it with a mobile terminal to provide technical support for ginseng
appearance quality recognition.
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