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Abstract: This study sought to evaluate the potential of mulched gravel to release nutrients in the
field by conducting trials with three variations of wet-and-dry cycling of the soil beneath gravel
mulch and bare soil. The results revealed that quartz, muscovite, clinochlore, and albite were the
most abundant minerals in the gravels. Throughout the whole wet-and-dry cycle, the total content
of 30 elements measured in the gravel-mulched soil was higher than in the bare soil treatment, and
the content of the total element rose with increasing wet–dry cycle humidity. The enrichment ratio
(Br) of each element in soil under gravel mulch relative to bare soil was in the sequence Mg > Ca >
K > Cr > Na > Mn > V > Zn > Fe > Ti > Si > C > N > B> Co > (Br = 0) > Pb > Cu > Ga > P > Sn > Sr >
Al > Be > Li > Mo > Ni > Se > As > S. Under gravel mulch, the elements impacted by the wet–dry
cycle are primarily rock-forming, whereas the elements affected under bare soil are primarily trace
elements. The wet-and-dry cycles of gravel affected soil nutrients mainly by increasing soil K, Ca, Na,
and Mg contents. The differences in soil K and Ca contents significantly affected the growth of jujube
trees and the jujube fruit yield. A dry/wet cycle level of 5 L/d per tree under gravel cover conditions
can effectively improve soil nutrients and increase the jujube fruit yield without causing environ-
mental problems.

Keywords: gravel mulch; dry and wet cycles; elemental release; jujube tree; sustainable agriculture

1. Introduction

By 2050, the global need for crop output will increase by 100–110% due to the ongo-
ing growth of the population and level of consumption [1]. Agricultural production at
present is heavily dependent on chemical fertilizers; China is one of the main agricultural
producers, and there has become a higher amount of fertilizer application globally [2]. The
excessive application of fertilizers not only increases the cost of crop production but also
causes serious soil and water pollution, which are important issues facing the sustainable
development of agriculture in China [3].

One of the main factors justifying the use of rocks in agriculture is the possibility
of reducing the use of chemical fertilizers [4]. The weathering of rocks is one of the
primary geochemical processes that create the Earth’s environment and is the source of
mineral nutrients in soils. The P, K, Ca, and Mg levels have increased over time, and the
productivity is comparable to or greater than soluble fertilization, according to research [5].
The substitution of nutrients in the soil is determined by the rate of mineral dissolution in
rocks. When exposed to the Earth’s surface, rocks become the primary source of elements
in the soil [6,7].

For almost 300 years, metamorphic gravel has been utilized as a ground mulch to
conserve moisture in agriculture in Arid Northwest China [8]. At the end of the 1990s,
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gravel-mulched fields mulched 118,000 hectares in Gansu Province and 66,000 hectares in
the Ningxia Hui Autonomous Region [9]. Nevertheless, over time, man-made plowing and
natural weathering have lowered the proportion of gravel on the surface and deteriorated
moisture retention [10,11]. The abandonment of thousands of hectares of gravel–sand
mulched land has caused rock desertification and limited agricultural and ecological devel-
opment. The jujube tree (Ziziphus jujuba Mill.), a drought-resistant plant with outstanding
vitality and adaptability, is commonly planted in China’s semi-arid northwest and aids in
soil and water conservation [12]. Therefore, the local government department decide to
plant jujube trees to rehabilitate abandoned gravel–sand mulched land. Unfortunately, low
precipitation and poor soil in the region make it difficult for jujube trees to grow [13,14]. Pro-
viding nutrients to the soil by rock weathering becomes a crucial option for the ecological
and agricultural sustainability of comparable regions. This strategy helps in the resolution
of environmental difficulties linked with stone desertification and the development of
a more environmentally friendly alternative to soil fertilizing [15].

However, the weathering of rocks is always a very slow process under natural con-
ditions [16,17]. Weathering converts primary minerals into secondary minerals and is
partially responsible for the rate of leaching of nutrients from agricultural minerals into the
soil solution [18]. The extensive literature on weathering reactions discusses factors such as
the rock type, soil type, plant species, and the solid–liquid ratio [19,20]. Some researchers
have suggested that periodic water–rock interactions accelerate the weathering of rock
materials, thereby facilitating the release of chemical elements [21,22].

Limited research on multi-nutrient release under periodic wet-and-dry cycle action
has been conducted to evaluate gravel mulch as an alternative fertilizer for desert zone soils.
In particular, the impacts of nutrient release from rocks on field crops are understudied.
To ensure that gravel is safe and efficient as a soil fertilizer, such a study is essential. As
a consequence, the following are the key objectives of this research: (1) to characterize the
petrographic and geochemical properties of gravels; (2) to evaluate the leaching under
different degrees of wet-and-dry cycle tests of gravel, through field trials, and its potential
to contribute to soil fertilization and the nutrition of jujube trees in arid zones; and (3) to
support future studies of gravel used in the replacement of chemical fertilizers. This
research proposes a sustainable option that might replace chemical fertilizers, thus lowering
stone desertification pollution.

2. Materials and Methods
2.1. Soil, Gravel, Seedlings, and Water Samples

In the central desert zone of Ningxia, in the northwest of China, there exist vast
quantities of Ordovician-aged metamorphic gravel. This study utilized gravel particles
from Xiangshan Township, Zhongwei City, Ningxia Hui Autonomous Region, in the gravel–
sand mulched land concentration area, for geochemical, mineralogical, and particle micro
characterization investigations (37◦0′6′′ N, 105◦13′41′′ E) (Figure 1).

The particle size of the studied mulched gravels strongly influenced the release of
nutrients [23]. It greatly influences the release of nutrients, because the smaller the particle
size, the larger the surface area exposed to exogenous conditions, and the easier it is to
weather [24]. In this study, polypropylene shovels were utilized to collect gravel from
abandoned gravel–sand mulched land for test analysis and mulching. The samples were
then split into different particle sizes using 5 mm and 10 mm sieves of mesh American
Society for Testing and Materials (ASTM) and were subsequently transferred to clean
polypropylene bags.

At the experimental site, degraded gravel-mulched soils from a jujube forest were
gathered. To determine the chemical element content of the soil, 0–20 cm deep soil samples
were collected. The soil was divided into two parts for investigation of its chemical
composition and pH. The soil pH (H2O) was determined in distilled water (1:2.5 w/v)
using a glass membrane electrode (PHS-3C, Rex Electric Chemical, Shanghai, China) [25].
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Figure 1. Location and layout of the experimental area, source: Tianditu.

The seedlings are 12-year-old jujube trees. There were 3 × 8 m between planting
rows. The results are the average of three samples in triplicate, with three jujube trees per
treatment. The variety was chosen for its drought resistance, high vigor, and homogeneity
in the field. The jujube trees were supplied with local tap water for basic irrigation and
daily drenching.

2.2. Mineralogy and Microscopy

The X-ray diffraction (XRD) (6100, SHIMADZU, Kyoto, Japan) technique was em-
ployed to characterize the mineralogical composition of the metamorphic rock samples
using an X-ray diffractometer, equipped with a curved graphite monochromator, operating
at 40 kV and 30 mA. The angle range analyzed was from 3 to 75. The XRD pattern has been
collected by measuring the scintillation response to Cu Kα radiation, with a step size of
0.02◦ and a counting time of 3 s per step. The mineral identification from XRD data was
performed using the High Score Software.

The microscopic characteristics and analysis of element types and contents of material
microregions of the gravels were studied on polished flakes using a scanning electron
microscope (SEM) (model EVO18, Zeiss, Oberkochen, Germany) equipped with an energy-
dispersive X-ray spectrometer (EDS).

2.3. Chemical Composition

The gravel and soil samples were ground, passed through a 200-mesh sieve, and
digested with three acids (HCl: HNO3: HF) for 2 h in a microwave oven to determine major
and selected trace elements. The analysis was performed at Ningxia University Testing
Center (China) by inductively coupled plasma–mass spectroscopy (ICP-MS) (NexION 350X,
Perkin Elmer, Waltham, MA, USA) and Elemental Analyzer (Vario EL cube, Elementar,
Heraeus, Germany).

2.4. Experimental Setup

The studies were performed between May and September of 2021. The experimental
location has a typical semiarid environment, with little precipitation, the average annual
precipitation is 180–200 mm, with high evaporation, the average annual potential evapora-
tion may reach 2100–2400 mm, and the average annual reference crop evapotranspiration
of 1300–1400 mm [26]. During the test period, 91.6 mm of precipitation fell, and the average
daily temperature was 25.9 ◦C (Figures 2b and 3). The degraded gravel–sand mulched
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land was left in its original state as a gravel mulch treatment (G) but the surface gravel was
removed to create a bare soil treatment (B). A 1 m2 pit was dug around each tree and filled
with 10 cm of sieved 5–10 mm gravel in the gravel mulch treatment [27], while the bare
soil treatment was left unfilled. Additionally, the isolation zone was excavated (Figure 1).
An on-farm weather station (Vantage Pro2, DAVIS, San Francisco, USA) and sensors were
used to measure the temperature of bare soil and gravel mulched 5 cm below the surface of
the experimental location (ZL6, METER, Pullman, WA, USA). Variations in daily average
temperatures of the gravel layer, bare soil, and air are presented in Figure 2a. At the hottest
time of each no-effective-rainfall day (16:00), to accelerate the nutrient release from the
weathered gravel, a wet–dry cycle was created by sprinkling water (water temperature
approximately 25.0 ◦C) into the jujube tree’s pit [28].
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2.5. Experimental Treatments

Using a random block design, the water requirement (Wc) was determined based on
the water retention capacity of gravel layers (5.0%) [29] and mulching thickness (10 cm),
and three dry and wet cycle degrees with the following amount of drench volume per tree
were established: low moisture W1 (60% Wc): 3 L/d, moderate moisture W2 (100% Wc):
5 L/d, high moisture W3 (120% Wc): 6 L/d. Additionally, equivalent bare soil treatments
were established for each dry and wet cycle degree, with a total of six treatments (BW1,
BW2, BW3, GW1, GW2, GW3), three replications per treatment, and three jujube trees
per experimental unit (Figure 3). During the reproductive time, the total irrigation water
was the same for all the treatments, at 220 mm. Soil samples were collected at a depth of
0–20 cm at 40 cm from the trunk of jujube trees on days 0, 20, 40, 60, 80, and 100 d after the
start of the wet–dry cycle treatment.

After 100 days of the wet–dry cycle test, the thickness and length of the new tips and
hanging fruit were measured using vernier calipers and tape measures, and the fruit was
collected by hand one by one to compute the yield of the various treatments.

2.6. Statistical Analysis

To clarify the principle of elemental precipitation through wet-and-dry cycles un-
der gravel mulch conditions, the elemental difference between gravel and initial soil is
quantified in terms of the elemental ratio RI, which can be calculated using Equation (1).

RI =
GI

SI
(1)

where GI is the amount of element I in the gravel and SI is the amount of element I in
the soil.
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The element enrichment ratio was used to quantitatively describe the differences in
elements between gravel-mulched and bare land soils. The element enrichment ratio refers
to the accumulation of elements within gravel-mulched soils relative to bare land soils,
which can be calculated using Equation (2).

Br =
Cg −Cb

Cb
(2)

where Br is the element enrichment ratio, Cg is the content of chemical elements in gravel-
mulched soil, and Cb is the content of chemical elements in bare land soil.

All data are provided as the mean of three replicates, and differences in jujube tree
growth and yield were examined using SPSS 25.0 using one-way ANOVA. Pearson cor-
relation analysis was used to explore the relationship between the degree of dry and wet
cycles and soil element content. Principal component analysis (PCA) with Origin2021 was
used to eliminate the collinearity of numerous variables and to reveal the difference in soil
elemental system composition between bare soil and gravel mulch utilizing a correlation
matrix. The Mantel test was used to examine the influence of chemical components on soil
nutrients and jujube tree growth and yield, and the Pearson correlation analysis highlighted
the connection between elements in the soil, which was accomplished using the (linkET)
package in the R software.

3. Results
3.1. Gravel Mineralogy and Microscopy

The principal four peaks in Figure 4a are made up of well-known metamorphic min-
erals, including quartz (SiO2), muscovite (KAl2(AlSi3O10)(OH)2), clinochlore ((Mg,Fe)4.75
Al1.25[Al1.25Si2.75O10](OH)8), and albite (Na(AlSi3O8)). According to semi-quantitative
estimates, the mineral composition of the gravel is as follows: quartz (45.5%), albite
(24.8%), muscovite (15.8%), and clinochlore (13.9%).

Figure 4b depicts the natural surface morphology of a piece of mulched gravel. The
surface morphology of the sample is quite rough, exhibiting a concave river-like pattern.
The surface is uneven and has a slate structure resembling a slab. The surface of the slab
is formed of minerals, structured in a directed pattern, with well-developed microcracks
and microfractures. The fine structure of the rock is seen in terms of the grain morphology,
which is mostly scale-like and elongated, with a few blocky and granular grains, and the
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grains have a rather distinct shape. The grain size and shape vary significantly, and the
grain size is rather tiny. The particles’ pores are interconnected, and they overlap and
collect to produce a porous, sparse structure. The results of EDS showed that the weight
percentages (weight%) of elements scanned on the gravel surface are, in descending order,
Si, O, Al, C, Fe, Na, K, Mg, and Ca (Figure 4c).

Figure 4. Gravel sample X-ray diffractogram (a); scanning electron micrograph (b); type and weight%
of elements detected in gravels by energy dispersive spectroscopy (c).

3.2. Chemical Characterization of Elements in Water, Gravel, and Soil

In this investigation, the pH of gravel, soil, and water was 9.2, 8.0, and 7.8, respectively.
Gravels, irrigation water, and initial soil contents of major, trace, and potentially toxic
elements are shown in Table 1. The total content of these 30 elements in gravel, soil,
and water was 562.5 g/kg, 135.9 g/kg, and 115.3 mg/L, respectively, of which the total
elemental content of water was only 0.02% of the gravel.

Not all of the 30 elements in the gravels were higher than in the soil, with P, Mn, Cu,
As, Be, Mg, S, and Ca being lower than in the soil. Except for W, which was not detected
in soil, the ratio of gravel to soil (RI) for the remaining 21 elements was, from largest to
smallest, Si > Pb > Sn > Cr > Na> Ti > Sr > Li >Al > Ni > Ga > K > C > N > B > Zn > Se > V
> Fe > Co > Mo. Approximately 99.86% of the total elemental content of the conglomerate
is composed of major elements and rock-forming elements. Essential trace elements and
potentially toxic elements each account for 0.12% and 0.02% of the total elemental content
of the gravel. The average contents of the initial major, trace, and potentially toxic elements
in the soil were 135.5 g/kg, 332.6 mg/kg, and 42.1 mg/kg, respectively.
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Table 1. Content of chemical elements in irrigation water, gravel, and soil.

Element
Content

RI Element
Content

RI
Water (mg/L) Gravel (mg/kg) Soil (mg/kg) Water (mg/L) Gravel (mg/kg) Soil (mg/kg)

Si 4.4 348,614.8 894.6 389.7 Zn — 122.9 48.0 2.6
Al — 105,915.6 31,750.0 3.3 V 0.0 108.5 52.4 2.1
Fe — 42,136.9 21,234.5 2.0 Cr — 86.9 7.8 11.1
K 4.0 29,531.5 10,591.5 2.8 Sr 0.6 84.3 17.9 4.7

Na 31.9 8463.2 1060.4 8.0 B 0.1 94.6 36.5 2.6
Ti — 4208.4 803.9 5.2 Cu — 94.3 125.6 0.8
Ca 37.0 3549.1 46,567.1 0.1 Ni — 76.5 24.5 3.1
Mg 24.4 1373.1 12,822.6 0.1 Se — 21.6 9.9 2.2
Mn — 472.7 510.9 0.9 Co — 15.3 8.6 1.8
Li 0.0 89.4 23.9 3.7 Sn — 14.3 0.4 40.1
W 0.0 4.6 0.0 — Mo 0.0 1.7 1.1 1.5
C 1.2 14,800.4 5620.2 2.6 Ga — 40.8 13.5 3.0
N 1.0 1600.6 611.5 2.6 Pb — 35.8 0.9 41.6
P — 686.9 697.8 1.0 Be — 5.4 16.5 0.3
S 10.7 213.6 2356.5 0.1 As — 4.7 11.2 0.4

Notes: the elemental difference between gravel and initial soil is quantified in terms of the elemental ratio RI.

3.3. Accumulation and Transport of Chemical Elements in Soils

The total content of 30 elements in the soil was calculated under each treatment to
assess the enrichment capacity of the chemical elements in the gravel to soil and during the
wet-and-dry cycle of the soil (Figure 5). The results showed that the average total elemental
content was higher than the initial value for all treatments except BW1. The total elemental
content of all gravel mulch treatments was higher than that of bare soil with the same
amount of drench (Figure 5a). There was a significant positive correlation (r = 0.81, p < 0.05)
between the total amount of elements in the soil increasing with the amount of watering in
the wet-and-dry cycles. The total soil elemental content of gravel mulch increased by 1.9%,
2.5%, and 7.0% compared to bare soil under dry and wet cycling conditions for W3, W2,
and W1, respectively.

In addition, the nutrients in the soil were depleted due to the growth of the jujube trees,
and during the test period, there was a trend of increasing and then fluctuating decreases
in the major and trace elements and potentially toxic elements with the number of cycles
(Figure 5b). The proportions of major elements, essential trace elements, and potentially
toxic elements in the soil under bare soil and gravel mulch conditions averaged 99.74%,
0.23%, and 0.03% and 99.75%, 0.22%, and 0.03% of the total 30 elements measured during
the test period, respectively.

The total elemental content of both bare and gravel mulch soils followed the same
trend as that of the major elements (Figure 5b,c), with the total elemental content of both
peaking at the flowering and fruiting stage at an average of 148.5 g/kg and 152.3 g/kg,
and the fruit maturity stage at an average of 126.6 g/kg and 130.7 g/kg. In addition, the
difference in total elemental content between the two soils was the lowest at 40 days of
cycling (2.5 g/kg) and the highest at 80 days of cycling (8.3 g/kg).

The soil pH gradually increased with the duration of the cycle (Figure 5c) and reached
a maximum at 100 days of the cycle. The average pH values for bare soil and gravel
mulch were 8.5 and 8.8, respectively, a rise of 0.5 and 0.8 units from the initial pH of the
soil. Furthermore, the soil pH increased with drenching, with W1, W2, and W3 having
pH values of 8.3, 8.4, and 8.5, respectively (Figure 5d). For the same soil pattern, the
average total element content of the soil at different watering levels ranged from high to
low: 142.4 g/kg, 139.5 g/kg, and 131.4 g/kg for W3, W2, and W1, respectively. When
compared to W1, the total elemental content of W3 increased the most at 80 days of cycling
with 12.6%, and the least at 60 days of cycling with 4.0%.
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Figure 5. Variation in soil elemental content across treatments (a). Elemental amounts vary with cycle
time for the major elements, trace elements, and potentially toxic elements (b), gravel-mulched and
bare soil (c), and different dry and wet levels (d). W1, W2, and W3 denote treatments of 3 L/d, 5 L/d,
and 6 L/d drenching volume per jujube tree, respectively.

3.4. Enrichment and Depletion of Soil Elements

Figure 6 shows the contents of the 30 elements in bare and gravel-mulched soils
and the enrichment rate of gravel-mulched soils relative to bare soils. Figure 6a shows
the average content and enrichment rate of trace elements. Except for W, which was not
detected in the soil, relative to bare soil, the 11 trace elements of the soil under gravel mulch
were depleted, in descending order of depletion, as follows: Ni > Li > Sr > As > Se > Ga
> Cu > Pb > Be > Sn > Mo. The other six trace elements increased relative to bare soil, in
descending order of increase: Mn > Cr > V > Zn > B > Co.

Figure 6b indicates the average content and enrichment rate of massive elements.
Compared to bare soil, three major elements were depleted in the soil under gravel mulch,
in descending order of depletion: Al > S >P. The other nine massive elements were enriched
relative to bare soil, in descending order of increase: Ca > K > Mg > Na > Fe > C > Ti > Si > N.

Compared to bare soil, fifteen elements were enriched in gravel mulch conditions
(Br > 0). The total amount of enriched elements was 5730.2 mg/kg, of which 99.9% were
major elements and 0.1% were trace elements. The other 14 elements were depleted (Br < 0).
The total amount of depleted elements was 738.2 mg/kg, of which 99.4% were major
elements and 0.6% were trace elements. The elemental enrichment rate under gravel mulch
in descending order is: Mg > Ca > K > Cr > Na > Mn > V > Zn > Fe > Ti > Si > C > N > B >
Co > (Br = 0) > Pb > Cu > Ga > P > Sn > Sr > Al > Be > Li > Mo > Ni > Se > As > S.
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3.5. Growth and Yield Indicators of Jujube Tree

As shown in Table 2, gravel mulch significantly (p < 0.05) increased the fruit mass
and yield of jujube fruit as well as the length of new shoots, thickness of new shoots, and
thickness of jujube hangers compared to bare soil. The yield and single fruit mass of GW2
were the highest, while the yield and fruit mass of BW1 was the lowest. The best length and
thickness of the new tip and hanging fruit of the jujube tree occur at GW3. The yields of
W3, W2, and W1 were 17.0%, 24.8%, and 32.0% higher, respectively, than those of the bare
soil treatment under gravel mulch. All the growth indicators of the jujube tree increased
with increasing water drenching, with the highest in the GW3 treatment and the lowest
in the BW1 treatment. The increase in all indicators of gravel mulch over bare soil was,
in descending order: new tip length (45.9%) > new tip thickness (42.3%) > hanging fruit
length (26.6%) > yield (24.1%) > hanging fruit thickness (17.3%) > single fruit mass (13.2%).
The interaction between the gravel mulch and drench volume only reached a significant
level (p < 0.05) for the hanging fruit length.

Table 2. Growth and yield indicators of jujube tree under different treatments.

Treatments Single Fruit
Mass/g Y/(kg·hm−2) New Tip

Length/cm
New Tip

Thick/mm
Hanging Fruit

Length/cm
Hanging Fruit
Thickness/mm

BW1 11.8 ± 0.8 d 2113.6 ± 31.6 c 44.2 ± 6.0 d 5.5 ± 0.4 c 20.1 ± 0.7 d 1.4 ± 0.1 e
BW2 14.0 ± 0.3 c 2600.2 ± 156.7 b 55.2 ± 3.9 cd 5.9 ± 0.4 c 21.6 ± 0.9 cd 1.4 ± 0.1 de
BW3 15.1 ± 0.4 b 2595.9 ± 99.5 b 56.3 ± 6.9 c 7.0 ± 0.2 b 23.7 ± 1.3 c 1.6 ± 0.1 cd
GW1 14.1 ± 0.2 c 2790.0 ± 33.2 b 67.0 ± 10.0 cd 7.3 ± 0.5 b 21.1 ± 2.1 cd 1.6 ± 0.1 bc
GW2 16.2 ± 0.4 a 3244.7 ± 53.6 a 75.6 ± 4.5 b 9.4 ± 0.4 a 28.9 ± 1.2 b 1.7 ± 0.1 ab
GW3 16.0 ± 0.3 ab 3037.7 ± 110.2 a 84.5 ± 7.2 a 9.4 ± 0.9 a 32.8 ± 1.1 a 1.8 ± 0.1 a

Notes: Different means with small letters show a significant variation between different treatments. BW1, BW2,
BW3, GW1, GW2, and GW3 denote the treatments for per jujube tree: 3 L/d under bare soil, 5 L/d under bare
soil, 6 L/d under bare soil, and 3 L/d under gravel mulch, 5 L/d under gravel mulch, and 6 L/d under gravel
mulch, respectively. Values are means ± standard deviation of the means (SD; n = 3).
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4. Discussion
4.1. Petrographic and Geochemical Characteristics of the Gravels

This study demonstrates that it has a significant proportion of weatherable glassy
amorphous matrix in its composition as well as many silicate minerals such as quartz,
muscovite, clinochlore, and albite, which are easily decomposed minerals [30]. Albite is
a feldspar-like mineral with a peculiar structure that is less resistant to weathering and has
a strong capacity to release its own Na into the medium [31]. Muscovite is a potassium-
bearing silicate mineral with a potential potassium supply. It has a layered structure, which
means there is less interlayer potassium binding force, and it is more likely to release
insoluble K, Si, and other elements during weathering [32]. Clinochlore is rich in Fe and Mg
elements. When exposed to external conditions, it has low mineralogical stability, making it
appropriate for use in soil re-mineralization [33]. It may facilitate the discharge of nutrients
into the environment. EDS analysis proved to be a surprisingly satisfactory technique for
the chemical characterization of the waste rock samples. In addition, certain percentages of
Fe, Na, K, Mg, and Ca elements were detected, reflecting the possibility of nutrient release
from the gravels [5].

Water is one of nature’s most abundant solvents. The gravels mulch the soil’s surface
in the presence of natural precipitation or artificial irrigation, and the gravel’s constituents
move by leaching [34,35]. Some major elements and essential trace elements were detected
in the water, and no toxic elements were detected. Although toxic elements were detected
in the gravels, low concentrations of toxic elements in an alkaline environment do not
represent an environmental risk [36].

4.2. Differences in Soil Nutrients and Jujube Yield among Treatments

The difference between the soil element content under gravel mulch and bare soil
increased 40–80 days after the application of the treatment, i.e., during the fruit expansion
period, probably because gravel weathering replenished the elements needed in large
quantities during the jujube fruit expansion period [37]. The total elemental content of
the gravel-mulched soil was higher than the initial total elemental content of the soil up
to the first stage of fruit maturity, while the elemental content of the soil under bare soil
was higher than the initial total elemental content of the soil only at the first stage of fruit
expansion. The results indicate that the nutrients from the weathering of the gravels were
able to delay the depletion of soil nutrients caused by the growth of the jujube tree [4].
With the continued depletion of nutrients by jujube tree growth, the total elements in the
soil under the gravel mulch and bare soil decreased at 100 days of cycling compared to
the initial soil, indicating that if the soil nutrients are replenished by the gravel dry and
wet cycle alone in the long term, this may result in an imbalance in the soil of jujube forest
elemental system and soil impoverishment [10]. The calculation of enrichment rates (Br)
revealed that the potentially toxic elements (As, Ga, Pb, Be) of the soil under gravel mulch
were reduced relative to bare soil, while major elements (Ca, K, Mg, Na, Fe, C, Ti, Si, N)
were enriched. This indicates that gravel has good potential to act as a supplementary
nutrient for the soil under dry and wet cycles without posing an environmental risk [38].

As the degree of wet-and-dry cycles increased, the highest nutrient content was found
in GW3 with high humidity, probably because W3 had a more sufficient leaching time than
W2 and W1 [39]. GW2 had the highest yield and single fruit quality, but the difference
with GW3 did not reach a significant level (p < 0.05). The lower yield was likely due
to the lower increase in total soil composition in GW3 compared to GW2, along with
the increase in invalid water consumption [40]. Compared to GW3, the total elemental
content in GW2 soil increased by 6.4% in jujube fruit yield, although it decreased by 1.8%.
Therefore, a drenching volume of 5 L/d per tree under gravel mulch (GW2) was considered
an effective treatment considering soil nutrients and the growth and yield of jujube trees.
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4.3. Difference between Soil Elements under Bare Soil and Gravel Mulch

Rock weathering can increase the amount of major and trace elements in soils, affecting
agricultural production, biogeochemical processes, and water quality in arid zones [41]. In
this study, principal component analysis (PCA) of the entire dataset of soil elements was
able to distinguish between the two soil patterns (bare soil and gravel mulched) (Figure 7a),
i.e., the elements that are affected differently by the wet-and-dry cycle for the two soil pat-
terns [42]. The first two principal components account for 70.1% of the total variation. The
rotated loading matrix of the first principal component shows that the largest loadings are
for trace elements, which are depleted under gravel mulch relative to bare soil, especially Li,
Sn, Be, As, etc. These results indicate those trace elements are the primary constituents that
change in bare soil during the wet-and-dry cycles. Soil aggregates fragment and increase
the element enrichment under wet-and-dry cycling conditions, enhancing phosphorus
activity, carbon sequestration, and trace element precipitation [43,44]. The rotated loading
matrix of the second principal component reveals that rock-forming elements such as Ca,
Ti, Mn, and Fe have the highest loadings. The high Pb content of gravels compared to soils
may explain the large contribution of Pb to the second principal component [45]. These
results indicate that rock-forming components are the most variable in gravel mulch soils
during dry and wet cycles [46].

Figure 7. (a) Displays the principal component analysis (PCA) of soil pH, soil nutrients (major
elements, beneficial trace elements), and potentially harmful elements for bare and gravel-mulched
soils. Correlation between elements in soil, and Mantel test analysis of each element about jujube tree
growth and production (single fruit mass, yield, new tip length, new tip thick, hanging fruit length,
hanging fruit thick) and soil nutrients (total elements, major elements, beneficial trace elements) (b).
In the figure, * and ** indicate inter-element correlations that are significant at the 0.05 level (p < 0.05)
and at the 0.01 level (p < 0.01), respectively.

Rock-forming elements were identified to be strongly related to soil pH, with the soil
pH under gravel mulch increasing with increasing days of wet-and-dry cycles, implying
that by-products may come into contact with the soil and thus neutralize the soil H+ [36].
The gravel mulch released more nutrients into the soil than the bare soil under wet-and-dry
cycling conditions, neutralizing more of the acid fraction in the soil, and the gravel itself
had a high pH, which may have contributed to the higher pH in the gravel mulch than in
the bare soil. Furthermore, with increasing degrees of dry/wet cycling, so did soil nutrient
elements and pH. This variation is primarily caused by the soil water content, the number
of neutral salts, and the type of cations in the soil solution and exchange complexes [47].

In this study, the soil pH and rock-forming elements were positively correlated but
negatively correlated with trace elements. This indicates that the entry of rock-weathering
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elements into the soil will increase the pH and that increasing the soil pH is a promising
strategy for reducing the risk of heavy metal elements in the soil [48].

4.4. Chemical Elements Affecting Soil Nutrients and Jujube Growth and Yield

To identify the key driving elements among the 30 elements and the correlations among
them [49], distance-corrected differences in soil and plant composition were correlated
with differences in soil elements (Figure 7b). In general, K, Na, Ti, Ca, Mg, P, Sr, and Pb
are closely related to the total soil nutrients, total beneficial trace elements, and total major
elements. Among them, the effects of K, Na, Ca, and Mg on soil nutrient contents reached
significant levels (p < 0.05). In addition, gravel weathering under dry and wet cycles mainly
affected the growth and yield of jujube fruits through the contents of K, Na, Mg, and P
in the soil, among which the effects of K and Ca reached significant levels (p < 0.05) [7].
Among them, K, Na, Ti, Ca, and Mg were enriched in the soil under gravel mulch (Br > 0),
while P, Sr, and Pb were depleted (Br < 0). P levels in gravel-mulched soil are lower than in
bare soil because the pH of the soil is higher, and plants can more easily take P from the
soil [50]; additionally, Sr and Pb showed a significant positive correlation with P, decreasing
with P. K and Ca showed the strongest correlation with soil nutrients and jujube tree growth
production. The significant increase in K and Ca from gravel weathering was crucial during
fruit expansion, compensating for jujube nutritional requirements and, as a result, boosting
the fruit mass and yield relative to bare soil [37]. Furthermore, significantly increased K,
Ca, Mg, and Na content in the soil promotes the growth of branches and leaves [51], and
the jujube trees grown in gravel mulch have bigger new tips and hanging fruit. Finally, the
components precipitated by the wet and dry cycle of gravel can boost soil nutrients and
increase jujube fruit yield, fostering healthy jujube tree growth.

5. Conclusions

The gravel shows many easily weathered silicate minerals in its composition, such as
clinochlore, muscovite, and albite, which are rich in nutritional elements and easily released
into the soil. The principal soil components that were altered under gravel mulch and
bare soils were rock-forming elements and trace elements, respectively. Compared to bare
soil, the soil under gravel mulch is enriched in large amounts of elements and depleted in
trace elements. The analysis showed that the total nutrient content of the soil under gravel
mulch was higher than that of the bare soil. K, Na, Ca, and Mg contributed significantly to
the difference in nutrients between the two soils. Among them, the contents of K and Ca
significantly affected the growth and yield of jujube trees. The total amount of elements
in the soil was significantly and positively correlated with the drenching volume of the
wet-and-dry cycles. For the same amount of water, a drenching volume of 5 L/d per tree
under gravel mulch (GW2) was considered an effective treatment considering soil nutrients
as well as the growth and yield of jujube trees. Therefore, the application of a wet-and-dry
cycle to mulched gravels in agriculture can replenish soil nutrients and improve crop
yields and may be an effective means to address the problem of rock desertification in
arid areas and reduce soil and water pollution by chemical fertilizers, thus maintaining
sustainable agriculture.
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