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Abstract: Near-real-time, high-spatial-resolution leaf area index (LAI) maps would enable producers
to monitor crop health and growth status, improving agricultural practices such as fertiliser and
water management. LAI retrieval methods are numerous and can be divided into statistical and
physically based methods. While statistical methods are generally subject to high site-specificity but
possess high ease of implementation and use, physically based methods are more transferable, albeit
more complex to use in operational settings. In addition, statistical methods need a large amount of
data for calibration and subsequent validation, and this is only seldom feasible. Techniques based on
predictive equations (PEphysical) represent a viable alternative, allowing the partial combination of
statistical and physical methods merits while minimising their shortcomings. In this paper, predictive
equation-based techniques were compared with four other methods: two radiative transfer model
(RTM) inversion methods, one based on neural network (NNET) and one based on a look-up table
(LUT), and two empirical methods (one using empirical models based on vegetation indices and in
situ data and one based on empirical models found in the scientific literature). The methods were
chosen based on common use. To evaluate the performance of the studied methods, the coefficient
of determination (R2), root mean square error (RMSE), and normalised root mean square error
(nRMSE, %) between the estimates and in situ LAI measurements were reported. The best PEphysical

results, achieved by the OSAVI index (RMSE = 0.84 m2 m−2), provided better performance for
LAI recovery than the NNET-based RTM inversions (0.86 m2 m−2) or the estimates made by LUT
(0.94 m2 m−2). Furthermore, the best PEphysical produced accuracies comparable to the best empirical
model (RMSE = 0.71 m2 m−2), calibrated through in situ data, and similar to the best literature
model (RMSE = 0.76 m2 m−2). These results indicated that PEphysical can be used to recover LAI with
transferability comparable to literature models.

Keywords: LAI; precision agriculture; empirical model; PROSAIL; LUT; predictive equation; NNET

1. Introduction

Timely information on crop growth and health is increasingly important for develop-
ing strategic food policies and for supporting natural resource management [1–3]. Mapping
crop biophysical parameters is essential in many applications of land surface monitor-
ing [4,5]. Leaf Area Index (LAI), in particular, is of particular interest and the most studied
among biophysical parameters. A key canopy structural variable, it is often used to model
surface energy balance and crop productivity as well as study water and carbon balances
from the soil–crop–atmosphere continuum [6–9]. For these reasons, at field scale, the
availability of near real-time estimation of LAI would enable producers to monitor crop

Agronomy 2022, 12, 2835. https://doi.org/10.3390/agronomy12112835 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12112835
https://doi.org/10.3390/agronomy12112835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-7356-2774
https://orcid.org/0000-0002-9878-6595
https://doi.org/10.3390/agronomy12112835
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12112835?type=check_update&version=1


Agronomy 2022, 12, 2835 2 of 17

health and growth status and improve agricultural practices’ efficiency, such as fertiliser
application and water management [1,10]. However, direct measurements of biophysical
parameters are labour-intensive [11]. For this reason, the use of remote-sensing techniques
involving satellites providing a high rate of revisit frequency, requiring limited labour, and
enabling crop biophysical parameter measurement at different scales, is rapidly expand-
ing [12]. Recently, several approaches have been developed to retrieve crop biophysical
parameters through remote-sensing techniques. These techniques can be summarised
into two main approaches [13,14]: (i) statistical approaches, which typically consist of
relating the biophysical parameters to spectral data through linear or non-linear regression
techniques (e.g., polynomial regressions or machine learning algorithms) and (ii) physical
approaches using physically based radiative transfer models (RTMs) [15,16]. In statistical
approaches, biophysical parameters are correlated with vegetation indices (VIs) that com-
bine two or more spectral bands sensitive to the biophysical parameter of interest [17]. This
technique enables enhancing the spectral characteristics of a specific vegetation property
while minimising the background effects of soil, atmosphere [18–21], and sun-target-sensor
geometry [22]. While the statistical approach has some advantages, including the ease of
use in operational settings and their availability in the scientific literature [14], it also has
several disadvantages. Models based on statistical approaches are known to have reduced
transferability to conditions other than those in which they were developed [23,24] and
require in situ data for their calibration. Therefore, the robustness of these models will
depend on the amount, quality, and distribution of data, which are often very complex to
collect in large numbers [25].

In contrast, the physical approaches using radiative transfer models (RTMs) are more
robust for LAI retrieval, overcoming the problem of lack of transferability due to their
ability to simulate radiative behaviour mechanistically. However, RTMs are more complex
and require more computational cost in their calibration step compared with statistical
approaches. RTMs model the spectral variation of the canopy reflectance using physical
principles involving viewing and illumination geometry, biophysical and biochemical
characteristics of leaves and canopy, and soil characteristics [16]. In literature, adequate
results have been reported for LAI retrieval using the PROSAIL canopy reflectance model-
a combination of the PROSPECT [26] and SAIL [27] models-as revised by Jacquemoud
et al. [16]. The PROSAIL model does not directly produce estimates of a crop’s biophysical
parameters, but it does enable the generation of a spectral database that must subsequently
be inverted using appropriate inversion strategies in order to retrieve the related biophysical
parameters [28,29]. Available inversion techniques include Look Up Tables—LUT [30–32]
and hybrid regression approaches based on machine learning algorithms, such as artificial
neural networks (NNET) [33,34], which combine physical and statistical methods. Another
inversion technique was proposed by Haboudane et al. [18] and Atzberger et al. [35]. They
developed VIs–LAI relationships calibrated on synthetic data generated by RTM (e.g., so-
called predictive equations) for model inversion. This technique combines the advantages
of physical and statistical approaches, being characterized by simplicity of application and
robustness in LAI retrieval. However, in previous studies, the PEphysical were evaluated on a
small number of crops (maize, wheat, soybeans, or grasslands), preventing the identification
of “universal” relationships between LAI and VIs. In operational situations, a universal
algorithm is more functional than crop-specific relations for retrieving different crops’
LAI [36]. Therefore, the use of a higher number of crops must be investigated to identify an
algorithm based on PEphysical that achieves reliable accuracy on average, regardless of the
type of canopy structure.

In this context, the main objective of this study was to evaluate the accuracy and the
transferability of PEphysical calibrated on data simulated by PROSAIL in LAI retrieval of
multiple crops by comparing them with some of the most common LAI retrieval methods,
such as (i) empirical models based on VIs and in situ data, (ii) empirical correlations
found in scientific literature, (iii) the PROSAIL model inversion based on LUT, and (iv) the
PROSAIL model inversion based on NNET models. Moreover, the overall aim of this study
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was to apply a cost-effective strategy for local validation of different LAI retrieval methods
in a specific area.

2. Materials and Methods
2.1. Study Area

The test sites are located in the Po plain of the Emilia-Romagna region, Northern Italy,
which is characterised by a temperate climate corresponding to the “Cfa” group according
to the Köppen–Geiger climate classification [37] with an average annual precipitation of
700 mm and an average annual temperature of 14 ◦C. Field measurements were conducted
at three different test sites and during three growing seasons: at the Acqua Campus agri-
cultural test field, a Canale Emiliano-Romagnolo (CER) research centre in the municipality
of Budrio (Bologna) in 2019 and 2020; in two farms near Ravenna in 2020 and 2021; in two
fields near Piacenza in 2021 (Figure 1).
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Figure 1. Study area. The study was carried out in an agricultural region located in the North of
Italy: (A) Piacenza test site (B); Budrio test site; and (C) Ravenna test site. All the test sites are in the
Emilia-Romagna region (grey shading in the top-right image).

2.2. Field Measurement Protocol

Ground-based LAI measurements were collected at each test site. The size of the
sampling units was based on an Elementary Sampling Unit (ESU) to better correlate the
data with satellite resolution. Each ESU corresponded to a Sentinel-2 pixel (20 × 20 m) and
included three fixed-pattern secondary sampling units (SSUs) along the diagonal axis for
each of the four pixels 10 × 10 m constituting the ESU (Figure 2).
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Figure 2. Field measurement protocol for each Elementary Sampling Unit (ESU).

A total of 40 elementary sampling units (ESUs) were chosen in the centre of the
monitored fields, maintaining a minimum distance of 10 m from the field boundaries.
In situ LAI measurements were recorded within the SSUs by using an AccuPAR LP-80®

portable photosynthetically active radiation ceptometer to measure LAI non-destructively.
For each ESU, the LAI values of the twelve SSUs were averaged and the average LAI value
per ESU was obtained. The vertices and centre of the ESUs were geolocated using a GPS,
providing an accuracy of less than 1 m for subsequent matching of the average LAI estimate
with the corresponding Sentinel-2 reflectance data. In total, 106 LAI data from 40 ESUs
were taken evaluating six different crops: Garlic (Allium sativum L.), Tomato (Solanum
lycopersicum L.), Potato (Solanum tuberosum L.), Maize (Zea mays L.), Onion (Allium cepa L.),
and Spinach (Spinacia oleracea L.), as shown in Table 1, which summarises the characteristics
of the three test sites used in this study. The dataset covers a wide range of LAI values, i.e.,
from 0.05 to 7, providing an optimal experimental dataset for evaluating each methodology.

Table 1. Characteristics of the three datasets used in this study.

Test Site Crop Types Year N◦

ESUs N◦ LAI N◦

Images
Image Acquisition

Dates
Field Measurement

Dates

A
Garlic (Allium sativum L.)

2021
7 30

7
2021 (19 March,

23 April, 3 May, 28 May,
17 June, 25 June, 7 July)

2021 (22 March, 19 April,
5 May, 28 May, 17 June,

25 June, 7 July)
Tomato (Solanum
lycopersicum L.) 3 6

B

Tomato (Solanum
lycopersicum L.)

2019

2 6

4 2019 (24 May, 18 June, 8
July, 23 July)

2019 (24 May, 18 June,
8 July, 23 July)

Potato (Solanum
tuberosum L.) 2 4

Maize (Zea mays L.) 2 8
Onion (Allium cepa L.) 2 8

Tomato (Solanum
lycopersicum L.)

2020

2 6

4 2020 (28 May, 22 June,
22 July, 11 August)

2020 (28 May, 22 June,
22 July, 11 August)

Potato (Solanum
tuberosum L.) 2 4

Maize (Zea mays L.) 2 8
Onion (Allium cepa L.) 2 6

C
Spinach (Spinacia oleracea

L.)

2020 6 8 2 2020 (10 October, 22
October)

2020 (9 October,
19 October)

2021 8 12 4 2021 (20 April, 3 May,
10 May, 18 May)

2021 (20 April, 4 May,
10 May, 18 May)

2.3. Satellite Data Acquisition and Processing

The Sentinel-2 (S2) mission of the European Space Agency’s Copernicus program
consists of a pair of satellites launched in 2015 and 2017. Both satellites carry a Multi-
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Spectral Imager (MSI) with a swath of 290 km and provide data in 13 spectral bands
ranging from the visible and near-infrared to the shortwave infrared region, including
four bands at 10 m, six bands at 20 m, and three bands at 60 m spatial resolution [38].
Sentinel-2 provides data every 10 days at the equator with one satellite and five days with
two satellites under cloud-free conditions, resulting in 2–3 days at mid-latitudes. Sentinel-2
images at Level 2A were downloaded for free from the Copernicus Open Access Hub
website (https://scihub.copernicus.eu/ (accessed on 30 May 2021)). All field campaigns
were carried out at days close, with a maximum of five days’ difference, to the Sentinel-2
overflight dates over the study area (Table 1).

3. Methods

To evaluate the performance of PEphysical in LAI retrieval, its accuracy was compared
with the performances achieved by four others LAI retrieval methods (Figure 3): two RTM
inversion methods (one based on a LUT and the other on an NNET) and two statistical
modelling methods (one based on in situ data and the other based on empirical models
found in scientific literature). These methods were chosen since they are the most widely
used by the remote sensing community, and a detailed description of each method is
provided in the following sections. For PEphysical and empirical models (in situ data),
both linear and 2nd-order polynomial regression for VIs-LAI relation were tested. The
VIs evaluated numbered 21: CIgreen, CIre, EVI, EVI2, GNDVI, greenWDRVI, MSAVI,
MTVI2, NDGI43, NDRE, NDVI, NDWI, OSAVI, RDVI, rededgeWDRVI, RI, SR, TRBI, TVI,
VARIrededge, and WDRVI3. Table 2 displays the equations of each tested VI.
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Figure 3. The general framework of the work: Step 1: field campaigns; Step 2: generating training
datasets using PROSAIL; Step 3: model calibration (for the empirical model); Step 4: literature model
searching, and Step 5: model accuracy assessment.
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Table 2. List of the vegetation indices evaluated for the retrieval of Leaf Area Index. Sentinel-2 bands
used are the blue (B2), green (B3), red (B4), red-edge 1 (B5), red-edge 3 (B7), NIR (B8), and SWIR (B11).

VIs Equation Reference

CIgreen
B8
B3
− 1 [39]

CIre
B8
B5
− 1 [39]

EVI 2.5 ·
(

(B8− B4)
1 + B8 + 6 · B4− 7.5 · B2

)
[40]

EVI2 2.4 ·
(

B8− B4
1 + B8 + B4

)
[41]

GNDVI (B8− B3)
(B8 + B3)

[42]

greenWDRVI (0.1 · B8− B3)
(0.1 · B8 + B3)

+
(1− 0.1)
(1 + 0.1)

[43]

MSAVI (2 · B8 + 1−
√
(2 · B8 + 1)2 − (8 · (B8− B4))

2
[44]

MTVI2
1.5 ·

 (1.2 · (B8− B3)− 2.5 · (B4− B3))√(
(2 · B8 + 1)2 −

((
6 · B8− 5 ·

√
B4− 0.5

)))
 [18]

NDRE (B8− B5)
(B8 + B5)

[42]

NDVI (B8− B4)
(B8 + B4)

[45]

NDWI (B8− B11)
(B8 + B11)

[46]

OSAVI (1 + 0.16) · (B8− B4)
(B8 + B4 + 0.16)

[47]

RDVI
(B8− B4)

(B8 + B4)0.5 [48]

rededgeWDRVI
(0.1 · B8− B5)
(0.1 · B8 + B5)

+
(1− 0.1)
(1 + 0.1) [43]

RI
(B4− B3)
(B4 + B3) [49]

SR
B8
B4 [50]

TRBI
(B3 + B4)

B8 [51]

WDRVI3
(0.2 · B8− B4)
(0.2 · B8 + B4)

+
(1− 0.2)
(1 + 0.2) [52]

NDGI43 (B7− B4)
(B7 + B4)

[49]

TVI 0.5 · (120 · (B6− B3)− 200 · (B4− B3)) [48]
VARIrededge (B5− B4)

(B5 + B4)
[39]

3.1. Empirical and Empirical Literature Models

In situ LAI data (n = 106) were sequentially regressed (linearly and polynomially)
against 21 VIs to determine which achieved the best performance. A cross-validation
strategy based on the k-fold technique was used to ensure more robust results [53] and
the available dataset was divided into k = 5 subsets. From these k subsets, one subset was
selected as the calibration dataset (n ' 21), and the remaining k-1 subsets were used for
model validation (n ' 85). The cross-validation process was then repeated k times, with
each k subsets used as the calibration dataset. Thus, all the in-situ data were used for both
calibration and validation.
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In addition to statistical approaches based on empirical models calibrated to in situ
data, relationships found in scientific literature were evaluated. The relationships evaluated
were taken from the leading scientific articles studying the relationship between vegetation
indices and LAI. Table S1 displays the equation for estimating LAI found in scientific
literature [36,39,48,52,54–61].

3.2. PROSAIL Model

The PROSAIL radiative transfer model [62] was selected for the physically based
canopy parameter retrieval methods. The PROSAIL is a coupled model of the leaf model
PROSPECT-5 [63] and the canopy model SAILH [27] that simulates the top of canopy
bidirectional reflectance from 400 to 2500 nm. The leaf model simulates leaf reflectance
and transmittance considering the mesophyll structural parameter (N), leaf chlorophyll
(Cab), dry matter (Cm), and water (Cw) contents. Cw is tied to the dry matter content
(Cw = Cm × CwREL/(1 − CwREL)), assuming that green leaves have a relative water content
(CwREL) varying within a relatively small range [64]. The SAILH model is characterised
by the Average Leaf Inclination Angle (ALIA), the Leaf Area Index (LAI) and the hot-
spot parameter (hspot). Additionally, information about viewing geometries, i.e., sun
and sensor (observer) zenith angles (SZA and OZA, respectively) as well as the relative
azimuth angle between both (rAA), must be provided by the users. The values of the
input parameters (Cab, LAI, etc.) were selected based on existing literature focused on the
studied crops [65] The PROSAIL inputs (parameter combinations) and outputs (spectral
reflectance) were used to generate a synthetic database. The synthetic database generated
included 278,400 parameter combinations following the ranges (minimum and maximum)
and the step of the parameters summarised in Table 3. PROSAIL model as implemented
in the “hsdar” R package [66] was used to simulate the canopy reflectance. This study
tested three inversion approaches (LUT, NNET and PEphysical). All PROSAIL inversion
methods use the same input combination to ensure perfect comparability. In both cases,
the synthetic dataset generated via PROSAIL was spectrally resampled according to the
Sentinel-2 response functions [67,68]. For LUT and NNET inversion, all the spectral bands
at 10 m and at 20 m of spatial resolutions (except for B8a spectral band) were used, while
for PEphysical, 21 VIs (from one to one) were calculated on a synthetic dataset.

Table 3. Ranges of input parameters for the PROSAIL model.

Parameter Abbreviation Unit Distribution Min Value Max Value Step

Leaf parameters

Leaf structure parameter N - - 1.5
Dry matter content Cm g cm−2 Uniform 0.001 0.02 0.005

Relative water content CwREL % Uniform 70 90 5
Leaf chlorophyll content Cab µg cm−2 Uniform 40 80 10

Canopy parameters

Leaf Area Index LAI m2 m−2 Uniform 0 7 0.25
Average leaf inclination angle ALIA Deg Uniform 40 70 10

Hot spot parameter hot m m−1 - 0.5
Sun zenith angle SZA/θs deg

According to actual conditions during data/image acquisitionObserver zenith angle OZA/θv deg
Relative azimuth angle rAA/øSV deg

Soil parameter

Soil brightness Scale - - 0.5 1.5 0.5

3.2.1. PROSAIL Inversion Using Predictive Equations (PEphysical)

Predictive equations (PEphysical) inversion method [14,35,69,70] were fitted using the
LAI values of the synthetic database (a small part of the synthetic database was used) and
each VI by linear and second-order polynomial regressions. The same 21 VIs used in the
empirical models were used for PEphysical modelling.
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3.2.2. The Look-Up Table Inversion Method

The look-up table (LUT) was sorted using the cost function based on root mean square
error (RMSE) to find the solution to the inverse problem for the measured canopy re-
flectance [30,71]. The RMSEr cost function (Equation (1)), between the measured reflectance
and the simulated reflectance found in the LUT, was calculated as follows:

RMSEr =

√
∑n

i=1
(

Rmeasuredi
− Rsimulatedi

)2

n
(1)

where n is the number of spectral bands used in the present work, Rmeasuredi
is the reflectance

at spectral band i measured by the Sentinel-2, and Rsimulatedi
is the simulated reflectance

at spectral band i in the LUT. The solution was determined using the mean value of LAI
corresponding to the best 100 solutions (i.e., having the smallest sorted RMSEr).

3.2.3. PROSAIL Inversion Using NNET

A simple “feed-forward” neural network (NNET) with a single hidden layer (input
layer, one hidden layer, and one output layer) was used to invert the PROSAIL database.
Part of the parameter combinations and the simulated spectral reflectance of the synthetic
database were used to train the NNET for LAI retrieval. The NNET was trained using the
“caret” R package [72]. There are two steps to train the Neural Network: (i) a feed-forward
iteration to compute the network’s output; (ii) a back-propagation learning rule to minimise
the error between predicted outputs and input training values. The training dataset was
used to optimise the number of units in the hidden layer (size) and decay of the NNET,
while the error of the test dataset was monitored during the training process. To optimise
the hyper-parameters of the NNET, a searching grid was applied. The number of hidden
units was tuned for each value between 1 and 50 [72]. Weight decay was tuned between 0.1
and 10 with step of 1 increment.

3.3. Model Evaluation

The performance of the LAI retrieval methods was evaluated using the coefficient
of determination (R2)—(2), Root Mean Square Error (RMSE)—(3) and normalised RMSE
(nRMSE)—(4), which is the RMSE divided by the range of the reference measurements
between the in situ data values.

R2 =

(
∑n

i=1(yi − yi)
(

fi − f i

))2

∑n
i=1(yi − yi)

2 ∑n
i=1

(
fi − f i

)2 (2)

RMSE =

√
1
n

n

∑
i=1

(yi − fi)
2 (3)

nRMSE =
RMSE

yi,max − yi,min
(4)

where n (i = 1, 2, . . . , n) is the number of samples used to test each Leaf Area Index (LAI)
technique, yi is the observed LAI, yi is the corresponding mean value, fi is the predicted
LAI and f i is the corresponding mean value. The closer R2 is to 1, the higher the retrieval
performance of the model is. Small nRMSE (%) and RMSE values indicate less discrepancy
within observed and predicted measurement.

4. Results
4.1. PEphysical vs. RTM-Inversion Methods

Results obtained with the physical approaches are summarised in Figure 4 and Table S2.
The performance of the predictive equation (PEphysical) was compared against the other two
inversion methods (NNET and LUT) based on a PROSAIL synthetic database. Inversion
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by NNET gave good accuracy for the estimation of LAI (R2 = 0.73, RMSE = 0.86 m2 m−2

and nRMSE = 10.53 %). In the PEphysical, the best performing VI for LAI retrieval was the
OSAVI (R2 = 0.77, RMSE = 0.84 m2 m−2 and nRMSE = 10.34 %), followed by MSAVI and
EVI2. The best PEphysical (the one based on OSAVI) was more accurate than both RTM
inversion based on NNET and LUT (Figure 4) with an RMSE of 0.84 m2 m−2 (PEphysical) vs.
0.86 m2 m−2 and 0.94 m2 m−2 (NNET and LUT, respectively).
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4.2. PEphysical vs. Empirical and Empirical Literature Models

The best-performing VIs of PEphysical were compared (Figure 5 and Table S3) to the
values of R2, RMSE and nRMSE (%) achieved by the same VIs for empirical and literature
models (for this method only the best performance of the VIs between several litera-
ture models evaluated was reported). The accuracy achieved by the OSAVI polynomial
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of the PE (RMSE = 0.84 m2 m−2) was similar to the OSAVI polynomial of the empirical
(RMSE = 0.79 m2 m−2) while the OSAVI of the literature achieved the worst performance
(RMSE = 2.40 m2 m−2). The SR and WDRVI3 displayed higher performance with an RMSE
of 0.71 m2 m−2 and 0.78 m2 m−2 for SR and with an RMSE of 0.76 m2 m−2 and 0.77 m2 m−2

for WDRVI3 for empirical and literature models, respectively.
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empirical, empirical literature models compared to PEphysical.

4.3. Crop Specific Differences

Overall, the method based on linear empirical models (i.e., SR) provided the lowest
values of RMSE (0.71 m2 m−2) and the highest value of R2 (0.81). Moreover, it provided
the best performance in terms of nRMSE (8.66%). In contrast, the RTM-inversion method
based on NNET obtained the lowest performance with 0.86 m2 m−2, 10.53%, and 0.73 of
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RMSE, nRMSE, and R2, respectively. However, by analysing the scatterplots between the
measured and retrieved LAI (Figure 6) of the best models for each evaluated method (i.e.,
empirical, literature, RTM-inversion and PEphysical), the retrieval performance appeared to
vary among different crops (Figure 6), which exhibited different canopy structures.
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Figure 6. Retrieved versus measured LAI using the best statistical approaches and physical ap-
proaches (A) best empirical model: linear regression between LAI and SR; (B) best literature model:
WDRVI3 (i.e., [52]); (C) Best PEphysical model: based on OSAVI-second-order polynomial fitting;
(D) best RTM-inversion using PROSAIL: NNET.

In general, the methods for LAI retrieval showed the best performance for spinach
with nRMSE ranging from 8.36% (Empirical model SR Linear) to 16.13% (NNET-inversion)
and the worst performance for potato with nRMSE ranging from 37.58% (NNET-inversion)
to 70.17% (PEphysical OSAVI polynomial). When compared to the other three methods,
PEphysical (OSAVI) achieved a similar accuracy in LAI retrieval for spinach, maize, and
tomato, but instead, its accuracy was low concerning the potato (Figure 7).
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Figure 7. R2, RMSE, and nRMSE (%) of the best model one for each LAI retrieval method according
to different crops (Garlic, Maize, Onion, Potato, Spinach, and Tomato). Best empirical model: linear
regression between LAI and SR; best RTM-inversion: NNET; best literature model: WDRVI3-based
model provided by [52]; best PEphysical model: based on OSAVI-second-order polynomial fitting.

5. Discussion

In this study, the predictive equations (PEphysical) method were compared with dif-
ferent methodologies (empirical models, empirical literature models, and RTM inversion
based on NNET and LUT) to evaluate the accuracy and transferability in Leaf Area In-
dex (LAI) retrieval on six of the main irrigated crops in Northern Italy (i.e., garlic, maize,
onion, potato, spinach, tomato). The results were analysed by computing R2, RMSE, and
nRMSE (%) values considering all crops together and for each specific crop. PEphysical is an
interesting RTM inversion alternative to traditional techniques such as LUT and machine
learning algorithms (e.g., NNET) for LAI retrieval because of its ability to combine a physi-
cal approach and ease of use. PEphysical is calibrated on synthetically generated databases
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where VIs are calculated and fitted with LAI by linear or polynomial models. This method
produced models with similar accuracy using OSAVI, MSAVI, and EVI2 than the inver-
sion methods based on NNET and LUT. In particular, in this study PEphysical with OSAVI,
MSAVI, and EVI2 was more accurate than LUT, while PEphysical with OSAVI alone was
more accurate than NNET. These results do not confirm what has been reported in previous
studies. In fact, applying PEphysical to HyMap hyperspectral data over grasslands produced
models with significantly lower accuracy than inversion with LUT [35]. In general, RTM
inversion based on NNET and LUT provided acceptable results overall, demonstrating
that radiative transfer model inversion can achieve comparable performance to statistical
approaches, which are generally always better performing, as reported in previous stud-
ies [35,66,67,73–75]). However, RTM approaches require a fine parameterisation process
that is quite complex and labour intensive, especially if several crops are being studied.
An important difference between the RTM inversion based on NNET and LUT and the
other methods used in this work consists in the number of spectral bands involved in LAI
retrieval. RTM inversion based on NNET and LUT considers the entire spectral signature of
each pixel, while the other methods rely on only two or more spectral bands. This implies a
reduction in the computing resources required paired with a reduction in noise sensitivity,
ensuring greater robustness, generalisation, and reproducibility. In the context of RTM
inversion approaches, the results achieved by PEphysical, which partially uses physical
knowledge incorporated in the RTM, encourage the use of this method. This is due to its
high accuracy and extremely fast and straightforward inversion after calibration thanks to
the use of VIs from the straightforward synthetic database.

Overall, without analysing the results for individual crops, the best linear empirical
model achieved the highest performance for LAI retrieval. Among the statistical ap-
proaches, models derived from the literature [36,49,59] have also demonstrated satisfactory
performance. Most notably, the models published by Nguy-Robertson et al. [52] achieved
very high levels of accuracy and only slightly lower compared with the empirical models
developed in this study. However, the models from literature were only validated on the
dataset collected at the test sites adding confidence compared to the empirical models, for
which part of the dataset had to be used for calibration. The SR and WDRVI3 showed
the highest performance both for empirical and literature models. The SR and WDRVI3
vegetation indices equation uses only NIR and red bands. These bands are also used
for calculating OSAVI, MSAVI, and EVI2 which showed the highest performance in the
PEphysical method. The use of these bands only for accurate LAI retrieval contrasts claims
reported in previous studies where vegetation indices that do not include the red-edge
band are more crop specific [36]. In fact, it has been reported in other studies [49,66] that
Sentinel-2 bands located in the red-edge region are key bands for LAI retrieval [66,76–78].

When analysing the performance of the methods for individual crops, it was observed
that the best (low nRMSE) and worst (high nRMSE) performances were achieved for
spinach and potato, respectively. All methods achieved excellent performance for spinach
while NNET-based RTM inversion achieved higher performance for potato than other
methods. PEphysical (OSAVI) in comparison with other methods achieved a good accuracy
in LAI retrieval for spinach, maize, and tomato, while low accuracy for potato. This was
probably due to the smaller dimension of the dataset related to potato, but generally the
accuracy of LAI retrieval was lower for all row crops (potato, garlic, onion and tomato)
compared with maize or spinach. This could also be related to soil effect that could affect
the spectral data.

6. Conclusions

The aim of this study was to apply a cost-effective strategy for local validation of
different LAI retrieval methods in a specific area. The predictive equations’ (PEphysical)
accuracy for LAI retrieval was evaluated in this study by comparison of empirical models,
empirical literature models, and two RTM inversions based on NNET and LUT, respec-
tively. LAI data of six irrigated crops in Northern Italy (i.e., Garlic, Maize, Onion, Potato,
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Spinach, and Tomato) were collected in different years and locations in order to compare the
transferability of these methods. The results obtained suggested that PEphysical accurately
retrieved the LAI of the crops evaluated (except for the potato). The best performance of
PEphysical was achieved by the OSAVI index (RMSE = 0.84 m2 m−2), and this method was
more accurate than NNET and LUT inversion methods for LAI retrieval. LAI retrieval
through PEphysical enabled achieving excellent results using even two spectral bands (i.e.,
NIR and red) compared with RTM inversion based on NNET and LUT, which use more
spectral bands. PEphysical methods also achieved performance akin to that of empirical and
empirical literature models, indicating that PEphysical could be employed for the retrieval
ofto retrieve LAI to monitor crop growth and improve efficiency in agricultural practices.
In fact, the use of PEphysical enables to combine of the merits of statistical and physical
approaches by integrating the simplicity of use and ease of implementation of the empirical
models with the ability to use (even if partially) the physical knowledge and transferability
typical of radiative transfer models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12112835/s1, Supplementary Material Table S1. Litera-
ture relationships evaluated for LAI retrieval. Equation and reference are presented; Supplementary
Material Table S2. R2, RMSE and nRMSE (%) obtained between field measured and retrieved LAI
from physical approaches (LUT, NNET and PEphysical); Supplementary Material Table S3. R2, RMSE
and nRMSE (%) obtained between field measured and retrieved LAI from empirical, empirical
literature models compared to PEphysical.
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