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Abstract: Agriculture is the main contributor to nitrous oxide (N2O) emission, but the emission
intensity can be controlled by various factors, in particular, the activity of earthworms, one of the
most common groups of soil invertebrates. We conducted an incubation experiment to evaluate
N2O emission in earthworm soil samples compared to non-earthworm ones with applications of
high (200 kg ha−1) and low (50 kg ha−1) mineral N fertilizer doses. We assessed the cumulative
N2O emission, the dynamics of the soil dissolved organic carbon, and the soil microbial carbon and
nitrogen content, as well as the number of nirK and nirS gene copies in bulk soil samples and in
isolates from the earthworms’ gut. Our study showed a significant role of the earthworm activity in
changing the intensity of N2O emission after the application of mineral N fertilizers. The main factor
leading to an increase in nitrous oxide emission in the presence of earthworms is the stimulation of
free-living soil denitrifiers by the organic matter of the earthworms’ excretions, as well as the thorough
mixing of plant residues and soil. Contrary to our expectations, earthworms did not increase the
representation of nitrite reductase genes in soil, although the earthworm’s gut can be considered as a
refugium for denitrifiers. Our results indicate a possible risk of increased N2O emission from arable
temperate soils with an increase in earthworm populations as the climate warms, even if application
rates of mineral fertilizers are reduced.

Keywords: denitrification; soil nitrogen cycling; functional gene abundance; gut microbiota;
Albic Retisols

1. Introduction

Nitrous oxide (N2O) is an important greenhouse gas, with an effect 298 times greater
than that of CO2 [1], capable of interacting with the stratospheric ozone [2] and having a
long duration lifetime in the atmosphere. About 2/3 of all anthropogenic N2O is generated
as a result of agricultural activities [3], mainly due to the use of mineral and organic nitrogen
(N) fertilizers [4–6] since agricultural crops are not able to consume all of the applied N.
The main part of N2O is produced in soil as a result of microbiological processes, such as
nitrification and denitrification [7–10]. The intensity of soil N2O production depends on
many factors, such as temperature, soil moisture, the availability of nitrogen sources and
organic matter [4,11–13] and can be regulated not only by the composition and activity of
the soil microbiota, but also, for example, by the activity of soil animals.

One of the most common groups of soil invertebrates is earthworms [14], in particular,
the widespread species Lumbricus terrestris. Previous studies have shown that earthworms
may change many properties, such as moisture, organic matter content, and the compo-
sition of microbial communities in agricultural soils [15]. The bioturbation, burrowing,
and casting activities of earthworms directly or indirectly affect soil N cycling processes,
especially the intensity of nitrification and denitrification [16–19]. Thus, a meta-analysis
based on more than 50 experiments in micro- and mesocosms showed that the presence of
earthworms increases the N2O emission from the soil by 42% [20]. An increase in nitrous
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oxide emission in earthworm areas compared to non-earthworm ones has also been proved
in some field experiments [21–23]. Although recent studies have shown that earthworms
themselves can be a source of nitrous oxide [24], an important way that they influence
the increase in N2O emission from the soil is by stimulating the activity of free-living
soil-denitrifying microorganisms [25], as well as soil inoculation with earthworm gut den-
itrifiers [26–28], in which populations of culturable denitrifiers can be up to 300 times
higher than in the surrounding soil [29]. In addition, the earthworms’ burrowing activity
contributes to the mixing of soil and fresh plant litter and changes the structure and air
permeability of the soil, which also affects the intensity of nitrous oxide production [30,31].

At the same time, the role of earthworms in regulating nitrous oxide emission from
agricultural soils at different levels of mineral nitrogen fertilizers application is still unclear.
We hypothesized that (1) earthworms can have a significant stimulating effect on the
cumulative N2O emission from the soil, regardless of the mineral nitrogen fertilizer applied
dose; (2) stimulation of N2O emission can occur both due to the activation of free-living
soil denitrifiers, and due to soil inoculation with denitrifiers from the earthworms’ gut. To
test these hypotheses, we conducted a 30-day laboratory incubation experiment to evaluate
nitrous oxide emission in earthworm soil samples compared to non-earthworm ones with
applications of high (200 kg ha−1) and low (50 kg ha−1) doses of mineral nitrogen fertilizers.

2. Materials and Methods
2.1. Soil Samples and Earthworms Collection

Samples of Albic Retisols [32] with clay loam texture from the Experimental Station
(55◦59′21′ ′ N, 37◦24′17′ ′ E) of the Lomonosov Moscow State University (near Chashnikovo
village, Moscow region, Russia) were used in the experiment. Soil samples were collected
from an agriculture site that has been used to grow potatoes for the past decades. The main
properties of the soil are presented in Table 1. Fresh soil samples were sifted through a
sieve with a mesh size of 2 mm to remove stones, large plant debris, and soil fauna.

Table 1. Main soil properties.

Parameter Value *

Ctot, % 2.0 ± 0.2
Ntot, % 0.3 ± 0.1

C:N 7.8 ± 0.5
pHH2O 6.0 ± 0.2

Density, g cm−3 1.15 ± 0.05
*—mean ± one standard error.

Mature earthworms Lumbricus terrestris were manually collected from a natural pop-
ulation in the soil of a birch forest near the soil sampling site. Before the start of the
incubation experiment, earthworms were kept for a week in a vessel with soil at a constant
temperature of +16 ◦C (the optimal temperature for earthworms) for acclimatization.

2.2. The Experiment Design

The laboratory incubation experiment was carried out for 30 days in standard micro-
cosms (1 L jars with inner diameter of 12 cm). Before the start of the experiment, each
microcosm was filled with prepared fresh soil samples (500 g), which were moistened to
65% of the WHC. The following variants of the experiment were set up (Figure 1): con-
trol without earthworms (N0), in which only deionized water was added to the soil; an
earthworm-free variant with a low application rate of mineral N fertilizers (N50), in which a
KNO3 solution was added at an equivalent of 50 kg N ha−1; and an earthworm-free variant
with a high nitrogen fertilization rate (N200), in which a KNO3 solution was added at an
equivalent of 200 kg N ha−1, as well as identical variants with earthworms (EN0, EN50, and
EN200, respectively). Each experiment series included 4 replications without earthworms
and 4 replications with earthworms (3–4 mature individuals of L. terrestris at the rate of
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10–12 g of wet biomass per microcosm). The earthworm population density in microcosms
was equivalent to ≈250 g of wet biomass ·m−2 or ≈70 individuals per square meter, which
is about 2 times higher than the natural average earthworm population density in soils of
the region. We used a high earthworm population density in this experiment because it
can compensate for the short-duration incubation [28]. However, we understand that high
earthworm population density could enhance the influence of earthworms on soil and stim-
ulate N2O emissions, which could be detected as being above the expected range, which
varies naturally due to soil and environmental factors. The soil samples were thoroughly
mixed to evenly distribute the solutions throughout the soil volume. Before the start of
incubation, as well as after 14 days of incubation, 1.5 g of crushed dry Acer platanoides leaf
litter (C:N ratio of 52.1) was applied to the soil surface to provide earthworms with food
sources during the experiment. An equivalent amount of litter was also added to non-
earthworm microcosms. The microcosms were covered with Parafilm to prevent moisture
loss. Soil moisture was monitored by the weight method every 2 days. The microcosms
were incubated at a constant temperature of +16 ◦C (the optimal temperature for earth-
worms [33–35]) in darkness. Nitrous oxide emission from the soil surface was assessed
daily. To do this, the microcosm was hermetically sealed with a rubber cap with a septum
and incubated for 4 h, after which a gas aliquot was taken for analysis. The concentration of
N2O emitted by the microcosms was registered using a gas chromatograph with an electron
capture detector (column length: 1 m; internal diameter: 3 mm; adsorbent: Porapak N
80/100; column thermostat temperature: 60 ◦C; detector temperature: 200 ◦C, evaporator
temperature: 100 ◦C, carrier gas (N2) flow rate: 90 mL min−1).
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Before the start of incubation, as well as on the 7th, 14th, 21st and 28th days of
the experiment, the content of dissolved organic carbon (DOC), the content of microbial
biomass carbon (MBC) and nitrogen (MNB), as well as the abundance of the nirK and
nirS genes (which encode nitrite reductase, one of the key enzymes of the denitrification
process) were measured. Soil samples for these analyses were taken from microcosms
using a metal drill. At the end of the incubation experiment (on day 30), earthworms were
collected and dissected to isolate the contents of their guts, in which the abundance of
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the nirK and nirS genes was assessed. In this study, we only considered the abundance of
genes encoding enzymes involved in denitrification and did not consider nitrification as a
significant pathway for N2O production since it was previously shown that the application
of KNO3 minimizes nitrification-related nitrous oxide in soil [36].

2.3. Soil Analyses

Dissolved organic carbon was extracted with deionized water from soil samples at
room temperature at a soil-to-water ratio of 1:2.5 w/v. After extraction, the solutions were
centrifuged at 4500 rpm for 20 min and filtered through a membrane cellulose acetate
filter (pore size 0.45 µm). The DOC concentration was quantified using an automated TOC
analyzer (LiquiTOC, Elementar, Langenselbold, Germany).

The microbial biomass carbon and nitrogen contents were measured in homogenized
soil samples by the chloroform fumigation–extraction method [37,38] according to the
previously published recommendations [39–41]. The concentrations of C and N in the
extracts were quantified using an automated TOC analyzer (LiquiTOC, Elementar, Lan-
genselbold, Germany). The content of MBC and MBN was calculated as the difference in C
or N concentration between fumigated and unfumigated soil samples, then divided by a
standard conversion factor of 0.45 for MBC and 0.54 for MBN.

2.4. Earthworms Gut Isolation

Gut isolation was performed according to a previously published protocol [42]. We
dissected the minimum required number of earthworms to obtain reliable results, and also
tried to prevent animal suffering. All procedures were performed according to the ethical
guidelines and regulations approved by Lomonosov Moscow State University. Briefly,
an earthworm was anesthetized with boiling water, sterilized with 70% ethanol solution,
frozen on a Peltier element to −16 ◦C, and dissected with a sterile scalpel. For a qPCR
analysis, the earthworm digestive tract (a section from the clitellum to the anus) was cut
out, placed in an Eppendorf tube containing 1 mL of sterile water, and centrifuged at
10,000 g for 10 min. The supernatant was removed, and the obtained isolate was stored at
−80 ◦C until the total DNA extraction.

2.5. DNA Extraction and Quantitative PCR Analysis of Genes Abundance

DNA samples were extracted from soil samples and the earthworms’ gut using
FastDNA™ Spin Kit for Soil reagent kits (MP Biomedicals, Santa Ana, CA, USA) according
to the manufacturer’s recommendations. Samples (0.5 g of soil and 0.25 g for the gut) were
homogenized using a Precellus 24 homogenizer (Bertin Technologies, Fontaine, France) for
30 s at 6500 rpm. DNA isolates were stored until further analysis at −80 ◦C.

The number of copies of the nirK and nirS genes encoding nitrite reductase was
estimated by quantitative PCR. All reactions were carried out in a C1000 CFX96 Real Time
thermal cycler (Bio-Rad Laboratories, Hercules, CA, USA). The reaction mixture contained
10 µL of BioMaster HS-qPCR SYBR Blue mixture (Biolabmix, Moscow, Russia), 0.8 µL of
each primer, and 1 µL of extracted DNA in a total volume of 20 µL. The reaction was carried
out according to the protocol and using the primer sets described in Table 2. The abundance
of functional genes in the samples was calculated using the CFX Manager software. To
assess the specificity of the qPCR product, an analysis of the melting curve was performed
(from 65 ◦C to 95 ◦C in 0.5 ◦C increments). The standards were obtained by purifying
PCR products and quantifying the concentration using a Qubit fluorometer 2 (Thermo
Fisher Scientific, Waltham, MA, USA). The efficiency of quantitative PCR was 90%, and the
coefficients of determination were R2 > 0.90 for all standard curves.
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Table 2. Conditions for assessing abundance of nirK and nirS genes by qPCR method.

Primer
Name Primer Sequence Thermal Conditions Reference

nirK876
nirK1040

ATY GGC GGV CAY GGC GA
GCC TCG ATC AGR TTR TGG TT

95 ◦C, 15 min, 1 cycle
95 ◦C for 15 s, 63 to 58 ◦C for 30 s (−1 ◦C by
cycle), 72 ◦C for 30 s, 80 ◦C for 15 s, 6 cycles
95 ◦C for 15 s, 60 ◦C for 30 s, 72 ◦C for 30 s,
80 ◦C for 15 s, 40 cycles, 95 ◦C for 15 s, 60 to

95 ◦C, 1 cycle

[43]

nirSCd3aFm
nirSR3cdm

AAC GYS AAG GAR ACS GG
GAS TTC GGR TGS GTC TTS AYG AA

95 ◦C, 15 min, 1 cycle
95 ◦C for 15 s, 65 to 60 ◦C for 30 s (−1 ◦C by
cycle), 72 ◦C for 30 s, 80 ◦C for 15 s, 6 cycles
95 ◦C for 15 s, 60 ◦C for 30 s, 72 ◦C for 30 s,

80 ◦C for 15 s, 40 cycles
95 ◦C for 15 s, 60 to 95 ◦C, 1 cycle

[44]

2.6. Statistical Analyses

All the measured variables were examined for normality (Kolmogorov–Smirnov test)
and homogeneity (Levene’s test) of variance. The results were expressed on a dry weight
basis and presented as the mean± one standard error. Factorial ANOVA models were used
to investigate the effects of nitrogen rate application (three levels) and earthworm presence
(two levels) on total N2O emission, as well as DOC, MBC and MBN content, and functional
genes abundance. Turkey’s HSD post-hoc test was used to identify significant differences
among the treatments. The relationships among physicochemical parameters, functional
genes abundance, and N2O emission were studied using Pearson’s correlation analysis.
The results were considered statistically significant at p < 0.05. All statistical analyses were
conducted using STATISTICA 10.0 (StatSoft, Inc., Tulsa, OK, USA, 2011).

3. Results
3.1. Earthworms Survival and Growth

In none of the variants of the experiment was the death of earthworms during incu-
bation noted. At the same time, in the variant of the experiment with the application of
mineral nitrogen fertilizer at an equivalent of 200 kg N ha−1, a significant (p < 0.05) decrease
in the wet weight of earthworms by 19% was found by the end of the experiment. In the
control variant of the experiment, as well as when mineral nitrogen fertilizer was applied
to the soil at the equivalent of 50 kg N ha−1, there was no statistically significant change in
the wet weight of earthworms.

3.2. Soil Nitrous Oxide Emission

The applied dose of mineral nitrogen fertilizer, as well as the presence of earthworms in
soil, had a significant (p < 0.05) effect on the cumulative N2O emission. In the experimental
variants without earthworms, the N2O emission by the soil increased three times when
nitrogen fertilizer was applied at a rate of 50 kg N ha−1 and eight times when fertilizer
was applied at a rate of 200 kg N ha−1 compared with the control samples (Figure 2). The
presence of earthworms in the soil significantly (p < 0.05) increased the N2O emission, but
the effect depended on the dose of mineral nitrogen fertilizer applied: the most significant
increase (by 55 times compared to the experiment without earthworms) in nitrous oxide
emission was recorded in the control variant without fertilization, and the smallest increase
(by 12 times compared to the similar variant of the experiment, but without earthworms)—
when making the maximum rate of mineral fertilizer (Figure 2).



Agronomy 2022, 12, 2745 6 of 16

Agronomy 2022, 12, x FOR PEER REVIEW  6  of  17 
 

 

significant increase (by 55 times compared to the experiment without earthworms) in ni‐

trous oxide emission was recorded  in  the control variant without  fertilization, and  the 

smallest increase (by 12 times compared to the similar variant of the experiment, but with‐

out earthworms)—when making the maximum rate of mineral fertilizer (Figure 2). 

 

 

Figure 2. Cumulative 30‐day emission of N2O (μg kg−1). 

The presence of earthworms in the soil changed the nitrous oxide release dynamics 

(Figure 3). The control variant without the application of mineral nitrogen fertilizer and 

earthworms had an intense rate of N2O emission in the first few incubation days, followed 

by a sharp decrease and smooth attenuation by the end of the experiment. An initial in‐

crease in the rate of N2O emission was also noted when mineral nitrogen fertilizer was 

applied to the soil; however, in these variants of the experiment, an abrupt decrease in the 

intensity of N2O emission was not observed by the end of the experiment. The presence 

of earthworms in the soil led to a gradual increase in N2O emission during the first weeks 

of the incubation, followed by fluctuations until the end of the experiment (Figure 3). 

   

Figure 2. Cumulative 30-day emission of N2O (µg kg−1).

The presence of earthworms in the soil changed the nitrous oxide release dynamics
(Figure 3). The control variant without the application of mineral nitrogen fertilizer and
earthworms had an intense rate of N2O emission in the first few incubation days, followed
by a sharp decrease and smooth attenuation by the end of the experiment. An initial
increase in the rate of N2O emission was also noted when mineral nitrogen fertilizer was
applied to the soil; however, in these variants of the experiment, an abrupt decrease in the
intensity of N2O emission was not observed by the end of the experiment. The presence of
earthworms in the soil led to a gradual increase in N2O emission during the first weeks of
the incubation, followed by fluctuations until the end of the experiment (Figure 3).
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3.3. The Content of DOC, MBC and MBN in Soil

The content of soil dissolved organic carbon in microcosms without earthworms
practically did not change during incubation (Figure 4). On the contrary, the presence of
earthworms in the soil significantly (p < 0.05) increased the content of DOC compared to
non-earthworm soil samples, especially during the late incubation periods. Nitrous oxide
emission closely correlated with the soil DOC content (r = 0.89; p < 0.05).
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The mineral N fertilizer application did not lead to a significant increase in MBC
(Figure 5a). An increase in MBC was detected only toward the end of incubation. On
the contrary, the presence of earthworms significantly (p < 0.05) increased MBC. Nitrous
oxide emission correlated with the MBC content (r = 0.80, p < 0.05). The effect of mineral N
fertilizer and earthworms on the MBN content was similar to MBC (Figure 5b); however, we
did not find a significant correlation between N2O emission and MBN (r = 0.64, p > 0.05).

The mineral N fertilizer application, as well as the presence of earthworms in the
soil, led to a decrease in the MBC:MBN ratio, i.e., enrichment of soil microbial biomass
with nitrogen; however, no statistically significant correlation between this factor and N2O
emission was found (r = −0.75, p > 0.05).

3.4. Abundance of nirK and nirS Genes in Soil and Earthworm Gut

The number nirK gene copies in the soil was higher than that of the nirS gene (Figure 6).
During the incubation, the number of nirK and nirS gene copies remained relatively constant
(in the control without earthworms) or gradually increased (in the control with earthworms).
The application of mineral N fertilizer resulted in an increase in the number of both nitrite
reductase gene copies in the soil; however, the presence of earthworms in the fertilized soil
did not have a statistically significant effect on the number of nirK and nirS gene copies.

At the same time, the number of nirK and nirS gene copies in the L. terrestris gut was
significantly higher than in the soil (Figure 7). As in the surrounding soil, the number of the
nirK gene copies in the earthworms’ gut prevailed. Nonetheless, the mineral N fertilizer
application had not significantly changed the number of nirK and nirS gene copies in the
earthworms’ gut.
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4. Discussion
4.1. Influence of Earthworms on Nitrous Oxide Emission from Soil

Earthworms L. terrestris increased the soil N2O emission by 12–55 times compared
to the soil without earthworms (Figure 2). These data correspond with some previously
published studies [20,45–48], in most cases confirming the stimulating effect of earthworms
of various species and environmental groups on nitrous oxide emission from the soil. For
example, Giannopoulos et al. [49] found that epigeic (living in forest floor and feeding
on fresh plant litter) earthworms Lumbricus rubellus increased N2O emission from sandy
soil by 4 times, while endogeic (feeding on soil organic matter and forming intermittent
predominantly horizontal burrow) earthworms Aporrectodea caliginosa did not affect the
N2O emission under similar conditions. At the same time, in experiments with loamy soil,
A. caliginosa increased nitrous oxide emission only if plant residues were manually mixed
with soil samples [30]. However, Nebert et al. [31] indicated that the epigeic earthworms
L. rubellus increased N2O emission by only 76% compared to non-earthworms’ soil, while
species similar in lifestyle, Eisenia fetida, increased nitrous oxide emission by 4.2 times [50].
Significant stimulation of soil N2O emission also occurred in the presence of anecic (feeding
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on partially decomposed plant litter and forming permanent deep vertical burrows in
the soil) earthworm species L. terrestris [51] and Apporectodea longa [52,53]. At the same
time, some studies have not found a significant effect of earthworms on soil nitrous
oxide emission [16,54], which may be partly due to these experiments’ design because
plant residues, which are necessary for earthworms feeding, were not added into the
soil. In addition, the increased earthworm population density in our experiment (about
2 times higher than the average for the soils of this region) also may have increased the
stimulating effect.

The essential increase in soil N2O emission in the presence of earthworms, which
significantly exceeds previously published estimates, may be due to the fact that mineral
nitrogen fertilizer was applied to the soil. Thus, it was previously shown that epi-endogeic
earthworm Amynthas gracilis and endogeic Pontoscolex corethrurus in unfertilized meadow
soil only slightly increased nitrous oxide emission [55]. In addition, no increase in N2O
emission in the presence of both the anecic species L. terrestris and the endogeic species A.
caliginosa was previously found in unfertilized soil of the corn agroecosystem in Canada [56].
At the same time, when nitrogen-rich plant litter was introduced into the soil, A. caliginosa
activity increased soil N2O emission by 70–90% [57].

4.2. How Earthworms Affect the Soil N2O Emission

Earthworms can increase nitrous oxide emission by inoculating soil with gut-stimulated
denitrifying bacteria during the excretion process as well as by stimulating the activity of
free-living denitrifiers (not passing through the earthworm’s gut). Although some previ-
ously published studies have linked the presence of earthworms in soil with an increase
in bacterial functional genes related to denitrification compared to non-earthworm soil
samples [16,31,50,58], this effect was not found in our experiment. The increase in the
number of copies of the nirK and nirS genes in the soil was influenced by the application of
mineral nitrogen fertilizer (regardless of the dose), and not by the presence or absence of
earthworms (Figure 6). At the same time, the number of copies of the nirK and nirS genes
in the L. terrestris gut was significantly higher than in the surrounding soil (Figures 6 and 7),
which allows us to suggest that earthworms are a refugium or living “Noah’s Ark” for
denitrifiers. However, studies focusing on earthworm gut microbes associated with the
nitrogen cycle are still limited, and we know nothing about whether the high denitrifying
activity results from the activation of soil bacteria in the earthworm gut or whether there is
a community of denitrifiers that are adapted to living inside the gut. Nevertheless, it must
be emphasized that the earthworm gut is an ideal site for the existence of denitrifiers [59]
since it is an anaerobic locus with high availability of organic matter and nitrates [26,27,60].

Based on our data on the stimulating effect of earthworms on the dissolved organic
carbon content in the soil (Figure 4), the MBC and MBN content (Figure 5), as well as
altering the dynamics of N2O emission during incubation (Figure 3), we suggested that the
increase in nitrous oxide emission in the presence of earthworms is related to the activation
of free-living soil denitrifiers. The mechanism of this phenomenon may be associated with
the enrichment of soil with organic matter due to earthworms’ excretions [16,23,61–63],
including casts [27,51,55,64]. Thus, it is commonly believed that the drillosphere (soil
surrounding earthworm burrows) is more enriched in organic matter and soluble nitrogen
compounds compared to the bulk soil [25] and is a ‘hot spot’ for the activity of free-living
soil denitrifiers [26,65,66]. The increased availability of organic matter observed in the
soil of earthworm microcosms could stimulate N2O emission by suppressing the final
stages of denitrification, in which nitrous oxide is reduced to molecular nitrogen [62,67]. In
addition, an increase in the availability of organic matter in the soil may be the result of the
mixing of soil and plant litter, which is carried out by earthworms. Thus, in our experiment,
A. platanoides leaf litter was placed on the soil surface and then gradually pulled in by
earthworms and redistributed throughout the soil volume. Previously, Rizhia et al. [53]
concluded that N2O emission in the presence of earthworms did not increase when crop
residues were thoroughly mixed with soil prior to earthworm invasion (as opposed to
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the case where crop residues were placed on the soil surface), which may indicate that a
significant contribution of earthworms to the regulation of nitrous oxide emission is to drag
plant residues into the soil.

Furthermore, it has previously been shown that earthworms are able to significantly
increase soil CO2 emission [16,23,68], which may be associated both directly with the
respiration of earthworms and with the respiration of the earthworm-stimulated soil
microbial biomass. In turn, the high intensity of soil respiration combined with the high
availability of nitrogen sources can also stimulate N2O emission since denitrification is
an anaerobic process. Finally, the anecic earthworm species L. terrestris forms permanent
vertical burrows in the soil, which could contribute to a freer release of nitrous oxide, which
is formed in deep soil layers, into the atmosphere.

4.3. Influence of the Mineral N Fertilizer Dose on the Soil N2O Emission

The application of mineral N fertilizer to the soil led to an increase in nitrous oxide
emission (Figure 1), which may be due to an increase in the availability of nitrates for
denitrifiers [36]. At the same time, we did not find a close correlation between the repre-
sentation of the nirK and nirS genes in the soil and the intensity of N2O emission, as, for
instance, Linton et al. [69], although such a correlation was previously reported [70,71].
However, denitrification is a modular pathway; consequently, different genes may be
considered molecular targets [36,72–74]. Nonetheless, in all variants of our experiment, the
representation of the nirK gene in the soil was significantly higher than that of nirS. These
genes encode structurally different types of nitrite reductase (nirK—copper-containing
(Cu-Nir), and nirS—containing heme c and heme d1 (cd1-Nir)) and do not occur in the
same cell [75]; therefore, in Albic Retisosl, microorganisms with the copper-containing
nitrite reductase gene have an advantage. Dominance of the nirK gene in agricultural soils
has been previously found in some other experiments [70,76]. At the same time, we do
not yet have a clear understanding of the differences in ecology (e.g., oxygen tolerance
threshold or growth kinetic parameters) of denitrifying microorganisms with the nirK and
nirS genes [77]. However, we found that neither the application of increasing doses of
mineral nitrogen fertilizer, nor the presence of earthworms in the soil significantly changes
the ratio of microorganisms with these genes.

At a high application rate of mineral N fertilizer, we found a decrease in nitrous oxide
emission from the soil in the presence of earthworms (Figure 2). On the one hand, this
could be caused by a decrease in the activity of earthworms due to the toxic effects of high
doses of nitrates since a statistically significant decrease in the earthworm wet biomass was
observed only in this variant of the experiment. However, we did not find a statistically
significant difference in the content of, for example, DOC in the presence of earthworms and
the application of nitrogen fertilizers at low and high rates. One of the possible explanations
for the observed phenomenon may be the formation of a microbial community capable of
consuming nitrous oxide and thus reducing its emission. An increase in the abundance of
the N2O reducers when high doses of nitrates are applied to the soil has previously been
shown in some studies [36,78]. At the same time, the presence of earthworms could create
the necessary conditions for the formation of not only a community of denitrifiers, but also
microorganisms that consume nitrous oxide.

5. Conclusions

Our study showed a significant role of the earthworm L. terrestris activity in changing
the intensity of nitrous oxide emission after the application of mineral N fertilizers. The
main factor leading to an increase N2O emission in the presence of earthworms is the
stimulation of free-living soil denitrifiers by the organic matter of earthworms’ excretions,
as well as the thorough mixing of plant residues and soil. Contrary to our expectations,
earthworms did not increase the representation of nitrite reductase genes, although the
earthworm’s gut can be considered a refugium for denitrifiers. Although great care should
be taken in extrapolating the results of a controlled study to processes occurring in nature,
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we believe that the main established effects also occur in the field. Therefore, our results
indicate a possible risk of increased N2O emission from arable temperate soils with an
increase in earthworm populations as the climate warms, even if application rates of
mineral nitrogen fertilizers are reduced. Overall, our data highlight the importance of
studying the role of earthworms in the greenhouse gas balance in agroecosystems.
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