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Abstract: The explicit mapping of spatial soil pH is beneficial to evaluate the effects of land-use changes
in soil quality. Digital soil mapping methods based on machine learning have been considered one effec-
tive way to predict the spatial distribution of soil parameters. However, selecting optimal environmental
variables with an appropriate feature selection method is key work in digital mapping. In this study,
we evaluated the performance of the support vector machine recursive feature elimination (SVM-RFE)
feature selection methods with four common performance machine learning methods in predicting and
mapping the spatial soil pH of one urban area in Fuzhou, China. Thirty environmental variables were
collected from the 134 samples that covered the entire study area for the SVM-RFE feature selection.
The results identified the five most critical environmental variables for soil pH value: mean annual
temperature (MAT), slope, Topographic Wetness Index (TWI), modified soil-adjusted vegetation index
(MSAVI), and Band5. Further, the SVM-RFE feature selection algorithm could effectively improve the
model accuracy, and the extreme gradient boosting (XGBoost) model after SVM-RFE feature selection
had the best prediction results (R2 = 0.68, MAE = 0.16, RMSE = 0.26). This paper combines the RFE-SVM
feature selection with machine learning models to enable the fast and inexpensive mapping of soil
pH, providing new ideas for predicting soil pH at small and medium scales, which will help with soil
conservation and management in the region.

Keywords: digital soil mapping; spatial prediction; environment variables; feature selection; ma-
chine learning

1. Introduction

Soil acidification is one of the most serious environmental issues globally [1]. More
than 30% of soil worldwide is becoming acidic due to intensive anthropogenetic activities.
pH is the key to detecting changes in soil acidification or soil alkalinity. Strong associated
relationships have been proved between soil pH and soil quality, e.g., physical structure
and microorganism structure, crop yields via impacting the effectiveness of nutrients, and
soil health, e.g., the buffer capacity in the heavy metal [2]. Furthermore, pH is also affected
by natural and anthropogenic factors, e.g., climate, soil type, soil-forming parent material,
land use, vegetation cover, topography, and agricultural activities [3–6]. Therefore, spatial
pH variation is essential for monitoring regional soil quality and land use.

Traditional and digital soil mapping methods for soil pH are the two ways to predict
the soil spatial distribution. The first method needs to be completed through data collection,
indoor prediction, field investigation, indoor interpretation, field check, and demarcation
mapping [7]. The second method is the soil-landscape model [8]. This method can utilize
the observed data to determine the spatial distribution of the soil properties. Further, this
method has significantly increased spatial information authenticity and accuracy with an
electronic graphical expression [9]. This method needs less money and time and can signifi-
cantly improve prediction accuracy [10]. For example, Cai et al. [11] used three modeling
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methods, partial least squares regression, support vector machine regression, and random
forest, to develop hyperspectral inversion models of soil pH. Dharumarajan et al. [12] used
a random forest model to predict soil pH in a semi-arid tropical region of southern India.
Rad [13] also used a random forest model to study spatial variability and predict the soil
pH mapping in eastern Iran’s floodplains. In addition, regression methods have been com-
monly applied in digital soil mapping [14,15], such as the general linear regression method,
partial least squares method, and geo-weighted regression method. Recently, machine
learning models have been utilized generally due to their high performance in prediction
for the non-linear relationships between soil properties and environmental variables.

The key to better predicting spatial soil pH is selecting appropriate environmental
factors. Based on the previous studies, the main common environmental variables influenc-
ing soil pH can be divided into five categories: climate, remote sensing bands, vegetation
index, land-use types, and topography. Research has shown that climatic factors influence
soil pH [16]. Temperature can affect the soil pH by changing the soil microbial activity and
moisture content [17]. The leaching of rainfall can lead to the loss of alkaline material from
the soil, reducing the soil’s buffering capacity to acids, gradually forming exchangeable soil
acids, and altering soil pH [18]. In recent years, multi-source remote sensing images have
been applied to predict soil pH due to the wide detection range and data acquisition. It can
be predicted by the strong response of visible, near-infrared, and short-wave infrared bands
of multi-source remote sensing images [19,20]. Furthermore, the vegetation indices induced
from multi-source remote sensing image bands as biological variables have responded well
to soil pH changes [21]. In addition, as one comprehensive reflection of human land-use ac-
tivities, land use is often closely related to soil pH [22]. Because land-use changes can have
an effect on improving the soil structure, strengthening soil resistance, and maintaining
and improving soil quality [23], elevation, slope, aspect, and other topographic features
can affect the soil and parent material differently under varied lighting, water, and diving
circumstances, frequently resulting in a regional variance in soil pH [24,25].

However, finding the optimal environmental variables with better model performance
is a key step in digital soil mapping [26]. Therefore, selecting environments with a strong
correlation with soil properties as auxiliary variables for the model is a crucial issue, and
feature selection in machine learning can effectively address this problem. For example,
Zhao et al. [27] used differential evolutionary feature selection and principal component
analysis to invert the surface soil moisture of agricultural fields. Their results indicated that
the model’s accuracy was improved after feature selection. Zeraatpisheh et al. [28] used the
Boruta feature selection method to select different environmental datasets to predict soil
organic carbon in Iranian arid agroecosystems. The results showed that the accuracy of the
models built with additional data sets varied. Feature selection is essential for shortening
the model running time and improving the model accuracy, and the optimal feature set
should be selected for modeling.

Therefore, in this study, thirty environmental variables, including climatic factors,
remote sensing images, vegetation index, digital elevation model (DEM) derivatives, soil
properties, and human factors, were used to develop a soil pH prediction model by combin-
ing the support vector machine recursive feature elimination (SVM-RFE) feature selection
method with different machine learning models. The aims of this study were to: (1) evaluate
the performance of SVM-RFE feature selection methods combined with different machine
learning methods (including multiple linear regressions [MLR]; random forest [RF]; gra-
dient boosting decision tree [GBDT]; XGBoost: extreme gradient boosting [XGBoost]) for
predicting soil pH; (2) identify the primary set of environmental variables controlling soil
pH in the study area; (3) develop an optimal prediction model for soil pH in the study area
and perform spatial distribution mapping. This study will provide valuable guidance for
predicting soil pH in Peri-urban Soils.



Agronomy 2022, 12, 2742 3 of 16

2. Materials and Methods
2.1. Study Area

The study area is located in Nanyu, Fuzhou City, Fujian Province (119◦11′ E~119◦13′ E,
25◦55′~25◦58′ N) and occupies 9 km2. The average annual temperature is 19.5 ◦C, and the
average annual rainfall is 1340 mm. The area is surrounded by mountains in the north
and east, with high terrain, while the central and western parts are flatter and lower, with
elevations ranging from 13–451 m. The land use in this area has 13 land types (Figure 1),
such as residential land, paddy fields, garden land, forest land, etc. The proportion of
different land uses in descending order is: woodland > vegetable plot > dryland > water >
residential land > garden > paddy field > wild grassland > road > open woodland >
grassland > other agricultural land > bare land. The primary soil type is primarily red
soil, the parent material of which is ferralsols or argi-udic ferrosols based on FAO [29] or
Chinese Soil Taxonomy [30].
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Figure 1. Location of the study area.

2.2. Soil Sampling and Laboratory Analysis

In 2014, soil samples were collected randomly within a grid size of approximately
200 m∗200 m each, covering the entire study area. A total of 134 surface soil samples
(0~20 cm) were collected within five meters of the sample points with multi-point mixed
sampling. At the same time, their coordinate locations, elevations, and land use types were
recorded by GPS (Figure 1). After removing the residuals with naked eyes, all samples
were air-dried and determined in the laboratory at a 1:2.5 soil to solution ratio using a pH
detector (PHS-3C, Sheng Ci, Shanghai, China).

2.3. Environmental Covariates

Thirty environmental variables were selected in this study to predict the soil pH (Table 1).
In this paper, the high-resolution climate model ClimateAP [31] is used to generate

three environmental variables in ClimateAP: mean annual temperature (MAT), mean
annual precipitation (MAP), and annual humidity and heat index (AHM), based on the
latitude, longitude, and altitude of the sampling sites. The spatial resolution of the climate
data obtained was 5 m.
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Five bands of RapidEye-3A remote sensing imagery [32] were used as the environ-
mental variables for predicting soil pH in this study, with a resolution of 5 m. In this study,
11 vegetation indices were calculated using RapidEye remote sensing imagery (Table 1).

A digital elevation model (DEM) with a resolution of 5 m was obtained from the
UAV field data to obtain terrain attribute data, including elevation, slope, aspect, plan
curvature, profile curvature, topographic wetness index (TWI), and topographic position
index (TPI) [33] (Table 1). The terrain attribute data were all calculated and obtained in
ArcGIS 10.2.

Table 1. Environmental variables used in this study.

Data Source

Climate
Mean annual temperature (MAT) ClimateAP
Mean annual precipitation (MAP) ClimateAP

Annual humidity-heat index (AHM) ClimateAP

Remote sensing image
Band1 (Blue) RapidEye-3A (440–510 nm)

Band2 (Green) RapidEye-3A (520–590 nm)
Band3 (Red) RapidEye-3A (630–685 nm)

Band4 (Red edge) RapidEye-3A (690–730 nm)
Band5 (NIR) RapidEye-3A (760–850 nm)

Vegetation Index
NDVI NIR−Red

NIR+Red
RVI NIR

Red

MSAVI 2×NIR+1−
√
(2×NIR+1)2−8×(NIR−Red)

2
EVI 2.5×(NIR−Red)

NIR+6×Red−7.5×Blue+1
RGRI Red

Green
GVI NIR

Green
BI [32]

√
(Red×Red)+(Green×Green)

2
BI2 [32]

√
(Red×Red)+(Green×Green)+(NIR×NIR)

2
RI [34] Red×Red

Green×Green×Green
CI [34] Red−Green

Red+Green
NDWI Green−NIR

Green+NIR

DEM derivatives
Elevation

Slope The degree of steepness of a surface element.
Aspect The degree to which the ground tilts.

Plane curvature
The surface shape is viewed in a horizontal

plane that has sliced through the surface at the
target point.

Profile curvature
The shape of the surface in the immediate

neighborhood of the sample point was
contained within the vertical plane.

TWI Topographic Wetness Index.
TPI Topographic position index.

Human factors
Land-use map

Distance from the road
Distance from the water

Distance from residential land
Note: NDVI: normalized difference vegetation index; RVI: ratio vegetation index; MSAVI: modified soil-adjusted
vegetation index; EVI: enhanced vegetation index; RGRI: ratio green-red index; GVI:green vegetation index;
BI: brightness index; BI2: brightness index 2; RI: redness index; CI: color index; NDWI: normalized difference
water index.
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The land-use map was obtained using the Second National Land Survey data and
visual interpretation. The soil pH was predicted by extracting the distance from the
sampling point to the road, distance from the water, and distance from the residential land
as environmental variables through ArcGIS 10.2.

After collecting all the variables, the process of this study was divided into three main
parts: (i) data preparation and creation of different datasets; (ii) feature selection and model
building; and (iii) model performance analysis and spatial distribution mapping.

2.4. Data Pre-Processing

A suitable method to filter valid variables before modeling can reduce information
redundancy and optimize the model [35,36]. The support vector machine recursive feature
elimination (SVM-RFE) algorithm is used for variable selection and input selection strategy
for prediction models, where all the possible inputs are examined based on their influence
on the output [37]. The less critical inputs are discarded in every iteration to identify the
most suitable set of inputs as predictors [38].

The SVM-RFE calculates the influence of each input through an iterative method. It
takes a set of inputs as predictors and an optimal feature subset data as the output to
estimate the importance of each piece of information. The inputs showing less influence
will be discarded. Finally, this step will finish until the optimum subset of inputs is found.

2.5. Modeling Processes

Here, to predict the soil pH, we used four machine learning models: multiple linear
regressions (MLR), random forest (RF), gradient boosting decision tree (GBDT), and extreme
gradient boosting (XGBoost). Each model was constructed using 70% of the data as training
data, and the remaining 30% of the data was used to evaluate model accuracy.

MLR is a linear regression technique that, unlike simple linear regression analysis,
is very useful for studying the linear relationship between a dependent variable and two
or more other independent variables [39]. Linear regression in Python 3.8 was used to
construct MLR models for soil pH prediction.

RF is a supervised machine learning technique widely used in soil science [40], and
it has been indicated that the method is effective in predicting both soil properties [41]
and soil classification [42] with high prediction performance. The method is based on
decision trees, which generate the results of multiple decision trees for prediction based
on randomly selected data to reduce overfitting. The RandomForestRegressor from the
sklearn package in Python 3.8 was performed here.

The GBDT model is a combination of the decision tree and boosting algorithm pro-
posed by Friedman [43], which uses gradient, boosting, and decision trees to solve classifi-
cation problems and perform regression prediction. GBDT is more sensitive to outliers than
the random forest and is an integrated tree model that calculates the residuals between
actual and predicted values, which can improve performance by reducing the variance
of the model [44]. GBDT can be used for classification and regression problems and is
one of the best algorithms for fitting the actual distribution [45]. The construction and
optimization of the GBDT regression model in this study are proposed using the Gradient-
BoostingRegressor of the sklearn package in Python 3.8.

XGBoost, an algorithm proposed by Chen [46] in 2016, is an integrated machine
learning algorithm based on decision trees using gradient boosting as a framework, with
high accuracy, scalability, and resistance to overfitting [47]. One of the advantages of
XGBoost is that it can handle sparse data and classification and regression tasks. Another
advantage of the model is that it can optimize the model to prevent overfitting, and the
generalization ability will be more vital. The construction and optimization of the XGBoost
regression model in this study are proposed using the XGBRegressor of the sklearn package
in Python 3.8.
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2.6. Model Evaluation

Different metrics can be used for accuracy evaluation to determine which method
is most suitable for soil pH prediction. In this study, three commonly used accuracy
evaluation metrics were used to assess the performance of different machine learning
models, including the coefficient of determination (R2), root mean square error (RMSE),
and mean absolute error (MAE):

R2 =
∑n

i=1(xi − yi)
2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (2)

MAE =
1
n

n

∑
i=1
|xi − yi|yi (3)

where xi is the predicted value of the soil pH, yi is the measured value of the soil pH, and n
indicates the number of soil samples. Regarding validation metrics, the closer R2 is to 1,
and the closer RMSE and MAE are to 0, the better the model performance, the higher the
estimation accuracy, and the smaller the error.

3. Results
3.1. Descriptive Statistics of Soil pH

Firstly, the soil pH sample data were processed for outliers, and two outliers were
removed, leaving 132 sampling points. Secondly, descriptive statistics of the soil pH were
determined for the collected sample data (Table 2), and the results showed that the samples
of soil pH ranged from 3.95 to 7.75, with a mean value of 5.25 and a coefficient of variation
of 14.22%, indicating a moderate variability [48].

Table 2. Descriptive statistics of soil pH.

Parameter Min Max Mean SD CV

pH 3.92 7.75 5.25 0.75 14.22%

According to the soil pH classification criteria [49] (Table 3), it could be found that 58.33%
of the sample sites in this study were acidic, 37.12% were strongly acidic, 2.27% were neutral
samples, 2.27% were alkaline samples, and there were no strongly alkaline samples.

Table 3. Distribution of acidity and alkalinity at sampling sites.

Strong Acid
(<5.0)

Acid
(5.0~<6.5)

Neutral
(6.5~<7.5)

Alkaline
(7.5~<8.5)

Strong
Alkaline

(>8.5)

Frequency of
sample point
distribution

37.12% 58.33% 2.27% 2.27% 0.00%

The soil pH values (Figure 2) varied with land use types, with the mean values
showing that wild grassland > dryland > vegetable plot > grassland > paddy field >
garden > woodland.
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3.2. Feature Selection Procedures

Firstly, a Pearson correlation analysis was carried out between soil pH and the original
environmental variables. As can be seen from the heat map (Figure 3), soil pH correlated
differently with plane curvature, profile curvature, slope, elevation, Band1, Band2, Band3,
Band4, BI, BI2, color index (CI), green vegetation index (GVI), and normalized difference
vegetation index (NDVI), and normalized difference water index (NDWI), ratio green-red
index (RGRI), redness index (RI), ratio vegetation index (RVI), land use, distance from
the water, distance from the road, distance from residential land, topographic wetness
index (TWI), topographic position index (TPI), MAT, MAP, and annual humidity-heat index
(AHM) were significantly correlated (p < 0.05).

To further investigate the environmental variables for predicting soil pH, the SVM-
RFE algorithm was used to select the environmental variables. After several iterations,
the features that had a minor influence on the pH prediction results were removed. Then,
the remaining features were retrained to obtain a new feature ranking, and the process
was iterated again to finally obtain the feature ranking filtered by the SVM-RFE method
(Table 4). The results showed that the five most critical environmental variables for the soil
pH value included mean annual temperature (MAT), slope, Topographic Wetness Index
(TWI), modified soil-adjusted vegetation index (MSAVI), and Band5. The least essential
variable was NDVI.

To avoid the influence of multicollinearity between variables on the study results,
environmental variables with VIF < 10 were further screened after the SVM-RFE feature
selection. Although some of the environmental variables did not correlate significantly with
soil pH values, the variables were not necessarily completely independent. The original
set of all environmental variables was chosen as a control group for this study and was
compared with the set of features selected by the SVM-RFE features.
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Figure 3. Heat map of the correlation between soil pH and environmental variables (the top right-
hand corner is a heat map of the correlation with added significance markers and the bottom left-hand
corner is the correlation coefficient r value.).

Table 4. The results of the support vector machine recursive feature elimination (SVM-RFE)
feature selection.

Feature
Name

Feature
Ranking

Feature
Name

Feature
Ranking

Feature
Name

Feature
Ranking

MAT 1 Profile curvature 11 Band1 21
Slope 2 BI2 12 NDWI 22
TWI 3 BI. 13 RGRI 23

MSAVI 4 MAP 14 RI 24

Band5 5 Band3 15 Distance from
the water 25

Land use 6 Band2 16 CI 26

AHM 7 Band4 17 Distance from
the road 27

TPI 8 Plane curvature 18 EVI 28

RVI 9 GVI 19 Distance from
residential land 29

Elevation 10 Aspect 20 NDVI 30
MAT: mean annual temperature; MAP: mean annual precipitation; AHM: annual humidity-heat index; TWI:
Topographic Wetness Index; TPI: topographic position index.

3.3. Model Performance

According to the importance ranking of SVM-RFE feature selection, four different
machine learning models were cyclically modeled with varying environmental variables,
and the optimal set of environmental variable features for other models was selected
according to R2, MAE, and RMSE. Figure 4 shows that the accuracy of the same model
built with different sets of environmental variables changed, and selecting the appropriate
set of environmental variables could improve the model prediction accuracy.
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The results showed that MAT was the key factor influencing soil pH, indicating that
climate significantly affects the prediction of soil pH. Secondly, the TWI and slope, two
topographic factors, also greatly influenced the prediction of soil pH. Moreover, MSAVI
was another critical factor influencing soil pH. In addition, the results showed that Band5
in the Rapideye image was a good indicator of soil pH. The result was consistent with
RAO [50].

Table 5 shows the best set of environment variables for the four machine learning
models, illustrating the differences in the best environment variables for the different
models. The best set of environment variables for MLR was the top five environment
variables obtained by the SVM-RFE algorithm. The best set of environment variables for
random forest included twenty-five variables, such as MAT, slope, TWI, and MSAVI. The
best environment variables for GBDT model and XGBoost included 11 variables.

Table 5. The most suitable set of environment variables for different machine learning models.

Models The Optimal Set of
Environment Variables Number of Variables

MLR MAT, slope, TWI, MSAVI, Band5. 5

RF

MAT, slope, TWI, MSAVI, Band5,
land use, AHM, TPI, RVI, elevation,

profile curvature, BI2, BI, MAP,
Band3, Band2, Band4, plane

curvature, GVI, aspect, NDWI, RGRI,
RI, distance from the water.

25

GBDT
MAT, slope, TWI, MSAVI, Band5,

land use, AHM, TPI, RVI, elevation,
profile curvature.

11

XGBoost
MAT, slope, TWI, MSAVI, Band5,

land use, AHM, TPI, RVI, elevation,
profile curvature.

11

MLR: multiple linear regressions; RF: random forest; GBDT: gradient boosting decision tree; XGBoost: extreme
gradient boosting; MAT: mean annual temperature; MAP: mean annual precipitation; AHM: annual humidity-heat
index; TWI: Topographic Wetness Index; TPI: topographic position index.
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After SVM-RFE feature selection for different sets of environmental variables, the
accuracy of the other prediction models for pH was assessed by five-fold cross-validation
based on R2, MAE, and RMSE to further compare the model accuracy of other machine
learning models before and after optimization by the SVM-RFE feature selection algorithm
(Table 6). The results indicated that all four machine learning models improved their
prediction accuracy substantially after feature selection, especially MLR model, which
improved the most in model accuracy (R2 from 0.00 to 0.51). The RF model improved its R2

by 5.64% (from 0.39 to 0.41). The GBDT model improved its R2 by enhancing it by 127.42%
(from 0.30 to 0.68). The XGBoost model improved its R2 by 6.06% (from 0.64 to 0.68).

Table 6. Comparing accuracy before and after feature selection for different machine learning models.
Bold rows are shown as the most accurate results.

Models Data Sets with Different
Characteristic Variables R2 MAE RMSE

MLR
Raw feature variable dataset 0.00 0.55 0.67

SVM-RFE feature selection after
feature variable dataset 0.51 0.31 0.43

RF
Raw feature variable dataset 0.39 0.33 0.48

SVM-RFE feature selection after
feature variable dataset 0.41 0.33 0.47

GBDT
Raw feature variable dataset 0.30 0.29 0.39

SVM-RFE feature selection after
feature variable dataset 0.68 0.16 0.27

XGBoost
Raw feature variable dataset 0.64 0.18 0.28

SVM-RFE feature selection after
feature variable dataset 0.68 0.16 0.26

MLR: multiple linear regressions; RF: random forest; GBDT: gradient boosting decision tree; XGBoost: extreme
gradient boosting; R2: coefficient of determination; MAE: mean absolute error; RMSE: root mean square error.

The different machine learning models differed in their ability to predict soil pH in the
study area. The XGBoost model was the best predictor before the SVM-RFE selection of
variables (R2 = 0.64, MAE = 0.18, RMSE = 0.28). After the SVM-RFE selection of variables,
the GBDT model prediction accuracy improved substantially, with R2 increasing to 0.68,
MAE decreasing to 0.16, and RMSE decreasing to 0.27. The XGBoost model still performed
the best (R2 = 0.68, MAE = 0.16, RMSE = 0.26) compared with the prediction accuracy of
Roudier [51] using QRF for soil pH distribution in New Zealand (R2 = 0.65, RMSE = 0.54)
and the results of Lu [52] using a Boruta-based support vector regression algorithm for soil
pH prediction in Anhui Province (R2 = 0.62, MAE = 0.58, RMSE = 0.73). It can be found
that the extreme gradient boosting (XGBoost) prediction model and the gradient boosting
decision tree (GBDT) in this study had a higher accuracy than the other two models.
However, there is still room for improving the accuracy of the model due to the influence
of land use dynamics, different soil parent material types, and complex topography in the
study area.

Table 6 shows that the model accuracy of the non-linear models (RF, GBDT, XGBoost)
is significantly better than the linear models (MLR) overall. The results indicate a non-linear
relationship between the spatial distribution of soil pH and environmental variables, and
those non-linear models can better capture and explain changes in soil pH. Hence, such
non-linear machine learning models are widely cited in digital soil mapping [53].

3.4. Spatial Predictive Mapping of Soil pH

Due to the poor accuracy of the MLR and RF soil pH prediction models, only the XG-
Boost model and the GBDT model based on the SVM-RFE feature selection was constructed
to predict the spatial distribution of soil pH in this paper. The results are shown in Figure 5.
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Similarities existed between the predictions of the two models (Figure 5), as the study
area had mainly acidic and strongly acidic soils. Combined with Figure 5 and the land-use
types map of the study area (Figure 1), it can be seen that the areas with high pH values
were mainly located in paddy fields and vegetable fields. In contrast, the low-value regions
were primarily located in bare land and woodland areas. When the prediction outcomes of
the two models were compared, it was found that the XGBoost model had a better high-
and low-value predictive capability than the GBDT model.

3.5. Assessment of the Generalizability of the Model

To assess the cross-spatial generalizability of the models derived from this study to
small- and medium-sized regions, the XGBoost and GBDT models containing 11 envi-
ronmental variables were applied to soil pH predictions in Pullman, Washington (WA),
located in eastern Washington. The Palouse region consists of fertile rolling hills, primarily
farmed as rainfed wheat cropping systems with various crop rotations, including canola
(Brassica napus), garbanzo beans (Cicer arietinum), and lentils (Lens Cullinaris).

Table 7 shows the prediction accuracy of the two models in this region. The comparison
of the two models was consistent with the research results of this paper. The XGBoost
model performed better than the GBDT model, and the goodness of fit was above 50%,
which was relatively reasonable and accurate. Although the R2 comparison between the
two models declined in the soil pH prediction results of the Fuzhou study area, the MAE
and RMSE indicators were considerably better than those of the Fuzhou study area. It
indicated that the model in this paper had some cross-spatial generality. The prediction
accuracy could be improved by selecting a suitable set of environmental variables through
RFE-SVM features and machine learning models, which perform better in different regions.

Figure 6 shows the predicted spatial distribution of the region using the XGBoost
and GBDT models containing 11 sets of environmental variables. From Figure 6, it can be
found that there was spatial variability in the soil pH in the Palouse region, with similar
predictions from both models and a consistent trend in spatial distribution, showing an
overall acidic soil, in the left half of the region, with low-value areas sporadically distributed,
mainly on the right edge. However, XGBoost had better predictive power than GBDT for
high and low values, and the predictions were more spatially variable.
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Table 7. Prediction accuracy of the two models in different regions.

Study Area Models R2 MAE RMSE

Palouse region
GBDT 0.55 0.01 0.03

XGBoost 0.62 0.01 0.02

The Study area
of this paper

GBDT 0.68 0.16 0.27

XGBoost 0.68 0.16 0.26
GBDT: gradient boosting decision tree; XGBoost: extreme gradient boosting.
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4. Discussion
4.1. Subsection Selected Features and Their Implications

Soil pH is an essential factor controlling soil properties. Changes in soil pH are related
to climate, land use, nitrogen deposition, and plants [54]. In this study, the selected features
of the optimal GBDT model were MAT, slope, TWI, MSAVI, Band5, land use, AHM, TPI,
RVI, elevation, and profile curvature.

The plant characters are essential in regulating soil pH [55]. Specifically, plants affect
surface roughness, nutrient capture, and ion leaching [56]. In addition, plants regulate soil
pH through the uptake of exchangeable cations, alteration of the quality and quantity of
apoplastic inputs, and inter-root processes [55]. Consistent with the results of this study,
vegetation indices were commonly applied to express the state of vegetation growth and
were found to be good predictors of soil pH [21]. In addition, research results confirmed
that climate also affected soil pH, with temperature being an important factor in soil pH.
Temperature affects soil microbial activity and soil moisture content, causing changes in
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soil pH [17]. Topographical factors also tend to impact soil pH, with topography allowing
for differences in soil and parent material under different light, heat, water, or diving
conditions, often leading to spatial variation in the soil pH [24,25]. Similar to the findings
of this paper, land use is often closely related to soil pH [22] and rational land use has a
positive effect on improving soil structure, strengthening soil resistance, and maintaining
and improving soil quality [23].

4.2. Model Comparisons

In this paper, we used the SVM-RFE feature selection algorithm combined with four
machine learning models to select the most appropriate set of environmental variables for
different models to predict and map the spatial distribution of soil pH in the urban–rural
intersection. The results showed significant differences in the predictive power of the other
models (Table 6).

Compared with the MLR and RF, XGBoost model and GBDT model performed better,
with a higher explained variance and lower error. The XGBoost model was the best
predictor before the SVM-RFE selection of variables (R2 = 0.64, MAE = 0.18, RMSE = 0.28).
After the SVM-RFE selection of variables, the GBDT model prediction accuracy improved
substantially, with R2 increasing to 0.68, MAE decreasing to 0.16, and RMSE decreasing to
0.27. The XGBoost model still performed the best (R2 = 0.68, MAE = 0.16, RMSE = 0.26). In
line with the findings of Guo [57] and Ye [58], XGBoost and GBDT model were effective
methods for predicting soil property values, reducing the problem of overestimation and
underestimation.

Firstly, XGBoost can effectively correct residual errors by generating a new tree based
on the previous one [59]. The over-fitting issue with traditional decision trees [60] is
resolved by the GBDT model, which applies the gradient descent approach and integrates
the decision tree method with the bagging and boosting algorithm [61]. Secondly, compared
to RF models, where the tree is independent in the RF model, XGBoost and GDBT are
two more flexible algorithms responsible for their better performance. Thirdly, XGBoost
improves the GBDT model at the algorithmic level compared with GBDT. The prediction
accuracy and efficiency of XGBoost are higher than that of the GBDT model [58]. Finally,
XGBoost and GBDT, as two non-linear models, can better capture and explain changes in
soil pH than a non-linear model such as multiple linear regression [53].

4.3. Limitations and Future Research

Firstly, in this study, soil pH, as a regionalized variable, is dynamically influenced by a
compound of multiple environmental variables [3–6]. Therefore, exploring the influence of
more environmental variables when mapping the spatial distribution of soil pH is necessary.
In future studies, more characteristic variables that have an essential impact on soil pH
can be added to the model, including natural factors such as soil parent material and soil
type [62], which strongly influence soil pH, as well as anthropogenic factors such as indus-
trial pollution from urbanization and agricultural fertilization activities [63–65]. Secondly,
this paper only uses the SVM-RFE feature selection algorithm in combination with four ma-
chine learning models. It does not reflect whether the SVM-RFE feature selection algorithm
is the most appropriate feature selection method, while many feature selection methods
exist. According to past research [66,67], it can be found that feature selection methods can
effectively improve soil attribute prediction accuracy. Different feature selection methods
have different effects on improving model accuracy. In subsequent research, the various
feature selection methods can be compared to demonstrate the superiority of the SVM-RFE
feature selection method.

5. Conclusions

Combined SVM-RFE feature selection methods with four machine learning models to
predict and map the spatial distribution of soil pH were conducted using environmental
variables, including topographic data, remote sensing images, soil measurement data,
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and climate data. We found that: (1) the five most important environmental variables
affecting soil pH were obtained using the SVM-RFE feature selection method; they were
MAT, slope, TWI, MSAVI, and Band5; (2) the SVM-RFE feature selection methods combined
with different machine learning models can improve model accuracy; (3) different machine
learning models differed in their ability to predict soil pH, both before and after feature
selection, and XGBoost method is the best. This paper validates the impact of the SVM-RFE
feature selection method on soil pH prediction, provides a new fast and highly accurate
mapping method for predicting soil pH, and constructs a reliable, small area-scale soil pH
prediction model.
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