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Abstract: The low productivity of garlic in Brazil requires more efficient nutritional management. 
For this, environmental and fertilization-related factors must be adjusted to a set of local conditions. 
Our objective was to provide an accurate diagnosis of the nutrient status of garlic crops in southern 
Brazil. The dataset comprised 1024 observations, 962 as field tests conducted during the 2015–2017 
period to train the model, and 61 field observations collected during the 2018–2019 period to vali-
date the model. Machine learning models (MLM) related garlic yield to managerial, edaphic, plant, 
and climatic features. Compositional data analysis (CoDa) methods allowed classification of nutri-
ents in the order of limitation to yield where MLM detected nutrient imbalance. Tissue analysis 
alone returned an accuracy of 0.750 in regression and 0.891 in classification about the yield cutoff of 
11 ton ha−1. Adding all features documented in the dataset, accuracy reached 0.855 in regression and 
0.912 in classification. Local diagnosis based on MLM and CoDa and accounting for local features 
differed from regional diagnosis across features. Local nutrient diagnosis may differ from regional 
diagnosis because several yield-impacting factors are taken into account and benchmark composi-
tions are representative of local conditions. 

Keywords: Adaboost; Allium sativum; compositional distance; growth-limiting factors; machine 
learning; perturbation vector; random forest 
 

1. Introduction 
Garlic (Allium sativum L.) yield averaged 11 Mg ha−1 in Brazil, compared with 17 Mg 

ha−1 worldwide [1].Garlic yield and quality depend mainly on temperature, precipitation, 
and photoperiod, hence local factors [2]. Associated with this, climate change that is caus-
ing the irregular distribution of rainfall can be a limiting factor for garlic production [3,4]. 
However, the Brazilian yield gap could be filled through genetics [5–7], pest management 
[8], irrigation [9], and fertilization [1,10]. Several garlic cultivars of high commercial value 
[6,11] are grown under widely different local conditions in the Brazilian states of Minas 
Gerais, Goiás, Santa Catarina, and Rio Grande do Sul. 

Fertilization programs can be guided by soil and plant testing methods [12,13]. Com-
pared with soil tests, tissue tests are generally more closely related to crop performance 
because the plant can integrate many site-specific abiotic factors [14,15] and nutrient in-
teractions [16]. Cunha et al., 2016, elaborated regional nutrient standards for the noble 
garlic cultivar “Ito” using a dataset of 142 observational data from Minas Gerais, Brazil. 
However, a larger and more diversified dataset is required to diagnose nutrient problems 
across various growing conditions in the southern Brazilian states.  
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To address nutrient interactions, tissue test interpretation was thought to be univer-
sal using pairwise ratios [17], but the assumption proved to be wrong at the local scale 
[18–20]. Optimum tissue nutrient concentration ranges may also vary with early biomass 
production due to differential growth rates and environmental conditions [21]. The “di-
lution effect” and its inverse, the “concentration effect”, occur when the concentration of 
an element decreases or increases in plant tissue through time due to nutrient additions 
and changing seasonal environmental conditions that impact plant growth rate and the 
production of biomass [22]. Hence, key growing factors should be considered to predict 
yield from tissue analysis. This is especially true for fast-growing annual crops such as 
garlic. 

Factor-specific nutrient diagnosis of agroecosystems could be conducted following 
Alexander von Humboldt’s principles of biogeography where facts and local knowledge 
are assembled and processed by machine learning methods such as decision trees to reach 
a comprehensive understanding of living systems [23]. On the other hand, the properties 
of living systems are often reported in terms of concentrations or percentages. Analyzing 
raw compositions numerically is a very difficult and time-consuming task [24]. Composi-
tional data analysis (CoDa) has been developed to address the limitation related to dilu-
tion of concentration among D components that are constrained to the unit sum and pro-
vide D-1 degrees of freedom when conducting statistical analyses [25].  

Combining machine learning and compositional data analysis methods sequentially 
proved to be accurate for yield predictions and the detection of nutrient problems at the 
local scale [18,19,26–29]. Machine learning methods can predict crop yield in regression 
or classification modes. The classification mode allows growers to select realistic site-spe-
cific yield targets and provides risk analysis as the probability to exceed a target yield. For 
nutritionally imbalanced plants, nutrients can be ordered thereafter according to their lim-
itation to yield using tools of compositional data analysis. The following hypotheses were 
tested: (1) optimum nutrient combinations of garlic tissues are factor specific, and (2) ma-
chine learning and compositional data analysis methods predict garlic yields and nutrient 
limitations differently using local conditions vs. regional averages. Our objective was to 
provide an accurate diagnosis of the nutrient status of garlic crops in southern Brazil. 

2. Materials and Methods 
2.1. Experimental Area Description  

The garlic dataset was collected in Fraiburgo (−27.04 S, −50.83 W), Santa Catarina 
state, Brazil. The dataset comprised 962 field tests conducted during the 2015–2017 period, 
and 61 field observations collected during the 2018–2019 period, totaling 1024 observa-
tions (Table S1). The climate of the region is warm temperate (Cfb) according to the Kö-
ppen’s classification system. The mean temperature of the region is 16.4 °C and the mean 
annual rainfall is 1711 mm [30]. The landscape is moderately plain to slightly undulated. 
Soils are of clayey texture and are classified as Typic Hapludox [31].  

Plots were 5 m in length, arranged in beds made of three double rows, with a spacing 
of 10 cm between rows and 35 cm between double rows and sprinkler irrigated [10]. The 
beds were 1.7 m wide center-to-center. Virus-free cloves were vernalized at 2–5 °C for 20–
30 d before planting at 45 seed cloves m−2. Noble cultivars were “Chonan”, “Ito”, “Quité-
ria”, “Roxo Caxiense”, and “São Valentin” [7]. Cloves were planted between May 7th and 
July 26th, and harvested between November 3rd and December 5th. The length of the 
growing seasons varied between 102 and 162 days, depending on the cultivar. Cultural 
practices and pest management strategies were those currently used in the region.  

There were 34 fertilizer trials in 2015 (5 N, 14 P, and 15 K), 28 trials in 2016 (6 N, 10 P, 
and 12 K), and four trials in 2017 (4 N). The plants received five N doses between 0 and 
400 kg N ha−1 (as ammonium nitrate) in three equal top-dress applications up to 133 kg N 
ha−1 at planting, 30 d after planting, and 10–15 days after bulb differentiation. Where N 
was varied, the P and K treatments were applied at rates of 175 kg P2O5 ha−1 (as triple 
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superphosphate) and 333 kg K2O ha−1 (as potassium chloride). The P2O5 and K2O were 
applied to the soil surface and incorporated into the 0–20 cm layer using a rotary tiller 
before garlic was planted. Where P2O5 and K2O were varied, the N was applied at a rate 
of 300 kg N ha−1 in three equal doses of 100 kg N ha−1 each, top-dressed at planting, 30 d 
after planting and 10–15 days after bulb differentiation. Growers’ treatments were applied 
on one farm in 2018 and on two farms in 2019. 

2.2. Soil and Tissue Analyses  
Soils were sampled (0–20 cm) 25–30 days after planting. Eight sub-samples were col-

lected per plot. Soils were air-dried and ground to less than 2 mm before conducting 
chemical analyses as follows [32]: water pH = 5.9 (ratio 1:1), clay by sedimentation, 
Mehlich-1 extraction for P and K, and EDTA extraction for Cu [33]. Elements were quan-
tified by plasma emission spectroscopy (ICP-OES) and sulfur by turbidimetry. Cation ex-
change capacity was approximated as the sum of exchangeable cations and total acidity 
(SMP buffer pH). Total carbon was quantified by dichromate oxidation (Walkley–Black 
method) and then multiplied by 1.724 to obtain the organic matter content [33]. 

Ten young (4th fully expanded) leaves were collected in each plot at the beginning 
of plant differentiation into bulbs [2], averaging 93 days after planting and 12 days before 
the last N application. Tissue samples were composited for chemical analysis. The leaves 
were gently washed under distilled water, dried at 65 ± 5 °C, then ground to less than 1 
mm using a Wiley mill [34]. Total N was determined by steam distillation. Tissue samples 
were digested in a mixture of nitric and perchloric acids, in the proportion 2:1 (v/v) [12] 
then analyzed by colorimetry for P [35] and B [36], flame photometry for K, turbidimetry 
for S, and atomic absorption spectrophotometry for Ca, Mg, Cu, Fe, Mn, and Zn [32].  

Bulbs were harvested in 1 m length rows made of three double plant lines per plot 
[10]. The bulbs were weighed after natural drying in a warehouse for 40 d. Marketable 
bulbs included #2 (<32 mm), #3 (32–37 mm), #4 (37–42 mm), #5 (42–47 mm), #6 (47–56 mm), 
and #7 (>56 mm) bulb categories [37]. Bulbs showing secondary growth or damage were 
classified as non-marketable.  

2.3. Climatic Indices 
Daily precipitations as well as minimum and maximum daily temperatures between 

plantation and tissue sampling dates were obtained from EPAGRI meteorological station 
up to 30 km away from the planting area. [38]. The photoperiod was reflected by the plant-
ing date. Temperature data were synthesized as cumulated degree days with a base tem-
perature of 5 °C for cold crops [39]. Rainfall was cumulated between planting and tissue 
sampling dates. Rainfall distribution was assessed using the Shannon diversity index 
(SDI) as follows [40]: 

SDI = −∑ 𝑝𝑝𝑖𝑖×𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖)
𝑛𝑛
𝑖𝑖=1
𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖)

  (1) 

where: 𝑝𝑝𝑖𝑖 is the fraction of daily rainfall relative to total rainfall during the growing pe-
riod and 𝑛𝑛 is the length of the growing season; SDI = 1 indicates uniformly distributed 
rainfall (equal daily amount of rainfall over the selected period); and SDI = 0 indicates 
uneven rainfall (total rainfall concentrated in 1 d). Where 𝑝𝑝𝑖𝑖 = 0, 𝑝𝑝𝑖𝑖 × 𝑙𝑙𝑛𝑛(𝑝𝑝𝑖𝑖) = 0. Crops 
were irrigated until the soil moisture reached field capacity, but the frequency and amount 
of water applied by the irrigation event were not recorded.  

2.4. Numerical Analyses 
Machine learning models related the marketable yield to features using the Orange 

data mining software v. 3.23 [41]. We compared random forest and Adaboost. Models 
were run in regression and classification modes. In classification mode, true negative spec-
imens (high-yielding, nutritionally balanced) used as benchmark compositions were set 
apart in the confusion matrix (Figure 1). The models were trained using the 2015–2017 
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data (64 fertilizer trials) in cross-validation (k = 10, stratified by category). In brief, ten 
percent of the data were thus selected randomly ten times to train the model. The remain-
ing data were used each time to validate the model. Model accuracy was the average of 
the ten runs. Model accuracy may vary slightly by reloading the file and rerunning the 
models because data selection changes at each run. The impact of features on model ac-
curacy was measured by sequentially adding features. Models were tested in prediction 
mode using the 2018–2019 data. 

 
Figure 1. Specimen classification in the confusion matrix into true negative (TN), true positive 
(TP), false positive (FP), and false negative (FN). 

Regional standards were computed as centered log ratio means and standard devia-
tions of compositions across true negative specimens as follows [19,41,42]:  

𝑐𝑐𝑙𝑙𝑐𝑐𝑥𝑥𝑖𝑖 = 𝑙𝑙𝑛𝑛(𝑥𝑥𝑖𝑖 𝐺𝐺⁄ )  (2) 

where: clr is the centered log ratio of component 𝑥𝑥𝑖𝑖 and 𝐺𝐺 is the geometric mean across 
components 𝑥𝑥𝑖𝑖 including the filling value computed by the difference between the meas-
urement unit and the sum of quantified components.  

The regional diagnosis was conducted as follows: 

𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑥𝑥𝑥𝑥𝑖𝑖 =
�𝑐𝑐𝑙𝑙𝑐𝑐𝑥𝑥𝑖𝑖−𝑐𝑐𝑙𝑙𝑐𝑐𝑥𝑥𝑖𝑖

∗
¯
�

𝑆𝑆𝑆𝑆𝑥𝑥𝑖𝑖
∗   (3) 

where: 𝑐𝑐𝑙𝑙𝑐𝑐𝑥𝑥𝑖𝑖∗
¯

 and 𝑆𝑆𝑆𝑆𝑥𝑥𝑖𝑖
∗  are the mean and standard deviation for component 𝑥𝑥𝑖𝑖 of the sub-

population of true negative specimens. Nutrients were classified in the order of limitation 
to yield from the most negative to the most positive 𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝑥𝑥𝑥𝑥𝑖𝑖 values. 

Local diagnoses were conducted by computing the Euclidean distance from the di-
agnosed composition to select close compositional neighbors, as follows [19,20,27]: 

𝜀𝜀 = �∑ �𝑐𝑐𝑙𝑙𝑐𝑐𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑙𝑙𝑐𝑐𝑦𝑦𝑖𝑖�
2𝑆𝑆

𝑖𝑖=𝑖𝑖   (4) 

where: 𝜀𝜀 is the Euclidean distance between the diagnosed composition, 𝑥𝑥 and successful 
compositions 𝑦𝑦, i.e., the Euclidian distance is computed across clr differences. The Euclid-
ean distance indicates the closest true negative specimens to be used to guide the rebalanc-
ing of the nutrients in the diagnosed specimens. 

Nutrients in the diagnosed specimens were classified in the order of limitation to 
yield from the most negative to the most positive values against the benchmark composi-
tion of the closest true negative specimens using the perturbation vector standardized as 
follows: 

𝑝𝑝 = 𝑋𝑋 ⊖ 𝑌𝑌 = � 𝑁𝑁
𝑁𝑁∗

, 𝑃𝑃
𝑃𝑃∗

, … , 𝐹𝐹𝑣𝑣
𝐹𝐹𝑣𝑣∗
�  (5) 
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where: * indicated components of the reference benchmark composition among high-
yielding and nutritionally balanced true negative specimens under otherwise comparable 
local conditions. The perturbation vector (calculated based on the nutritional ratio, a suc-
cessful and a defective composition) was balanced around zero as follows: 

𝑝𝑝 = 𝑋𝑋 ⊖ 𝑌𝑌 = � 𝑁𝑁
𝑁𝑁∗
− 1, 𝑃𝑃

𝑃𝑃∗−1
, … , 𝐹𝐹𝑣𝑣

𝐹𝐹𝑣𝑣∗
− 1�  (6) 

The perturbation vector resembles the deviation from optimum percentage [42] with 
the selection of the benchmark composition based on the Euclidean distance. 

3. Results 
3.1. Model Accuracy 

Machine learning methods can predict absolute yield from a regression equation or 
can provide risk analysis as the probability to reach yields higher than the target yield. 
The training dataset (the 914 observations collected in 2015–2017) was evaluated in regres-
sion mode using Adaboost and in classification mode using random forest. These machine 
learning methods showed the highest performance among other machine learning meth-
ods (data not shown). Results are presented in Figure 2 and Table 1. Model accuracy in-
creased as learners were more informed about features (Table 2).  

 
Figure 2. Adaboost regression model relating marketable yield to genetic (cultivar), managerial 
(plantation date, fertilization at planting, and 30 d after planting), tissue test, soil test, and climatic 
features.  
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Table 1. Random forest yield classification of the training garlic calibration dataset (2015–2017) 
made of 914 observations, showing an accuracy of 0.912, i.e., (135 + 699)/914. 

Yield Classification Predicted Yield  
Actual yield High Low 

High 135 TN 40 FP 
Low 40 FN 699 TP 

TN = true negative; FN = false negative; FP = false positive; and TP = true positive. 

Table 2. Accuracy of the Adaboost in regression mode and random forest in classification mode 
for the garlic training dataset collected in 2015–2017. 

Combination of Factors 
Regression Classification 

R2 Accuracy 
Tissue analysis 0.750 0.891 
Tissue analysis, cultivar 0.789 0.886 
Tissue analysis, cultivar, preceding crop 0.791 0.894 
Tissue analysis, cultivar, preceding crop, fertilization 0.820 0.898 
Tissue analysis, cultivar, preceding crop, fertilization, 
plantation date 

0.839 0.891 

Tissue analysis, cultivar, preceding crop, fertilization, 
plantation date, climatic indices 0.840 0.907 

Tissue analysis, cultivar, preceding crop, fertilization, 
plantation date, climatic indices, soil test 0.855 0.912 

Accuracy of the random forest classification model was 0.912 with 135 true negative 
specimens at yield cutoff set at Brazilian yield average of 11 ton ha−1 (Table 2). At yield 
cutoff of 8 ton ha−1, classification accuracy reached the maximum value at 0.955 with 345 
true negative specimens. There were significant differences between regional nutrient 
standards for yield cutoffs of 8 ton ha−1 or 11 ton ha−1 (Table 3). Because yield cutoff is often 
arbitrarily selected but impacts on the number of true negative specimens, regional nutri-
ent diagnosis should be interpreted in relation to yield target and local conditions.  

Table 3. Regional centered log ratio means and standard deviation computed across n true nega-
tive specimens at garlic yield cutoffs of 8 Mg or 11 Mg marketable yield ha−1, respectively. 

Nutrient 
8 Mg ha−1 11 Mg ha−1 t-test 

Mean SD Mean SD Probability 
N 3.430 0.157 3.403 0.166 0.112 ns 
P 1.365 0.209 1.317 0.167 0.011 * 
K 3.255 0.235 3.364 0.193 0.000 ** 
Ca 1.463 0.345 1.642 0.242 0.000 ** 
Mg 0.679 0.229 0.532 0.123 0.000 ** 
S 1.843 0.423 1.938 0.379 0.019 * 

Fe −3.786 0.393 −3.814 0.423 0.509 ns 
Mn −3.070 0.505 −3.062 0.415 0.861 
Zn −3.583 0.481 −3.725 0.395 0.001 ** 
Cu −3.918 0.336 −3.877 0.280 0.186 ns 
B −4.516 0.828 −4.495 1.012 0.836 ns 
Fv 6.838 0.191 6.779 0.186 0.002 ** 

Number n = 344 n = 128 - 
Mean = n; SD = standard deviations; Fv = filling value. ns,*, **: nonsignificant and significant at p < 
0.05. 
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3.2. Random Forest Yield Prediction for Observational Data in 2018–2019 
Climatic indices in 2018 and 2019 differed markedly from those recorded in 2015–

2017 (Table 4). From planting to the tissue sampling date, cumulated rainfall was low and 
rainfall distribution was uneven in 2019 while conditions in 2018 were closer to those ob-
served during the 2015–2017 period. Tissue compositions in 2018 and 2019 often differed 
from those recorded as true negative specimens during 2015–2017 period. Despite con-
trasting features between experimental (2015–2017) and observational (2018–2019) da-
tasets, yield classification was predicted tentatively by the random forest classification 
model setting yield cutoff at the Brazilian average of 11 ton ha−1. This emphasizes the need 
for larger and more diversified training datasets in addition to greater control of variables 
associated with management such as irrigation. 

Table 4. Range of values for features to predict yields observed in 2018–2019 from the experi-
mental dataset (2015–2017). 

Feature ‡ Site 2018 Site 2019 A Site 2019 B True Negative Specimens 
N 20.0–33.3 33.6–39.2 19.6–36.4 23.1–45.5 
P 4.8–6.6 4.5–5.0 3.6–6.9 2.1–5.8 
K 28.4–81.2 41.9–52.0 10.8–29.9 12.7–54.5 
Ca 15.7–50.4 7.1–9.7 3.4–5.1 0.9–9.8 
Mg 2.9–7.9 3.9–5.1 1.7–8.5 0.8–2.5 
S 6.5–9.4 3.9–5.8 3.3–7.0 3.5–14.5 
B 54–86 18–23 26–40 0,9–44 
Fe 32–197 98–339 28–137 13–515 
Mn 59–17.6 35–92 19–39 11–115 
Zn 43–107 26–38 22–57 10–154 
Cu 16–54 4–0.008 7–56 3–219 

Degree-days (>5 °C) 461 582 347 297–421 
Rainfall (mm) 172 41 35 104–241 

SDI 0.57 0.10 0.04 0.54–0.64 
‡ Macronutrients expressed in g kg−1; micronutrients expressed in mg kg−1. From plantation to tis-
sue sampling dates. SDI = Shannon diversity index. 

Where risk analysis showed more than 50% probability to reach a yield above the 
target, the predicted yield was declared “high”. While 52 of the 61 specimens yielded more 
than 11 ton ha−1 during the 2018–2019 period, seven specimens were classified as true neg-
ative (high-yielding and nutritionally balanced) and 45 specimens as false positive (high-
yielding and nutritionally imbalanced). The remaining nine specimens were classified as 
true positive specimens (low-yielding and nutritionally imbalanced).  

The 28 specimens in 2018 showed 100% probability of being classified as false posi-
tive, indicating luxury consumption, suboptimum concentration, or nutrient contamina-
tion, therefore, unwise use of fertilizers. The nine specimens at site A in 2019 were low-
yielding and imbalanced, showing less than 16% probability to be classified as true nega-
tive, therefore, the fertilization regime appeared to be inappropriate. At site B in 2019 
where yield always exceeded 11 ton ha−1, there were 4 true negative and 20 false positive 
specimens. The classification of median values across observational specimens indicated 
false positive specimens in 2018, true positive specimens at site A in 2019, and false posi-
tive specimens at site B in 2019.  

3.3. The False Positive Specimens at Site in 2018 
The yield of the diagnosed specimen was 15.5 ton ha−1 compared with 11.0–11.2 ton 

Mg ha−1 for the closest reference specimens (Table 5). There was a large difference between 
regional and local diagnoses (Figure 3). Regional diagnosis indicated an apparent short-
age of N, P, and K despite the high yield. Local diagnosis indicated an excess across 
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nutrients. Compared with its closest compositional neighbor, the grower had fair control 
of N fertilization but failed to adjust other nutrients to crop needs. There were excessive 
accumulations of P and K in the soil. There was a large potential for economic and envi-
ronmental gains by reducing fertilization. 

Table 5. Difference in yield and soil and tissue compositions in the diagnosed specimen in 2018 
and its closest nutritionally balanced neighbors yielding more than 11 Mg ha−1. 

Variable Unit Diagnosed First Nearest Second Nearest Third Nearest 
Yield Mg ha−1 15.5 11.2 11.0 11.1 

Tissue 
N g kg−1 29.5 30.0 28.9 28.0 
P g kg−1 5.9 4.1 3.2 2.8 
K g kg−1 35.0 33.3 30.8 32.0 
Ca g kg−1 21.0 5.1 4.4 4.8 
Mg g kg−1 3.5 1.8 1.9 1.7 
S g kg−1 7.6 5.8 4.7 8.3 
B mg kg−1 64 33 31 28 
Fe mg kg−1 55 42 41 30 
Mn mg kg−1 97 73 84 22 
Zn mg kg−1 62 32 31 28 
Cu mg kg−1 28 29 4 6 

Soil 
pHwater - 6.4 6.3 6.0 6.1 
Clay % 40 61 61 49 
OM % 5.7 3.6 3.8 3.2 

P mg dm−3 131.2 8.6 8.9 19.4 
K mg dm−3 400 298.1 552 132 
Ca cmolc dm−3 12.4 8.5 7.1 9.4 
Mg cmolc dm−3 4.9 2.3 3.1 3.7 

Treatment 
N kg N ha−1 160 400 400 400 
P kg P2O5 ha−1 680 0 400 100 
K kg K2O ha−1 457 400 500 400 

 
Figure 3. Local diagnosis of a high-yielding false positive specimen against the nearest successful 
neighbor before and after removing cationic micronutrients. There is a relative excess of Ca, B, S, 
Mg, and P attributable to luxury consumption. Fv = filling value. Negative differences between 
defective and successful specimens indicate relative shortage. Positive differences indicate relative 
excess. 

  



Agronomy 2022, 12, 2714 9 of 15 
 

 

3.4. The True Positive Specimens at Site A in 2019 
The nearest compositional neighbor showed a marketable yield of 13.9 ton ha−1 com-

pared with 9.7 ton ha−1 for the diagnosed specimen. Soil tests of P, K, Ca, and Mg at site A 
in 2019 for the reference specimen as well as other features are reported in Table 6. Organic 
matter content was 4.5% for the diagnosed site and 3.8% in the reference specimen, indi-
cating a possible need for site-specific management of nitrogen [43]. The grower already 
took action to reduce N fertilization from 400 to 130 kg total N ha−1. Both local and regional 
diagnoses indicated tissue P, K, Ca, and Mg excess compared with the three closest tissue 
compositional neighbors (Table 6). Factor-specific diagnosis at the local scale indicated 
relative excess of macronutrients, as well as Zn and Cu (Figure 4). However, the Zn and 
Cu levels must vary with the time and rate of fungicide applications. Compared with its 
closest composition neighbor, the producer reduced N application. 

Table 6. Difference in yield and soil and tissue compositions in the diagnosed specimen at site A 
in 2019 and its closest nutritionally balanced neighbors yielding more than 11 ton ha−1. 

Variable Unit Diagnosed First Nearest Second Nearest Third Nearest 
Yield ton ha−1 9.7 13.9 11.0 11.4 

Tissue 
N g kg−1 39.2 26.0 28.9 28.8 
P g kg−1 4.8 2.9 3.2 2.6 
K g kg−1 48.7 28.1 30.8 25.1 
Ca g kg−1 8.4 4.1 4.4 3.6 
Mg g kg−1 4.5 2.0 1.9 1.4 
S g kg−1 5.1 4.5 4.7 7.9 
B mg kg−1 202 272 315 255 
Fe mg kg−1 1264 857 410 420 
Mn mg kg−1 478 550 840 216 
Zn mg kg−1 288 185 308 263 
Cu mg kg−1 63 30 43 38 

Soil 
pHwater  6.0 6.0 6.0 6.1 
Clay % 39 61 61 49 
OM % 4.5 3.8 3.8 3.2 

P mg dm−3 47.5 31.7 8.9 15.2 
K mg dm−3 296 112.3 552 132 
Ca cmolc dm−3 15.3 7.1 7.1 9.4 
Mg cmolc dm−3 5.0 3.1 3.1 3.7 

Treatment 
N kg N ha−1 130 300 300 300 

P kg P2O5 
ha−1 

300 800 400 0 

K 
kg K2O 

ha−1 150 400 500 400 
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Figure 4. Nutrient diagnosis at local scale at site A in 2019 slightly differed from nutrient diagnosis 
at the regional scale. The difference in Cu diagnosis is attributable to the time and rate of fungicide 
applications. Fv = filling value. Negative differences between defective and successful specimens 
indicate relative shortage. Positive differences indicate relative excess. 

4. Discussion 
4.1. Factor-Specific Optimum Nutrient Levels 

At optimum yield, N requirements generally depend on crop yield and tissue N con-
tent. K bioavailability depends on the clay type, and P bioavailability depends on the plant 
rooting pattern and competition, root hairs, mycorrhizal and other microbial associations, 
and also soil P sorption capacity and soil chemicals, such as pH, or physical barriers 
[44,45]. Considering those limitations, nutrient budgets were elaborated using a sequence 
of equations and plant- and soil-specific coefficients [34]. Although partially applied to 
garlic nutrition [1], such an approach could be inaccurate if not validated by fertilizer trials 
as was the case for tomato (Solanum lycopersicum L.) in São Paulo state, Brazil [46]. Alter-
natively, tissue testing can integrate several growth-impacting factors [15]. However, 
there are currently no reliable guidelines for tissue testing that address the nutrient man-
agement of garlic at the local scale. 

Seasonal variations in tissue nutrient concentrations depend on biomass accumula-
tion at a given developmental stage under specific growing conditions [21]. Fast-growing 
crops take up more N than slow-growing crops during their vegetative phase when most 
decisions on fertilization are made [21]. The N, P, and K concentration and dilution phe-
nomena show allometric relationships with plant biomass [21,47]. Indeed, N, P, and K 
concentrations in plants tend to decrease simultaneously through time [17]. Because nu-
trient allocation patterns in response to the abiotic or biotic environments are plastic 
[48,49], tissue analytical results should not be interpreted in isolation. We showed that 
informing the machine learning model with an increasing number of yield-impacting abi-
otic and biotic features can increase model accuracy. Tissue sampling position, plant de-
velopmental stage, row spacing, plant population, fertilizer source, placement, rate and 
timing, and pest control were assumed to be similar between sites as current practices in 
the region. 

4.2. Prediction of Garlic Yields and Nutrient Limitations  
Machine learning methods can address the specificity of factor combinations impact-

ing crop nutrition and yield. A minimum dataset easy to acquire by garlic growers may 
include cultivar, the preceding crop, planting date, tissue test, soil test, fertilization, and 
climatic factors impacting plant growth during the vegetative phase up to tissue sampling. 
Because late-season tissue nutrient diagnosis is an ex ante approach to predict final yield 
with uncertainty, growers may prefer the classification mode to provide the probability 
of reaching the selected target yield.  

Growers often report differential growth patterns for plants growing on the same 
field without any nutrient deficiency symptoms. Those plants are typically false negative 
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specimens. In this case, the abnormally low growth pattern is attributable to stress rather 
than mineral nutrition, caused by factors such as pest damage or adverse soil physical 
conditions. Plants may also be true positive specimens, high-yielding but nutritionally 
mismanaged [20]. The advantages of local over regional diagnoses are that (1) several cli-
matic, edaphic, and managerial growth factors can be trustfully assumed to be equal for 
the same ecological neighborhood, and (2) yield target is realistic for that neighborhood. 
Another advantage of local diagnosis is to avoid over-representation of some ecologically 
uniform groups of true negative specimens that may not be representative of local condi-
tions but are still used to compute nutrient standards at the regional scale. The focus is to 
consider local conditions comparable to those of the diagnosed specimen to run the diag-
nosis. The authors of [27] and [26] thus developed the concept of “enchanting islands” as 
successful environments where controllable factors can be optimized. Leitzke Betemps et 
al. (2020) also called such benchmark locations “Humboldtian loci” or “Ilhas Encantadas” 
in Portuguese. That is, mathematical simulations for nutritional diagnoses in geograph-
ically close locations, taking into account areas of adequate productivity (Humboldtian 
loci) as a reference, which are surrounded by areas with low productivity. The objective 
was to address controllable factors in such a way to re-establish nutrient balance or heal 
physically unhealthy soils in an economically and environmentally viable fashion.  

On the other hand, nutrient imbalance to be tackled should not be diagnosed by ex-
amining nutrients separately. Any nutrient level is impacted by the level of other nutrients 
under Liebscher’s law of the optimum [50]. This phenomenon has been reported as “nu-
trient interactions” [16], “dual or pairwise interactions” [51], “multinutrient interactions” 
[52], “nutrient crosstalks” [53] or, in CoDa terms, “resonance within the simplex” [24]. 
Vahl de Paula et al. (2020) viewed soil and tissue compositions as unique combinations of 
nutrients that differ from “Frankenstein-built” regional standards, that is, constructed 
from data that do not interact with each other and do not provide useful information for 
nutritional diagnosis, averaged across contrasting growth-impacting factors.  

The geometry of log ratio transformations facilitates the search for nutritionally close 
compositional neighbors growing under comparable conditions. Where nutrient imbal-
ance is detected by the machine learning model, nutrients can be classified in a relative 
order of limitation to yield to assist making wise decisions on how to adjust fertilization. 
The perturbation vector [24] used to classify nutrients resembles the deviation from opti-
mum percentage [42], but the benchmark compositions can be tied to attainable yields 
among true negative specimens located in nearby “Ilhas Encantadas”.  

4.3. Need for Large and Diversified Datasets 
Beaufils (1971) documented several features impacting yield parameters as follows: 

(1) vegetative conditions such as appearance (normal or abnormal plants or stands as lux-
urious, luxurious to medium, medium, medium to poor, or poor), tissue sampling posi-
tion, plant age measured by the difference between plantation and tissue sampling dates, 
hour of tissue sampling, leaf color, plant height, visual symptoms, disease, and insect in-
festation; (2) weather conditions such as rainfall, temperature, wind, and light intensity; 
(3) cultivation practices such as cultivar, date of planting, row spacing, plant population, 
fertilizer source, placement, rate and timing, pesticides, and site history; (4) soil chemical, 
physical, and mechanical quality; and (5) leaf analysis. Biological soil quality based on 
tools of metagenomics is also gaining acceptance [54]. While the test dataset in 2018–2019 
showed features that differed from the training dataset, yield class predictions from ex-
trapolated features must be interpreted with caution. Nutrient diagnosis using the ran-
dom forest classification model also depended on the selected cutoff yield and the number 
of factors documented in the dataset. 

Yield of garlic could be predicted accurately using a dataset easy to acquire by the 
grower, including cultivar, fertilization, tissue analysis, soil analysis, and the preceding 
crop and climatic conditions between plantation and tissue sampling dates. Composi-
tional log ratio methods provided an order of nutrient limitations to yield useful benefits 
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to customize fertilizer recommendations at the local scale. Nevertheless, large and diver-
sified datasets should thus be documented by experimental and observational data in col-
laboration with stakeholders. 

5. Conclusions 
Optimum nutrient combinations to reach high-yield level under specific local condi-

tions were shown to be factor specific. Tissue analysis alone returned an accuracy of 0.750 
in regression mode, and of 0.891 in classification mode using a yield cutoff of 11 ton ha−1. 
However, accuracy reached 0.855 in regression mode and 0.912 in classification mode 
where models included all factors documented in the dataset. Because biomass produc-
tion and other factors must impact tissue compositions, it is recommended to include all 
factors that are easy to acquire by the grower to run nutrient diagnosis of garlic crops. 

Garlic can grow successfully under various combinations of nutrients subjected to a 
number of edaphic and managerial local factors. Local nutrient diagnosis may differ from 
regional diagnosis because several yield-impacting factors are taken into account and 
benchmark compositions are representative of local conditions. As datasets become larger 
in size and diversity, local diagnosis will provide effective and economical use of nutrient 
resources to reach a high yield of garlic. Increased economic and environmental concerns 
should cause many growers to re-assess nutrient management strategies so that inputs 
and costs are minimized while yield expectations are met. Collaboration among stake-
holders is required to tackle the numerous factor combinations of yield-impacting factors 
and to address knowledge gaps to be filled by additional fertilizer trials. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/s22218412/s1, Table S1: Dataset of garlic production, climate 
and soil and tissue analysis. 
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