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Abstract: Continuous crop monitoring often requires a time-series set of satellite images. Since
satellite images have a trade-off in spatial and temporal resolution, spatiotemporal image fusion
(STIF) has been applied to construct time-series images at a consistent scale. With the increased
availability of high spatial resolution images, it is necessary to develop a new STIF model that
can effectively reflect the properties of high spatial resolution satellite images for small-scale crop
field monitoring. This paper proposes an advanced STIF model using a single image pair, called
high spatial resolution image fusion using object-based weighting (HIFOW), for blending high
spatial resolution satellite images. The four-step weighted-function approach of HIFOW includes (1)
temporal relationship modeling, (2) object extraction using image segmentation, (3) weighting based
on object information, and (4) residual correction to quantify temporal variability between the base
and prediction dates and also represent both spectral patterns at the prediction date and spatial details
of fine-scale images. The specific procedures tailored for blending fine-scale images are the extraction
of object-based change and structural information and their application to weight determination.
The potential of HIFOW was evaluated from the experiments on agricultural sites using Sentinel-2
and RapidEye images. HIFOW was compared with three existing STIF models, including the spatial
and temporal adaptive reflectance fusion model (STARFM), flexible spatiotemporal data fusion
(FSDAF), and Fit-FC. Experimental results revealed that the HIFOW prediction could restore detailed
spatial patterns within crop fields and clear crop boundaries with less spectral distortion, which
was not represented in the prediction results of the other three models. Consequently, HIFOW
achieved the best prediction performance in terms of accuracy and structural similarity for all the
spectral bands. Other than the reflectance prediction, HIFOW also yielded superior prediction
performance for blending normalized difference vegetation index images. These findings indicate
that HIFOW could be a potential solution for constructing high spatial resolution time-series images
in small-scale croplands.

Keywords: multi-sensor images; resolution; image segmentation; crop monitoring

1. Introduction

Satellite images have been widely used to acquire quantitative information for Earth’s
environmental monitoring and modeling at various spatial and temporal scales [1–5].
As each single-sensor satellite image has its own spatial and temporal resolution, it is often
challenging to use satellite images with resolutions optimal for specific applications [6].
For example, monitoring agricultural environments requires multi-temporal satellite image
sets depending on the scale of the target regions. Satellite images with medium or low
spatial resolution, such as MODIS and Landsat images, can be effectively utilized for
nationwide or regional crop monitoring and thematic mapping [7–9]. However, their
spatial resolutions are too coarse to be applied for detailed local analysis in small-scale
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croplands [10]. For example, the average areas of paddy rice fields and dry fields in Korea
are 0.14 ha and 0.11 ha, respectively [11]. Thus, low spatial resolution satellite images
are not adequate for monitoring such small-scale crop fields. Meanwhile, high spatial
resolution satellite images, including PlanetScope, WorldView, and RapidEye, are usually
required for crop mapping or crop yield prediction at a field scale [12–14]. However,
commercial satellite images with high spatial resolution are temporally sparse due to actual
aperiodic acquisitions and cloud contamination, limiting their utilization for time-series
analysis [6].

To address such a trade-off between spatial and temporal resolutions for a single-
sensor satellite image, blending multi-sensor images with different spatial and temporal
resolutions can be an effective alternative to generate images with optimal resolutions [15].
Such a multi-sensor image fusion approach is known as spatiotemporal image fusion
(STIF) [16,17] (a list of all abbreviations can be found in Appendix A). STIF aims at generat-
ing fine spatiotemporal resolution (hereafter referred to as FST) imagery by blending fine
temporal resolution but coarse spatial resolution (hereafter referred to as FTCS) imagery
with coarse temporal resolution but fine spatial resolution (hereafter referred to as CTFS)
imagery. FST imagery generated by STIF can be effectively applied to long-term crop fields
monitoring at a fine scale by overcoming the limitations of single-sensor satellite imagery
in spatial and temporal resolutions [10,16].

Many STIF models have been proposed after the pioneering work by Gao et al. [18].
The core principle of any STIF model is first to quantify the relationship between pairs
of FTCS and CTFS images acquired at the same or similar date (such a date is hereafter
referred to as a base date). By utilizing the quantified relationship of pair images at the
base dates, FST imagery is then predicted at a prediction date in which only FTCS imagery
is available. STIF models can be grouped into four categories: weighted function-based,
unmixing-based, learning-based, and hybrid models [16,17]. Weighted function-based
models predict FST imagery at the prediction date by computing weights considering
the temporal, spatial, and spectral similarity between FTCS and CTFS images at the base
date [18–20]. Unmixing-based models predict FST imagery at the prediction date by
considering fractional land-cover information extracted from FTCS images through spectral
mixture analysis [21,22]. Learning-based models quantify the relationship between image
pairs through learning-based feature extraction processes from image pairs [23–27]. Hybrid
models combine two or more of the above-mentioned fusion types [28].

All STIF models utilize at least a single image pair or multiple image pairs at the base
dates as inputs, as well as one FTCS image at the prediction date. Using multiple image
pairs is more likely to improve prediction performance than using a single pair, owing to the
rich information content for quantifying the relationship between FTCS and CTFS images;
however, this is not always the case [29,30]. Moreover, the collection of multiple image
pairs is not always possible, as the acquisition of cloud-free optical images is often limited
by atmospheric conditions. In particular, the temporal sparseness of commercial high-
spatial-resolution satellite images makes it difficult or even impossible to collect multiple
image pairs for STIF. For such a limited data case, using a single image pair for STIF using
high spatial resolution satellite images is desirable for small-scale cropland monitoring.

From a methodological viewpoint, the feasibility of existing STIF models, which
have been developed to blend satellite images with medium or low spatial resolutions,
should be tested prior to the development of new STIF models. Park et al. [31] evaluated
the applicability of existing STIF models to create high resolution images with a spatial
resolution of 5 m by blending Sentinel-2 and RapidEye images. From experiments in
small-scale croplands, blurring was observed at the boundary of crop fields, and local
details inside small-sized fields could not be reproduced. Furthermore, the existing models
yielded the prediction result, reflecting more spatial patterns in image pairs at the base
date than the FTCS imagery at the prediction date. These results indicate that the direct
application of existing STIF models to the fusion of high spatial resolution images is not
appropriate for small-scale croplands. Thus, advanced models for STIF of high spatial
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resolution images should be developed to reflect typical characteristics in small-scale crop
fields, such as detailed spatial patterns of crop fields and temporal changes occurring
between the base and prediction dates (e.g., phenological and abrupt changes).

To the best of our knowledge, very few studies have been conducted to blend satellite
images with high spatial resolution. Jiang et al. [32] proposed a high-resolution spatiotem-
poral image fusion (HISTIF) to blend Gaofen-1 images with Sentinel-2 or Landsat images
for crop monitoring at a subfield level. Despite the effectiveness of HISTIF, the major
processing steps focused on reducing geometrical and spectral mismatches between multi-
sensor images, and little attention was paid to reflecting both local details and changes in
spatial patterns.

To address such challenging issues in STIF for small-scale cropland monitoring, this
study proposes a novel STIF model using a single image pair, called high spatial resolution
image fusion using object-based weighting (HIFOW), to blend high spatial resolution
satellite images. HIFOW includes a complete pipeline to properly cope with the following
three issues:

(1) how to depict spatial structures well and change patterns at a fine scale,
(2) how to estimate temporal variations between the base and prediction dates,
(3) how to account for spectral patterns of the imagery at the prediction date.

The first issue is of great importance for crop field monitoring at a fine scale, and the
last two issues are associated with the extraction of temporal change information in crop
fields. To this end, a four-step weighted function-based approach is adopted in HIFOW to
create prediction results satisfying the above three issues. Methodological developments
and the potential of HIFOW are demonstrated through STIF experiments on blending
Sentinel-2 and RapidEye images at two agricultural sites.

2. Methods

As shown in Figure 1, HIFOW consists of four analytical steps: (1) temporal relation-
ship modeling (hereafter referred to as TM), (2) object extraction using image segmentation,
(3) weighting based on object information (hereafter referred to as WO), and (4) residual
correction. The detailed explanations of each processing step are given as follows:
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2.1. Temporal Relationship Modeling (TM)

In this step, a coarse-scale temporal relationship between FTCS images obtained at
base and prediction dates is first estimated through local linear regression modeling. This
step is employed to estimate temporal variability in spectral reflectance between the base
and prediction dates.

Let t0 and tp be the base date and the prediction date, respectively. In addition,
suppose that C(X, bn, t0) and C

(
X, bn, tp

)
are the reflectance in the nth spectral band (bn)

of a coarse-scale pixel with its centroid X of the FTCS imagery at t0 and tp, respectively.
This study considers a local regression model to quantify local variability instead of a global
regression model [33]. The local regression model, which uses C(X, bn, t0) and C

(
X, bn, tp

)
as an independent variable and a dependent variable, respectively, is fitted within the
local window:

C
(
X, bn, tp

)
= a0(X, bn) + a1(X, bn)C(X, bn, t0) + R(X, bn), (1)

where a0(X, bn) and a1(X, bn) are two regression coefficients for the intercept and slope
within the local window, respectively. R(X, bn) is the residual at a coarse scale that cannot
be explained by the independent variable.

The linear relationship between the CTFS images modeled using Equation (1) is then
applied to the CTFS imagery at t0. Let F(x, bn, t0) be the fine-scale CTFS imagery at any
fine-scale pixel x in the spectral band bk at t0, where x is located within the coarse-scale
pixel X. Then, the initial prediction at tp (F̂TM

(
x, bn, tp

)
, hereafter referred to as the TM

prediction) is obtained by applying the regression coefficients estimated from Equation (1):

F̂TM
(
x, bn, tp

)
= a0(X, bn) + a1(X, bn)F(x, bn, t0), (2)

where all fine-scale pixels within any coarse-scale pixel (x ∈ X) share the same regression coefficients.

2.2. Object Extraction Using Image Segmentation

As a milestone of HIFOW, quantitative information of objects extracted through image
segmentation using all available images is extracted in the second step to account for the
characteristics of fine-scale images. More specifically, two image segmentation procedures
using different inputs were designed to not only extract change information but also reflect
spatial structures at a fine scale. First, multi-temporal image segmentation was presented
to detect any temporal and structural changes from t0 to tp within the study area. Second,
fine-scale objects are also extracted from the CTFS imagery at t0 to reflect the shape or
structure at a fine scale in the prediction result.

The object-based approach is promising for STIF in small-scale croplands in that
boundaries between crop fields and detailed spatial patterns within crop fields can be
preserved by assigning a different weight per object, unlike the pixel-based approach in the
existing STIF models. In this study, the multi-resolution segmentation approach [34] was
applied to extract objects from input images.

As the first object extraction procedure, this study newly presents multi-temporal
segmentation using two images at different dates as inputs to highlight changed objects
with temporal variations in reflectance between the base and prediction dates. To this end,
multi-spectral bands of the FTCS images at t0 and tp are used sequentially as inputs for
multi-resolution segmentation.

The multi-temporal segmentation approach for object-based change detection is il-
lustrated in Figure 2. Suppose that two objects, A and B, called super-level objects, have
been extracted from the FTCS imagery at t0 (Figure 2a). In the multi-temporal segmenta-
tion approach, further object extraction proceeds using the FTCS imagery at tp and the
boundary information from the first segmentation result. Using the boundaries between
A and B as supplementary information enables any object in the FTCS imagery at t0 to
be divided into other sub-level objects in the FTCS imagery at tp (i.e., B1 and B2 in Fig-
ure 2b) while preserving the object boundaries at t0. Significant changes in reflectance
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of the FTCS imagery at tp result in the further sub-division of any super-level object at
t0. These sub-level objects can be regarded as objects, including spectral and structural
changes between t0 and tp. Meanwhile, if the boundary or shape of any super-level object
(i.e., A in Figure 2b) does not change, it can be considered that the object has no significant
reflectance change that causes a change in shape or structure from t0 to tp. Such objects
are regarded as non-changed ones. After binary labeling of the changed and non-changed
objects (Figure 2c), the label information on temporal changes is used to assign different
weights to changed and non-changed objects in step 3.
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Two objects, A and B, at the base date; (b) three objects, A, B1, and B2, at the prediction date, where
object B at the base date is sub-divided into two objects, B1 and B2; (c) labeling of the changed and
non-changed objects, where NC and C indicate the non-changed and changed objects, respectively.

The objects at a fine scale are further extracted through image segmentation using the
CTFS imagery at t0 to obtain fine-scale structural information. The structural information
includes boundaries between objects with different spectral responses within the same land-
cover type, as well as boundaries between different land-cover types. Since pixels within a
specific object are likely to have similar spectral reflectance, the object boundary information
at a fine scale can be used to extract pixels with spectral similarity for determining weights
in the third step of HIFOW.

2.3. Weighting Based on Object Information (WO)

In the third step, a specific procedure is presented that determines the weight fully
reflecting temporal variations in reflectance. The key idea in step 3 is to determine the
weight that not only complements the partial temporal change information from the TM
prediction but also reflects the spectral patterns of the FTCS imagery at tp. If the weight
is assigned solely to one information source (i.e., the TM prediction or the FTCS imagery
at tp), the characteristics of images acquired at both t0 and tp cannot be fully reflected in
the prediction result. Therefore, it is reasonable to consider the weight to be applied to all
the available information sources, including the TM prediction and the FTCS imagery at
tp. However, the two sources of information on temporal change have differing levels of
richness of change information. Thus, the weight inter-connected by the relative importance
of the two information sources is determined to fully utilize the available data.

To reflect the temporal variability in the weight, the absolute difference in reflectance
between FTCS images at t0 and tp is used as a measure of temporal change. The absolute
difference measures the magnitude of the temporal change. Since only FTCS images are
available at t0 and tp, it is not feasible to calculate the difference at a fine scale. Thus,
the approximate absolute temporal difference is measured from the FTCS imagery re-
sampled to the fine scale. Furthermore, the spatial context is considered to determine
the weight based on the temporal difference. The spatial contextual information can be
accounted for by quantifying the contribution of neighboring pixels using the fine-scale
object information in step 2. To this end, a local search neighborhood centered at each
fine-scale pixel is first set up to calculate the contributions from neighboring pixels for the
weight determination. Pixels belonging to the same fine-scale object as the central pixel are
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selected as the neighboring ones within the search neighborhood. This selection procedure
is considered because any pixels within the same object are likely to be spectrally similar
and have the same land-cover type.

As a measure of temporal variability, the local temporal difference index (D) within
the search neighborhood is defined as:

D(xk, bn) =
∣∣ CF

(
xk, bn, tp

)
− CF(xk, bn, t0)

∣∣, (3)

where CF is the FTCS imagery resampled to the fine scale. xk denotes the locations of the
selected neighboring pixels within the predefined local search neighborhood centered at x.

As different land-cover types are likely to exhibit different temporal variability, D in
Equation (3) is further normalized using the maximum value to adjust the range of the D
values. The weight at x is then calculated as the average of normalized D values within the
search neighborhood as:

w(x, bn) =
1
K ∑K

k=0
D(xk, bn)

Dmax
, (4)

where K and Dmax are the number of selected neighboring pixels and the maximum D
value within the search neighborhood, respectively.

As the weight w in Equation (4) directly reflects the temporal difference between t0
and tp, it is further used to impose the relative importance between the TM prediction and
the FTCS imagery at tp. As for the criterion for determining the relative importance using a
single weight value w, this study assigns different weights to changed and non-changed
objects extracted from multi-temporal segmentation in step 2. The TM prediction can
account for the temporal variability of pixels with fewer temporal changes. On the other
hand, the temporal variability of significantly changed pixels can be better explained by the
FTCS imagery at tp than by the TM prediction. Thus, the importance of the FTCS imagery
at tp is relatively more significant than that of the TM prediction, which does not have
enough information at tp. In contrast, more weight should be assigned to the TM prediction
for any pixel within non-changed objects because the temporal variability is sufficiently
explained by the TM prediction.

Based on the above relative importance of temporal changes, the prediction (F̂WO)
in step 3 is defined as the different weighted sum of changed and non-changed objects:

F̂WO
(
x, bn, tp

)
=

{
(1− w(x, bn))F̂TM

(
x, bn, tp

)
+ w(x, bn)CF

(
x, bn, tp

)
if x ∈ OC

w(x, bn)F̂TM
(
x, bn, tp

)
+ (1− w(x, bn))CF

(
x, bn, tp

)
if x ∈ ONC

, (5)

where OC and ONC are the changed and non-changed objects labeled in step 2. Hereafter,
F̂WO is referred to as the WO prediction.

2.4. Residual Correction

The WO prediction obtained in step 3 may contain smoothed or blurred phenomena
through the weighted combination procedure. Thus, improvement in the WO prediction
is required to mitigate the blurring effects. In addition, there remain residuals after the
regression modeling in step 1. The residuals indicate the components that cannot be
accounted for by independent variables. In the first step, the FTCS imagery at t0 is used
as the independent variable to account for the spectral variability of the FTCS imagery at
tp. As a result, the residuals may contain temporal variation not modeled with regression.
Thus, the residual correction can provide supplementary information, thereby improving
the quality of the WO prediction.

As the residual correction requires the residuals at a fine scale, the coarse-scale residu-
als in Equation (1) should be spatially downscaled. In this study, as a simple but efficient
downscaling method, a spline interpolator widely applied to the spatial downscaling of
raster data [35,36] is employed for the residual downscaling.
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The final HIFOW prediction (F̂HIFOW), which is considered the FST imagery, is gener-
ated by adding the fine-scale residuals to the WO prediction in step 3:

F̂HIFOW
(
x, bn, tp

)
= F̂WO

(
x, bn, tp

)
+ R̂(x, bn), (6)

where R̂(x, bn) is the fine-scale residual at x estimated by the spline interpolator.

3. Materials and Experimental Setup
3.1. Study Areas

Experiments were conducted at two agricultural sites in Korea, Hapcheon (Site 1)
and Haenam (Site 2), to evaluate the practicability of HIFOW (Figure 3). The two agricul-
tural sites were selected because phenological changes in crops and structural changes
in fields are distinct, and crops are grown in small-scale fields. The availability of multi-
temporal cloud-free images is usually limited in Korea. Hence, when the cloud-free regions
were first extracted, the area covered by the two sites was relatively small. The total areas
of the two sites are 676 ha and 1156 ha, respectively.
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Figure 3. Sentinel-2 and RapidEye color composite images at the two sites (NIR-red-green as RGB).

Site 1 includes small crop fields where garlic and onions are mainly grown, as well
as small reservoirs and built-up areas. Paddy rice fields are the primary land-cover type
of Site 2. Some grasslands within unmanaged paddy fields and parts of lakes also exist
at Site 2. Site 2 is also covered with cabbage fields and barren lands in the northeastern
and eastern parts. As shown in Figure 3, spatial heterogeneity between the two sites is
quite different. The crop field size at Site 2 is relatively larger than that at Site 1. When
class homogeneity is calculated as an indicator of the landscape homogeneity [37], class
homogeneity for Site 1 is 0.78 with a standard deviation value of 0.22. In contrast, Site
2 has a class homogeneity value of 0.85 with a standard deviation value of 0.2, which
indicates Site 1 is more heterogeneous than Site 2. Thus, the two sites were adequate for
the comparative study.

3.2. Satellite Images

Sentinel-2 images with a spatial resolution of 10 m and 20 m and RapidEye images
with a spatial resolution of 5 m were used as inputs for the STIF experiments (Table 1).
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The two satellite images were selected because they have the appropriate spatial resolution
for monitoring small-scale crop fields and also have similar spectral bands, including the
red-edge band.

Table 1. Summary of Sentinel-2 and RapidEye images used for the experiments.

Specification Sentinel-2 RapidEye

Product type Ortho Level-1C Ortho Level-3A

Spatial resolution 10 m (Green, Red, NIR 1)
20 m (Red-edge)

5 m

Spectral band
(Central wavelength)

Green (560 nm)
Red (665 nm)

Red-edge (705 nm)
NIR 1 (842 nm)

Green (555 nm)
Red (658 nm)

Red-edge (710 nm)
NIR 1 (805 nm)

Acquisition
date

t0
2 (Site 1) 14 March 2018 12 March 2018

tp
3 (Site 1) 10 May 2018 10 May 2018

t0
2 (Site 2) 2 June 2019 4 June 2019

tp
3 (Site 2) 10 October 2019 9 October 2019

1 near infrared, 2 base date, and 3 prediction date.

In this study, the Sentinel-2 imagery was regarded as the FTCS imagery. The Sentinel-2
mission provides land surface imagery every 5 days through a combined constellation of
two Sentinel-2 satellites (Sentinel-2A and -2B) [38]. Four spectral bands, including green,
red, red-edge, and near-infrared (NIR) bands, were used for the experiments because they
provide useful information for vegetation monitoring. Out of the four red-edge bands,
band 5, with a central wavelength of 705 nm, was selected because its central wavelength
is similar to that of the red-edge band of RapidEye imagery (710 nm). The Sentinel-2
reflectance products covering the study sites were downloaded from the Copernicus Open
Access Hub [39].

The RapidEye is a constellation of five identical satellites, allowing image acquisition
at a maximum of 5.5-day intervals, even though the revisit cycle of each satellite is 28 days
[40]. Each RapidEye satellite has a swath width of approximately 77 km, capturing a
relatively narrow range of images compared with the Sentinel-2 imagery (290 km). If the
study area of interest is not in the path of the five satellites, the image acquisition day
is likely to be more than the ideal 5.5 days. Thus, the RapidEye imagery with a spatial
resolution of 5 m was considered as the CTFS imagery for STIF. As the input images for STIF
should have the same physical quantity [28,41,42], the level-3A products were converted to
reflectance [43], as with the Sentinel-2 imagery.

By considering the growth cycles of garlic and onions mainly grown in Site 1, two images
acquired in March (growing stage) and May (harvesting stage) were selected as inputs
for STIF. In the case of Site 2, two images acquired in June (growing stage) and October
(harvesting stage) were also used as inputs for STIF. It should be noted that the spectral
change in vegetation between t0 and tp is significant in both study sites, which makes
it suitable to evaluate the ability of HIFOW to depict temporal variability in spectral
reflectance in the prediction result. As shown in Table 1, not all cloud-free Sentinel-2
and RapidEye images used in the experiment were obtained on the same date; however,
the images acquired on a similar date were considered as pair images due to their similar
spectral patterns. The RapidEye image at tp was assumed to be unavailable for STIF and
used as the test data for computation of accuracy statistics.

Several preprocessing procedures were implemented using ENVI software version
5.6 (L3Harris Technologies, Broomfield, CO, USA), including geometric correction with
digital topographic maps and sub-setting. When FTCS images (i.e., Sentinel-2 images in
this study) need to be converted to a fine scale, we applied bilinear resampling, which has
been widely applied in existing STIF studies.
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3.3. Parameter Settings for HIFOW

The size of the local neighborhood used for both local regression modeling in step
1 and computation of the local temporal difference index in step 3 was set to five by
considering the difference in spatial resolution between Sentinel-2 and RapidEye images as
well as the size and distribution of crop fields.

eCognition [44] was utilized for the multi-resolution segmentation of multi-spectral
images in step 2. In image segmentation, the optimal values of the scale parameter and
the weights for color and shape were set through visual inspection of segmentation results.
After examining the different scale parameter values from 50 to 200 with an interval of 10,
the optimal scale parameter was set to 100 by visual inspection so that objects of smaller
sizes could be generated. With respect to the weights for color and shape, the search range
was set from 0.1 to 0.9 with an interval of 0.1. The criteria for selecting optimal weights for
color and shape were differently applied to two image segmentation procedures. In multi-
temporal segmentation, it is essential to capture changed objects with significant reflectance
changes between t0 and tp. Thus, more importance was given to color. The weights for color
and shape for multi-temporal segmentation were set to 0.8 and 0.2, respectively. Meanwhile,
more weight was assigned to the shape because segmentation using the RapidEye image at
t0 aims to extract the structural information at a fine scale. Finally, 0.4 and 0.6 were selected
as the optimal weights for color and shape, respectively.

3.4. Comparison and Evaluation

The interim prediction results of individual steps (i.e., TM prediction vs. WO predic-
tion vs. final prediction) were first compared before evaluating the practicability of HIFOW
with the existing STIF models. These comparisons can highlight the evolution of prediction
results for each processing step and also confirm the effectiveness of individual steps of
HIFOW.

The predictive performance of HIFOW was compared with three existing STIF models,
including the spatial and temporal adaptive reflectance fusion model (STARFM), flexible
spatiotemporal data fusion (FSDAF), and regression model fitting, spatial filtering, and
residual compensation (Fit-FC). The three existing STIF models were chosen based on the
following reasons: (1) they utilize a single image pair as input data, as in HIFOW, (2) they
include the weight determination or local filtering step based on the local neighborhood
system, and (3) their source code is publicly available [45–47]. For a fair comparison,
the size of the local neighborhood or moving window, which is a parameter common to all
three models, was set to 5, the same size applied to HIFOW. The number of neighboring
pixels that are spectrally similar to the central pixel within the local neighborhood was set
to 10 in consideration of the local neighborhood size. Moreover, the minimum number
of land-cover classes required for FSDAF was set to 7, corresponding to the number of
land-cover types in the two study sites.

The normalized difference vegetation index (NDVI), one of the representative veg-
etation indices [48,49], was further predicted to illustrate the practicability of HIFOW.
The comparison of NDVI prediction was conducted because the two study sites mainly
contain vegetation areas, such as crop fields. The NDVI may be calculated from the pre-
dicted reflectance values of the red and NIR bands. Such a blend-then-index approach is
inevitably affected by errors attached to the prediction of reflectance. Thus, an index-then-
blend approach, where the NDVI values calculated from each sensor image are directly fed
into the STIF model, is preferred to mitigate error propagation problems [50]. In this study,
the index-then-blend approach was employed for the prediction of NDVI.

For the quantitative assessment of prediction performance, accuracy statistics were
computed by comparing the prediction results with the RapidEye image at tp that was
not used for STIF. The root mean square error (RMSE) and the correlation coefficient (CC)
were computed as quantitative accuracy measures. The relative RMSE (rRMSE) was also
computed to consider the different ranges of individual spectral reflectance values. Given
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the actual RapidEye imagery (F(x)) and the predicted result (F̂(x)), the RMSE, rRMSE,
and CC are calculated as:

RMSE =

√√√√ 1
L

L

∑
l=1

(
F̂(xl)− F(xl)

)2, (7)

rRMSE =
RMSE

µ
, (8)

CC =
1
L ∑L

l=1(F(xl)− µ)
(

F̂(xl)− µ̂
)

σ σ ˆ
, (9)

where L is the total number of pixels. µ and σ are the mean and standard deviation values
for the actual imagery, respectively. µ̂ and σ ˆare the mean and standard deviation values
for the predicted imagery, respectively.

The relative improvement index (RI) was also computed to compare RMSE for HIFOW
with other STIF models. The RI in the RMSE of HIFOW over a certain STIF model is
defined as:

RI(%) =
RMSEM − RMSEHIFOW

RMSEM
× 100, (10)

where RMSEHIFOW and RMSEM denote the RMSE values of HIFOW and the specific STIF
model M, respectively.

In addition to the above accuracy measures, the structural similarity (SSIM) was computed
to measure the spatial similarity between actual RapidEye imagery and the prediction
result [51]:

SSIM =
(2µµ̂ + c1)(2Cov + c2)

(µ2 + µ̂2 + c1)
(
σ2 + σ 2̂ + c2

) , (11)

where Cov denotes the covariance between the actual RapidEye imagery and the predicted
result (i.e., the numerator in Equation (9)). c1 and c2 are two constants to avoid the division
instability. SSIM ranges between zero and one, and its ideal value is one. The closer the
SSIM value is to one, the better the prediction results represent the structure of the actual
RapidEye imagery.

4. Results
4.1. Comparison between Interim Results of HIFOW

Figure 4 shows the multi-temporal segmentation results obtained from step 2 in a
certain sub-area of Site 2 for illustration purposes. Figure 4a exhibits the object boundaries
extracted from the Sentinel-2 imagery at t0. The segmentation result for the Sentinel-2
imagery at tp in Figure 4b contains some objects further divided into sub-level objects while
preserving the object boundary at t0. The sub-level objects indicate that they experienced
substantial changes in reflectance between t0 and tp, which can be regarded as changed
objects, as shown in Figure 4c. Thus, the use of the object boundaries from the image at t0
as constraint for image segmentation at tp enabled changed sub-areas to be highlighted as
a single object.

Table 2 lists the accuracy statistics of the interim results by individual steps of HI-
FOW. The HIFOW prediction showed superior prediction performance at both study sites.
As analysis steps were applied sequentially, the predictive performance improved accord-
ingly, except for green and red-edge bands at Site 1. The CC of the WO prediction for
the red-edge band was higher than that of the HIFOW prediction; however, the HIFOW
prediction still yielded the best RMSE and rRMSE.
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Figure 4. Illustration of multi-temporal segmentation results in the sub-area of Site 2. All color
composite images are displayed with NIR-red-green as RGB: (a) Object boundaries superimposed on
Sentinel-2 imagery at the base date (2 June 2018); (b) object boundaries superimposed on Sentinel-2
imagery at the prediction date (10 October 2018); and (c) changed objects highlighted in blue, where
black polygons denote the objects boundaries in both (a,b).

Table 2. Band-wise accuracy statistics of interim prediction results of HIFOW on the two study sites.
The best case is shown in bold.

Statistics Band
Site 1 Site 2

TM 1

Prediction
WO 2

Prediction
HIFOW 3

Prediction
TM 1

Prediction
WO 2

Prediction
HIFOW 3

Prediction

RMSE 4

Green 0.0098 0.0199 0.0054 0.0195 0.0166 0.0165
Red 0.0169 0.0120 0.0089 0.0235 0.0175 0.0174

Red-edge 0.0208 0.0298 0.0187 0.0195 0.0159 0.0167
NIR 0.0270 0.0182 0.0152 0.0379 0.0290 0.0285

rRMSE 5

Green 0.0787 0.1590 0.0433 0.1942 0.1647 0.1643
Red 0.1357 0.0958 0.0714 0.2330 0.1735 0.1726

Red-edge 0.1668 0.2387 0.1500 0.1935 0.1578 0.1658
NIR 0.2160 0.1455 0.1220 0.3762 0.2883 0.2833

CC 6

Green 0.8206 0.7277 0.9549 0.7571 0.8755 0.8830
Red 0.7909 0.9050 0.9572 0.7103 0.8450 0.8604

Red-edge 0.5470 0.8124 0.7646 0.8256 0.8780 0.8831
NIR 0.8980 0.9607 0.9815 0.9037 0.9477 0.9548

SSIM 7

Green 0.8477 0.7631 0.9605 0.8352 0.8741 0.9453
Red 0.8099 0.9137 0.9604 0.8394 0.8855 0.9453

Red-edge 0.6087 0.8438 0.7920 0.7486 0.7766 0.9239
NIR 0.9010 0.9618 0.9819 0.8614 0.9076 0.9599

1 temporal relationship modeling, 2 weighting based on object information,3 high spatial resolution image fusion
using object-based weighting, 4 root mean square error, 5 relative root mean square error, 6 correlation coefficient,
and 7 structural similarity.

Similar results were also obtained at Site 2. The RMSE and CC of the WO prediction
were significantly improved by approximately 20% and 11%, respectively, compared with
the TM prediction. The significant differences in RMSE and CC between the WO and
HIFOW predictions were not observed. However, the increase in SSIM was prominent in
the HIFOW prediction. The residuals retaining the overall structural information within
the Sentinel-2 imagery at tp could increase the SSIM value through the residual correction.

In addition, the improvement in the prediction performance by the sequential ap-
plications of individual steps was more pronounced at Site 1 than at Site 2. As Site 1 is
more locally heterogeneous than Site 2, this result demonstrates the effectiveness of the
sequential application of individual steps of HIFOW for heterogeneous landscapes.
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Figure 5 represents the interim results with the actual RapidEye imagery at Site 2,
where one sub-area is also zoomed in for visual comparison. The TM prediction failed to
produce spectral patterns consistent with the actual RapidEye imagery in several sub-areas.
This spectral distortion is mainly due to the temporal variability of spectral reflectance
between t0 and tp. As the June imagery was used as the independent variable in the
regression modeling of step 1, such a temporal variability could not be well captured in the
TM prediction. Meanwhile, the spectral distortion decreased by applying steps 3 and 4.
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Figure 5. Interim prediction results of HIFOW and actual RapidEye imagery at Site 2 (NIR-red-green
as RGB). The black box marked in the first-row imagery is zoomed in the second row.

In the zoomed images, it is clearly seen that spatial details, including a specific spatial
pattern inside the crop field, were lost in the TM prediction. On the contrary, many spatial
details were reproduced in the WO predictions. The weighted combination using object
information in step 3 significantly decreased the spectral distortion near the field boundary
in the TM prediction. The relatively clearly captured boundaries of crop fields resulted
from the use of object information from the RapidEye imagery at t0. The residual correction
created many enhanced spatial patterns in the HIFOW prediction. These detailed spatial
patterns confirm the improved accuracy statistics of the HIFOW predictions in Table 2.

4.2. Comparison with other STIF Models

Figure 6 shows the prediction results of different STIF models at Site 1. The barren
lands in the eastern part of the study site appeared brighter than the actual RapidEye
imagery, whereas their spectral patterns were predicted to be darker by Fit-FC. Moreover,
most spectral patterns of Fit-FC were spatially blurred and not consistent with the actual
RapidEye imagery. Consequently, it is expected that Fit-FC would yield the worst RMSE
and SSIM.
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No apparent differences between the prediction results of HIFOW and the other
two models were observed at Site 1 from the visual comparison. However, their differences
are clearly shown at Site 2 (Figure 7). The prediction results of STARFM and FSDAF
were very similar, with the greenish color (i.e., very low spectral reflectance in the NIR
band) for grasslands grown in central unmanaged paddy fields. This result is mainly
due to the strong effects of the RapidEye image at t0. As shown in Figure 3, relatively
low spectral reflectance in the NIR band in June was observed in these fields where the
land-cover type was barren in June. As the land-cover type was changed to grassland in
October, STARFM and FSDAF could not depict the spectral pattern at tp. On the other
hand, the prediction result of Fit-FC represented the temporal change in the reflectance of
grassland well. However, the blurred boundaries of some cabbage fields in the northern
and northeastern parts of the study area were observed in the Fit-FC prediction. Meanwhile,
HIFOW produced the prediction results where the color was similar to the actual RapidEye
image, except for some grassland fields with low reflectance in the NIR band.

The differences between the prediction results of the four STIF models are more
clearly highlighted in some zoomed-in sub-areas (Figure 8). The results of STARFM and
FSDAF at Site 1 contained spatially degraded boundaries and spectral distortions. In the
FSDAF prediction, some artifacts were more pronounced than STARFM. The pixel-based
classification contained in FSDAF may result in such artifacts. Severe spectral distortion
was observed in the Fit-FC prediction (e.g., dark blue color patches in Figure 8). In contrast,
blurred boundaries became more apparent, and the color and spatial details of the actual
RapidEye image were well-represented in the HIFOW prediction.
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Figure 8. Prediction results of different STIF models with Sentinel-2 and RapidEye images in the
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Similar results were also obtained from Site 2. Similar to Site 1, STARFM and FSDAF
produced similar prediction results with spectral distortion (e.g., light green field). Discon-
tinuity of some pixels near the field boundary or inside the crop field was observed in the
STARFM prediction. With respect to the Fit-FC prediction, the color tone was relatively
similar to the actual RapidEye image, and the boundaries were clearly restored, compared
with STARFM and FSDAF. However, there is still spectral distortion with isolated pixels
due to salt and pepper effects. Moreover, spatial details inside the field were missing.
Although a somewhat blurred prediction was obtained, HIFOW produced results with
within-field details and spectral patterns similar to the actual image. The restoration of the
fine-scale structures at tp could be achieved in the HIFOW prediction.

Table 3 reports quantitative assessment results for different STIF models. As expected,
the accuracy statistics of HIFOW were consistent with the visual comparison results. HI-
FOW achieved the best prediction performance in terms of all accuracy statistics for both
study sites. The RI in the RMSE of HIFOW is also listed in Table 4. HIFOW improved
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the relative prediction accuracy from 2.6% to 68.2% at Site 1 and from 12.2% to 42.1% at
Site 2. Furthermore, HIFOW exhibited much higher SSIM values than the other three
models for all the spectral bands of both sites. The improvement in prediction accuracy
of HIFOW was more significant in the green and red bands than in the red-edge and NIR
bands. The relative improvement in prediction accuracy of HIFOW was not substantial
for the red-edge band at Site 1. Meanwhile, the prediction performance of HIFOW for
the red-edge band at Site 2 was much improved compared with Site 1. Except for the
red-edge band, the relative improvement in RMSE of HIFOW over the other three models
was much more pronounced at Site 1 than at Site 2, indicating the superiority of HIFOW
for heterogeneous landscapes.

Table 3. Band-wise accuracy statistics of different STIF models at the two study sites. The best case is
shown in bold.

Statistics Band
Site 1 Site 2

STARFM FSDAF Fit-FC HIFOW STARFM FSDAF Fit-FC HIFOW

RMSE

Green 0.0084 0.0082 0.0170 0.0054 0.0248 0.0252 0.0188 0.0165
Red 0.0140 0.0137 0.0229 0.0089 0.0300 0.0299 0.0215 0.0174

Red edge 0.0192 0.0194 0.0206 0.0187 0.0230 0.0235 0.0238 0.0167
NIR 0.0195 0.0218 0.0274 0.0152 0.0350 0.0356 0.0358 0.0285

rRMSE

Green 0.0673 0.0657 0.1361 0.0432 0.2461 0.2508 0.1872 0.1643
Red 0.1121 0.1097 0.1833 0.0713 0.2982 0.2975 0.2140 0.1726

Red edge 0.1537 0.1553 0.1649 0.1497 0.2285 0.2330 0.2360 0.1658
NIR 0.1561 0.1745 0.2194 0.1217 0.3478 0.3535 0.3556 0.2833

CC

Green 0.8757 0.8880 0.6643 0.9549 0.6699 0.6434 0.7804 0.8830
Red 0.8668 0.8748 0.7655 0.9572 0.6209 0.6151 0.7415 0.8604

Red edge 0.6560 0.6521 0.6199 0.7646 0.7639 0.7437 0.7732 0.8831
NIR 0.9551 0.9460 0.8943 0.9815 0.9188 0.9145 0.9110 0.9548

SSIM

Green 0.8929 0.9027 0.7115 0.9605 0.9139 0.8860 0.8658 0.9453
Red 0.8777 0.8848 0.7985 0.9604 0.8900 0.8815 0.8731 0.9453

Red edge 0.6972 0.6933 0.6667 0.7920 0.9027 0.8775 0.8665 0.9239
NIR 0.9563 0.9475 0.8974 0.9819 0.9396 0.9267 0.8954 0.9599

Table 4. Relative improvement in RMSE of HIFOW over three STIF models at the two study sites
(unit: %).

Band
Site1 Site2

STARFM FSDAF Fit-FC STARFM FSDAF Fit-FC

Green 35.7 34.1 68.2 33.2 34.5 12.2
Red 36.4 35.0 61.1 42.1 42.0 19.4

Red edge 2.6 3.6 9.2 27.4 28.8 29.7
NIR 22.1 30.3 44.5 18.5 19.9 20.3

When comparing the prediction performance between the existing three models,
the worst STIF model was Fit-FC in terms of RMSE, except for the green and red bands
at Site 2. As expected from Figure 6–8, the SSIM of Fit-FC was the lowest for all spectral
bands of both sites due to spatial blurring and severe spectral distortion. STARFM yielded
the best RMSE for the red-edge and NIR bands at both sites and the highest SSIM for all
spectral bands at Site 2. The RMSE and SSIM of FSDAF were better than those of STARFM
and Fit-FC for the green and red bands at Site 1, whereas the RMSE of FSDAF was the
worst for the green and red bands at Site 2.

The quantitative accuracy assessment results were further analyzed using the scatter-
density plots of predicted values versus actual values in the red and NIR bands for individ-
ual models at both sites (Figures 9 and 10). The two spectral bands were selected because
they are usually utilized for the NDVI calculation.
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With respect to Site 1, the data points of HIFOW were spread around the diagonal
line and were more aggregated, consequently achieving a higher accuracy of HIFOW
(Figure 9). The data points of STARFM and FSDAF were distributed similarly for both
spectral bands; thus, the two models had similar RMSE values, as shown in Table 3.
The noticeable result was obtained from the Fit-FC prediction for the red band. Most of the
observation values of the red band from the actual RapidEye image are between 0.07 and
0.15. Fit-FC overestimated the values in this interval. Moreover, large values were seriously
underestimated in the Fit-FC prediction. For the NIR band, the data points of the Fit-FC
prediction exhibited greater dispersion and less aggregation, which led to the dark color
in some crop fields, as shown in Figure 6. These unreliable predictions led to the poorest
prediction performance of Fit-FC in terms of all the accuracy statistics. Some overestimated
outliers, approximately 0.2 and 0.3 for the red and NIR bands, respectively, were observed
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in the HIFOW prediction. However, as these values were not too many and were scattered,
their impact on the accuracy of statistics was insignificant.

With respect to Site 2, all STIF models presented more dispersion than Site 1 for two
spectral bands (Figure 10). However, HIFOW still generated more aggregated predictions
within the interval over which most actual values lie. Moreover, the data points of the
HIFOW prediction fell closer to the diagonal line than those of other models. In particular,
the dispersion was more severe for the red band than for the NIR band. The overestimation
was observed for all models. Fit-FC and HIFOW presented more aggregation than STARFM
and FSDAF. The greater density of Fit-FC and HIFOW for the NIR band was reflected in
the central grassland fields. Consequently, the reflectance of the grassland was depicted
well in the predictions of Fit-FC and HIFOW. The relatively low CC value of HIFOW for
the red band in Table 3 resulted from scattered outliers around an actual value of 0.1.

4.3. NDVI Prediction Results

Figure 11 presents the accuracy assessment results of NDVI predictions using the
index-then-blend approach. It reveals that HIFOW yielded the best prediction performance
with the lowest RMSE, the largest CC, and the largest SSIM for both sites. Compared with
STARFM, FSDAF, and Fit-FC, HIFOW increased the RMSE by 14.1–45.67% for Site 1 and
34.7–36.6% for Site 2. The RMSE of HIFOW at Site 1 was lower than that at Site 2 (0.0477
for Site 1 vs. 0.0736 for Site 2), and the SSIM of Site 1 was also greater than that of Site 2.
The CC also showed almost similar results to the SSIM. Fit-FC was the poorest STIF model
in the NDVI prediction, as well as in the prediction of reflectance.
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Figure 12 illustrates the visual comparison results of NDVI predictions and absolute
errors of different STIF models in the zoomed sub-area on Site 1. The other three models
produced blurred results at the boundaries between crop fields and inside the crop fields.
As a result, the absolute errors near the boundaries were greater than 0.2 for FSDAF and
Fit-FC. In contrast, clear boundaries and consistent values within crop fields were restored
in the HIFOW prediction. These results demonstrate the superiority of HIFOW for the
prediction of NDVI and reflectance.
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5. Discussion
5.1. Novelty of HIFOW

HIFOW was designed to consider three additional challenges associated with the
STIF of high spatial resolution images, as mentioned in the introduction. All four steps of
HIFOW are logically inter-linked within a unified framework. The TM prediction in step
1 is used as input for the weighted combination in step 3. The object extraction results in
step 2 are also utilized in step 3. The residuals in step 1 and the OW prediction in step 3 are
combined in step 4 to obtain a final prediction result.

Existing STIF models tend to generate prediction results greatly affected by the pair
images at t0. Thus, prediction performance is likely to decrease as the temporal distance
or spectral variability between t0 and tp becomes greater [31]. The acquisition of high
spatial resolution images is often limited compared with coarse spatial resolution images.
Thus, there is a great demand for effectively utilizing images acquired when t0 and tp are
temporally distant. As a solution to these limitations, HIFOW adopted the assumption
that the temporal change in the FTCS imagery from t0 to tp is also maintained in the
CTFS imagery to reflect the change in spectral reflectance when the difference between
image acquisition dates is great. This assumption was adopted because the temporal
difference in spectral patterns is usually more influential than the difference in spectral
patterns between the CTFS and FTCS images. STARFM also adopts this assumption for
STIF. However, STARFM could not fully depict the spectral pattern at tp in this study when
the difference in spectral reflectance between t0 and tp was significant (Figures 6 and 7).
HIFOW could overcome the limitation through weighted combinations of information
sources with different information richness for temporal variability. More weights were
assigned to the spectral pattern from the resampled FTCS imagery at tp for changed
objects, whereas more weights were assigned to the TM prediction in step 1 for non-
changed objects. The latter weight assignment was implemented because only temporal
differences in spectral reflectance need to be taken into account for non-changed objects.
These different weighted combinations of complementary information based on the relative
importance could generate a prediction result that reflects both temporal variability and
spectral patterns at tp.

The other novelty of HIFOW lies in the use of structural information in an object unit,
not a pixel unit, which has great potential in blending fine-scale images. STARFM and
Fit-FC consider the spatial contextual information by searching spectrally similar neighbor
pixels, similar to HIFOW. However, the spatial contextual information is purely based
on spectral reflectance in a pixel unit, which failed to fully represent meaningful spatial
details in this study. On the other hand, the use of object-based information through image
segmentation in HIFOW enabled reliable prediction of spatial details because any object
belonging to the same land-cover type could be further divided into sub-level objects
according to their spectral variability. As a result, HIFOW achieved the best SSIM values
in both sites and better accuracy at Site 1 with more class heterogeneity than at Site 2
(Tables 2–4), which clearly demonstrates the benefit of using object-based information.
This advantage can be more highlighted when fine-scale images are used for STIF in
heterogeneous landscapes.

Although steps 2 and 3 are the key components of HIFOW, the application of residual
correction as a final step also led to superior prediction performance, as shown in Table 2,
which indicates that all four steps of HIFOW are essential to obtain satisfactory predic-
tion results. The residuals from regression modeling contain two types of information:
(1) temporal variability that regression modeling could not quantify and (2) spatial infor-
mation in the FTCS imagery at tp that was not captured by the FTCS imagery at t0. Due
to the effect of the latter information, the residual correction notably led to a significant
improvement in structural similarity. As the spatial resolution ratio between Sentinel-2 and
RapidEye images is two for the green, red, and NIR bands, the contribution of the residual
correction was more pronounced. As expected, the HIFOW prediction showed a lower
SSIM on Site 1 and a larger RMSE on Site 2 for the red-edge band (Table 2). This result is
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mainly due to the relatively larger spatial resolution ratio of the red-edge band than the
green, red, and NIR bands. Nevertheless, the HIFOW prediction achieved the best RMSE
for the case with a lower SSIM on Site 1 and the best SSIM for the case with a lower RMSE
on Site 2.

The superior accuracy of HIFOW over the other STIF models for the NDVI prediction
further confirms its ability to blend other variables from multi-sensor remote sensing images
with different resolutions, although extensive experiments are required for blending other
variables besides reflectance and NDVI.

When visually comparing the HIFOW prediction with the Sentinel-2 image at tp,
spatial details of the images were depicted in the results, as well as the temporal change
between t0 and tp, since HIFOW contains a procedure that explicitly accounts for the
spectral pattern from the CTFS image at tp. Other than this nature of HIFOW, structural
change information is also considered through the weight determination based on the
object information. Therefore, it is anticipated that HIFOW could be beneficial in detecting
objects undergoing severe structural changes due to floods, wildfires, and landslides at a
fine scale.

5.2. Future Research Directions

The performance of any STIF model is affected by several influential factors [52,53].
Despite its promising prediction performance, HIFOW does not have any procedure to
correct radiometric inconsistency between multi-sensor images at t0 caused by different
sensor types and differences in image acquisition dates. Multi-sensor images have different
bandwidths and spectral responses for the same spectral bands. For example, the RapidEye
imagery has wider bandwidths than the Sentinel-2 imagery [54]. These different radiometric
characteristics of multi-sensor images would affect the prediction performance of STIF.
The HIFOW prediction contained the blurring phenomenon to some extent, which may
result from the radiometric inconsistency between multi-sensor images. To alleviate the
effects of radiometric inconsistency, radiometric normalization, or relative radiometric
correction [54,55], should be considered as a preprocessing step of HIFOW.

Apart from the radiometric inconsistency, the spatial resolution ratio between coarse
and fine images is one of the influential factors in STIF. The spatial resolution ratio of
Sentinel-2 and RapidEye images used in this study is only two for the green, red, and NIR
bands, or up to four for the red-edge band. The lower accuracy for the red-edge band
mainly resulted from the relatively larger spatial resolution ratio between Sentinel-2 and
RapidEye images. Zhou et al. [52] reported that the prediction performance generally
worsens as the spatial resolution ratio increases. A similar result was found in our previous
study [54], where blending Sentinel-2 and PlanetScope images yielded a worse prediction
accuracy than blending Sentinel-2 and RapidEye images. The spatial resolution ratios of
the former and latter cases were four and two, respectively. The considerable difference in
spatial resolution tends to increase blocky artifacts in the prediction result, which cannot
be fully alleviated by residual correction. This phenomenon was not observed in our
experiments due to the small spatial resolution ratio. Moreover, HIFOW could alleviate
the artifacts by adopting the object-based approach and considering the spatial context.
Extensive experiments using multi-sensor images with different spatial resolution ratios
should be performed to verify the robustness of HIFOW to the spatial resolution ratio.

Since the use of object-based information is one of the critical parts of HIFOW, the
quality of segmentation results may affect the prediction performance. The segmentation
quality usually depends on several factors, including segmentation algorithms and param-
eter settings. In this study, optimal parameters for image segmentation using eCognition
were empirically determined via a trial-and-error approach, and the segmentation results
were assessed by visual inspection. Instead of using multi-resolution image segmentation of
commercial software, other segmentation algorithms (e.g., watershed-based clustering [56]
and simple linear iterative clustering (SLIC) [57]) and freely available software or libraries
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(e.g., scikit-image [58]) can be applied to image segmentation. Thus, the influence of
segmentation quality on prediction performance should be further assessed in future work.

Recently, Zhang et al. [59] presented an object-based STIF model with multi-resolution
segmentation, linear injection, and spatial filtering. The object extraction and selection of
spectrally similar pixels in their approach may be similar to HIFOW. However, HIFOW
differs from their approach in that change information is directly extracted from multi-
temporal image segmentation, and residual correction is further applied to complement
temporal variations. As the availability of high spatial resolution satellite images increases,
it is worth comparing the predictive performance of HIFOW with other STIF models
developed for blending multi-sensor high spatial resolution images [32,59].

The main objective of this study was to develop an advanced STIF model for high
spatial resolution satellite images. Thus, the fused FST images were not directly utilized
to monitor the small-scale croplands via time-series analysis. STIF requires multi-sensor
image pairs at t0 and the FTCS imagery at tp. The input images must be cloud-free.
However, the availability of cloud-free fine spatial resolution images is much more limited
than coarse or medium spatial resolution images because of their low temporal resolution.
Thus, the limited availability of cloud-free fine spatial resolution satellite images is an
obstacle to applying STIF models. This limitation from a data availability perspective can
be overcome by combining STIF tasks with cloud removal or image reconstruction [60].
Future research will be directed toward the practical application of STIF combined with
image reconstruction for crop field monitoring.

6. Conclusions

This paper presents a new STIF model, called HIFOW, to blend multi-sensor high
spatial resolution satellite images for small-scale cropland monitoring. The four-step
approach can not only quantify temporal variability between the base and prediction
dates but also reflect structural information and spectral patterns at the prediction date.
The prediction performance of HIFOW for STIF of high spatial resolution images was
evaluated from experiments on two small agricultural sites using Sentinel-2 and RapidEye
images. Compared with the existing STIF models, HIFOW achieved superior prediction
performance for all spectral bands in terms of accuracy and structural similarity. HIFOW
improved the relative prediction accuracy by up to 68.2% for Site 1 and 42.1% for Site 2
and exhibited the largest structural similarity value. Furthermore, HIFOW exhibited the
lowest prediction accuracy (0.048 for Site 1 and 0.074 for Site 2) and the largest structural
similarity (0.970 for Site 1 and 0.954 for Site 2) for the NDVI prediction. Object-based change
and structural information obtained from image segmentation could facilitate reflecting
detailed spatial features, such as field boundaries and specific patterns, with less spectral
distortion in the HIFOW prediction. These results confirmed the feasibility of HIFOW to
construct a time-series image set suitable for monitoring small-scale croplands.
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Appendix A

Table A1. List of abbreviations.

Abbreviation Definition

CC Correlation Coefficient
CTFS Coarse Temporal resolution but Fine Spatial resolution
Fit-FC regression model Fitting, spatial Filtering, and residual Compensation
FSDAF Flexible Spatiotemporal DAta Fusion

FST Fine SpatioTemporal resolution
FTCS Fine Temporal resolution but Coarse Spatial resolution

HIFOW High spatial resolution Image Fusion using Object-based Weighting
HISTIF HIgh-resolution SpatioTemporal Image Fusion
NDVI Normalized Difference Vegetation Index
NIR Near InfraRed
RI Relative Improvement

RMSE Root Mean Square Error
rRMSE relative Root Mean Square Error
SSIM Structural SIMilarity

STARFM Spatial and Temporal Adaptive Reflectance Fusion Model
STIF SpatioTemporal Image Fusion
TM Temporal relationship Modeling
WO Weighting based on Object information
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