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Abstract: In this paper, we propose a tree trunk and obstacle detection method in a semistructured
apple orchard environment based on improved YOLOv5s, with an aim to improve the real-time
detection performance. The improvement includes using the K-means clustering algorithm to
calculate anchor frame and adding the Squeeze-and-Excitation module and 10% pruning operation
to ensure both detection accuracy and speed. Images of apple orchards in different seasons and
under different light conditions are collected to better simulate the actual operating environment.
The Gradient-weighted Class Activation Map technology is used to visualize the performance of
YOLOv5s network with and without improvement to increase interpretability of improved network
on detection accuracy. The detected tree trunk can then be used to calculate the traveling route of an
orchard carrier platform, where the centroid coordinates of the identified trunk anchor are fitted by
the least square method to obtain the endpoint of the next time traveling rout. The mean average
precision values of the proposed model in spring, summer, autumn, and winter were 95.61%, 98.37%,
96.53%, and 89.61%, respectively. The model size of the improved model is reduced by 13.6 MB, and
the accuracy and average accuracy on the test set are increased by 5.60% and 1.30%, respectively. The
average detection time is 33 ms, which meets the requirements of real-time detection of an orchard
carrier platform.

Keywords: semistructured orchard environment; tree trunk and obstacle detection; improved
YOLOv5s; carrier platform

1. Introduction

Currently, the orchard operation mainly depends on manual labor; however, with the
high labor intensity and increasingly serious aging population, it is imperative to develop
intelligent equipment suitable for orchard operation [1]. Apple orchard is a semistructured
environment, an automatic mobile robot must be able to detect the traveling route as
well as to avoid obstacles in time when operating [2]. To ensure the operation safety, it is
necessary not only to accurately plan the path when the equipment works alone but also to
accurately identify the operators for man–machine collaboration. The detection of obstacles
in apple orchard (mainly refers to operators) [3], the path planning of equipment, and the
deployment of model in embedded equipment are the main factors hindering the wide
application of intelligent equipment.

Lidar sensor detection [4–6], ultrasonic sensor detection [7], infrared sensor detec-
tion [8] and computer vision detection [9] are commonly used obstacle detection meth-
ods [10]. Chen et al. presented a novel tree trunk detection method based on the integration
of multiple cameras and ultrasonic sensors and reduced the error of mobile robot local-
ization identification by a moving average filter in orange orchard. The recall rate and
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accuracy of the trunk recognition were approximately 93.62% and 98.96% [7]. Shalal et al.
presented a method for local-scale orchard mapping based on tree trunk detection and
utilized modest-cost color vision and laser-scanning technologies, where color and edges
detection methods were used for tree trunk detection [11]. Freitas et al. proposed a clas-
sification and clustering of registered 3D points to generate the obstacle position offline,
which could detect people and bins with no false positives [12]. The accuracy of laser and
ultrasonic sensors can meet the requirements of orchard operations, but the cost is high,
which may not be suitable for wide application [13].

The cost of computer vision based on detection method is lower than other detection
methods. With the development of deep learning theory, detection algorithm based on
convolutional neural network (CNN) has been widely used in the intelligent agriculture
area [14]. At present, there are two types of target detection method: one is two-stage target
detection method, which is represented by R-CNN [15], Fast R-CNN [16], and Faster R-
CNN [17]; the other is the one-stage target detection method, which is represented by YOLO
series [18,19] and SSD [20]. Li et al. proposed a lightweight MobileNetV2 object detection
method based on YOLOv3 to identify typical obstacles in orchards. For the test sets, the
mean average precision is 88.64% [2]. However, the study did not combine the detection
results with path planning and did not consider changes in the orchard environment in
different seasons. Yang et al. proposed a method called yolov3_trunk_model (Y3TM) to
detect trunks using transfer learning. The results showed that the Y3TM model improved
recall rate of over 93% with the average detection time of 0.3 s [21]. Different management
needs to be carried out in different seasons of the orchard, including pruning, thinning,
spraying, and harvesting [22].

In view of the above problems and the large environmental differences of orchards
in different seasons, in this paper, we collected images of different seasons in the apple
orchards. An improved YOLOv5s target detection model was proposed, with the K-means
clustering algorithm was used to adjust the size of the anchor frame and the attention
mechanism module was added to improve the detection accuracy of the trunk and obstacle
people. Finally, the lightweight model was obtained through model pruning, which could
make sure the detection speed as well as keep the detection accuracy. The Gradient-
weighted Class Activation Map (Grad-CAM) technology was used to visualize the network
before and after improvement [23]. The least square method [24,25] was used to fit the
centric coordinates to get the end point of the route, which could be used on future route
planning for a carrier platform.

2. Materials and Methods
2.1. Data Acquisition and Dataset Preparation

The data used in this paper was collected in an Apple Base of City Tai’an, China.
The resolution of the collected images was 4096 × 3072 pixels. In the data acquisition
stage, the camera was fixed at about 50 cm from the moving bracket to the ground. Data
were collected in February, June, September, and December, which could represent spring,
summer, autumn, and winter seasons. A total of 1800 images were obtained, including
both front-light and back-light conditions. Figure 1 shows part of the collected images.

PASCAL VOC format is used to make datasets, and the LabelImg tool is used to
annotate data. The generated xml file is used to store the data label information, including
the location coordinate information of tree trunks and obstacles. Note that only the first
two rows of trees are marked because the back rows can easily be mistaken as branches
and two rows are enough to fit a line. In this paper, the obstacles are people performing
farming activities, 600 pieces of data with obstacles, accounting for a third of the total
dataset. Since during the apple harvest season, farmers need to complete the picking work
and have large number of workers, while at other times, the number of orchard workers
is low, so images with obstacle people are mainly concentrated in summer and autumn.
In the data set, 1200 images are randomly selected as the training set, 300 images as the
validation set, and 300 images as the test set in the ratio of 1:1:1:1 among the four seasons
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dataset. The dataset includes 971 images in the front-light condition and 829 images in
the back-light condition. The ratio between the back-light condition and the front-light
condition is roughly 1:1.17. Mosaic data augmentation is used in the network training
process, which splice four images into one image to improve the detection effect. The
validation set is only used to evaluate the performance of the model during training and
do not participate in the training process, and the test set is used to test the generalization
performance of the model.
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Figure 1. Images under different conditions. (a1) Spring, Front-light. (a2) Spring, Back-light.
(b1) Summer, Front-light. (b2) Summer, Back-light. (c1) Autumn, Front-light. (c2) Autumn, Back-
light. (d1) Winter, Front-light. (d2) Winter, Back-light.

2.2. Improvement of YOLOv5s Network Architecture

The size of the model directly affects deployment on mobile devices and real-time
detection, which is the prerequisite for tree trunk and obstacle detection in orchard. Ac-
cording to the different width and depth, the YOLOv5 series model is divided into four
kinds: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, where YOLOv5s is one of the
most lightweight models, therefore is adopted in the paper [26]. The improved YOLOv5s
network is shown in Figure 2. The YOLOv5s algorithm is composed of three parts. The first
part is the input, and the input size of the training image is 608×608. The second part is the
backbone network, which uses CSPDarkNet53 network to extract rich information features
from the input images. The third part is the detection layer, which adopts multiscale
detection. The path aggregation network (PAN) is used after the feature pyramid network
(FPN) to realize the fusion of feature information of different scales, and then the three
generated feature maps are predicted. The Squeeze-and- Excitation (SE) module [27] is
added to the last layer of the backbone network to improve feature extraction capability
and detection accuracy.

As shown in Figure 3, SE is a channel attention mechanism, which is composed of
Squeeze-and-Excitation module. In the Squeeze stage, the W × H × C feature vector
obtained is compressed to 1 × 1 × C through global average pooling, the calculation
equation of a feature map is as follows:

zc =
1

H ×W ∑H
i=1 ∑W

j=1 uc(i, j) (1)

where uc is the feature map of each channel, and c is the location of the channel.
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Figure 3. The Squeeze-and-Excitation Module. W, H, and C represent the width, height, and number
of channels of the feature map respectively.

In the Excitation stage, the full connection layer and activation function is added,
the full connection layer can fuse the input characteristic information, and the activation
function can map the input between 0 and 1. The operation equation is as follows:

Sc = σ(g(zc, W)) = σ(W2δ(W1zc)) (2)

where zc is the global description obtained by Squeeze operation, δ represents ReLU
function, ensuring positive output, W1, W2 are two full connection layers.

After the SE operation, the weight of each channel in the input feature map is obtained,
and then the original feature and weight are fused through Scale operation, which is the
general multiplication operation, the equation is as follows:

X = Sc × uc (3)

The SE module enables the network to pay different attention to different channel
features, that is, to give more weight to important feature channels and less weight to
irrelevant feature channels to compress useless information and improve detection accuracy.
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2.3. Pruning of the YOLOv5s Model

A neural network can achieve higher accuracy with a deeper layer; however, the model
parameters also increase with the layer depth. Therefore, the computation requirements
will be more with deep depth model and the model size of obtained model will become
larger. For model implementation in mobile devices, a small model size is important for the
real-time detection of trunks and obstacles. Therefore, after the SE is added, the improved
model is pruned as shown in Figure 4.
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In this paper, the Batch Normalization (BN) layer coefficient γ pruning is used [28,29].
The pruning method restrains the BN layer coefficients by adding L1 regularization to make
the corresponding coefficients sparser. After the corresponding sparse training, the layer
with small sparsity is pruned and the relative activation is also very small, so the influence
on the following is small. The optimal model can be obtained through repeated iteration.

2.4. The Route Direction Determination of the Carrier Platform

The centric coordinate point of the recognition frame is obtained by the coordinates of
the recognition box, and the endpoint of the path information in the next stage is obtained
by fitting the centroid coordinate line. To ensure the intersection of the two fitted lines,
the identified centroid coordinates are projected onto the same plane. When the improved
YOLOv5s model is used to identify tree trunks, the position information of the recognition
frame can be recorded, as shown in Figure 5, the recognition frame is selected as the
matching target to load, and the barycenter of the recognition frame is obtained by using
the barycentric solution function. The solution equation is as follows:

xz =
∑2

i=1 xi

2
(4)

yz =
∑2

i=1 yi

2
(5)

From the above two equations, the coordinates of the centric point (xz, yz), where xi
and yi are the horizontal and vertical coordinate values of the upper left and lower right
corners of each recognition frame.
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Figure 5. Center of mass Coordinate fitting.

The 2D coordinates (xz, yz) of the barycenter of the tree trunks on both sides are fitted
by the least square method, and the slopes and intercepts of the two lines are a1, b1, a2, and
b2, respectively. The fitting results are shown in Figure 5. The equations of the two lines are:

y = a1x + b1 (6)

y = a2x + b2 (7)

The intersection of the two fitting lines (x0, y0) is solved, and the intersection is the end
point of the current planned path [30]. Then, the boundary of the path and the direction of
the carrier platform are determined.

2.5. Network Visualization Based on Grad-CAM

As an end-to-end network, the intermediate learning process is poorly understood,
resulting in poor interpretability of the network. To improve the performance of the
network, it is necessary to visualize the network, so the Grad-CAM is used in this paper for
visualization [23]. The specific operation is forward propagation of the network to obtain
the feature map and the predicted output value, the gradient information of the feature
map is obtained by backward propagation of the output predicted value. By averaging the
gradient information value on W and H, the importance of each channel of the feature map
of this category and the weighted sum of the data of each channel of the feature map can
be obtained, and the ReLU activation function can finally be used.

3. Results

The evaluation indexes of the model on the training set include Precision (P), Recall
(R), and mean Average Precision (mAP). The model training and testing processes are
carried out on the same computer, the experimental environment is summarized in Table 1.
The hyperparameters of the model are set to 4 samples per batch, with a learning rate of
0.001, momentum of 0.937 and weight decay of 0.0005. The K-means clustering algorithm
is used to calculate the size of the initial anchor frame on the data set of trunk and obstacle,
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and the model convergence is accelerated in the process of model training. The sizes of the
9 anchors are, respectively, (8, 34), (10, 46), (13, 54), (15, 67), (18, 83), (23, 100), (33, 132), (50,
213), and (78, 314).

Table 1. Experimental environment.

Configuration Parameter

CPU Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz
GPU NVIDIA GeForce GTX 1650

Development environment Python 3.7, PyTorch 1.6, Anaconda3
Operating system Windows10 (64-bit)

3.1. Model Pruning Operation

As shown in Figure 6a, pruning is done after model training. During the normal
network training process, the coefficient γ of BN layer is approximately normal distribution
as the number of training round goes on. The coefficient that does not participate in training
is also selected due to the small number of values around 0, so the prune operation cannot
be carried out under this situation.
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First, the sparse training is carried out. By adding the L1 regular constraint of γ to
the loss function, the sparsity of γ can be realized; thus, the unimportant weight can be
removed and the model size is reduced. The equation is as follows:

L1 = λ∑γ∈Γ g(γ) (8)

Here, g(γ) represents a sparsity-induced penalty on γ, and λ is the penalty factor.
As shown in Figure 6b, more and more γ approaches to 0 during the sparse training,

indicating that the weight parameters of BN layer that do not participate in training are
filtered out and pruning operation can be carried out. The model parameters are fine-
tuned after the preset 10% pruning operation, such that the improved YOLOv5s model
is obtained.

3.2. Model Performance Comparison before and after Improvement

Figure 7a,b show the P-R curve area of the improved YOLOv5s recognition model
in the test set. The P-R curve area of people (obstacle) is the largest, which indicates that
the model has better screening ability when features are obvious. The comparison of the
model memory, P value, R value, mAP and average detection time indexes between the
original YOLOv5s model and the improved YOLOv5s model is given in Table 2. Due to
the addition of the SE attention mechanism the detection accuracy could be improved,
where the improved model has a mAP% value 1.3% higher than the original YOLOv5s



Agronomy 2022, 12, 2427 8 of 15

model. However, the added SE module would increase the parameters of the network.
Thus, another improvement is the pruning operation to obtain a more lightweight model.
In order to better keep the detection accuracy parameters of the pruned model is further
fine-tuned. Therefore, the size of the improved YOLOv5s model is 13.9 MB, with a 13.6 MB
reduction, and the average detection time is 33 ms with 2 ms reduction.
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Figure 7. P-R curve area of test set. (a) The original YOLOv5 model. (b) The improved
YOLOv5 model.

Table 2. Indexes before and after model improvement.

Model Model Size/MB Precision/% Recall/% mAP/% Detection Time/ms

YOLOv5s 27.50 86.20 99.00 93.90 35.00
Improved YOLOv5s 13.90 91.80 99.00 95.20 33.00

The improved YOLOv5s model can pay more attention to useful features in feature
extraction due to the addition of SE attention mechanism. Figure 8 shows the detection
results of the model under different conditions before and after improvement. Although
both models can correctly detect tree trunks and obstacles, the confidence score of the
improved model to the tree trunk and the human is 93% and 97%, respectively, with 8%
and 3% higher than that of the original model. To analyze the reasons for this result, the
detection results of these two networks are visualized in Figure 9. The improved YOLOv5s
model focuses more on the target and does not pay attention to the tree trunk with a longer
distance (the tree trunk with a longer distance is the background by default in this paper).
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3.3. Model Detection Performance Comparison among Four Seasons

The detection performance of the improved YOLOv5s model is compared among four
seasons. The mAP% index of the tree trunk and obstacle detection for spring, summer,
autumn and winter in the test set is given in Table 3. When the season stage is among
branches and leaves growing to ripening, the tree trunk has a clearly differentiable color
with the branches and leaves, so the detection performance in spring, summer and autumn
are better. However, in winter, there are only branches and trunks, the branches and leaves
have fallen off, so the difference between the characteristics of trunks and the background
is not obvious, with a lower detection accuracy obtained. Figure 10 is an illustration of
detection performance on four seasons.

Table 3. The mean average precision of target recognition in different season.

Season Spring Summer Autumn Winter

mAP/% 95.61 98.37 96.53 89.61
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Figure 10. The detection performance illustration of the improved YOLOv5s for different seasons.
(a) spring, (b) summer, (c) autumn and (d) winter.

Through the results, there is the following analysis in the article. The meaning here
is that the leaves fall in winter, the color of the branches is close to the color of the trunk,
and the thicker branches in the back row may cause interference to the trunk detection.
Figure 11 shows the data of winter and spring respectively. There is no difference between
the trees in the images of spring and winter, with almost no leaves, but the soil after snow
in winter is wet and is dry in spring. Therefore, the color of soil in winter is darker than
in spring. That is to say, the soil and the back branches are both close to the trunk color
in winter, which together bring interference to the detection of the trunk, so the detection
effect in winter is poor.
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3.4. Comparison under Different Lighting Conditions

The tree trunk and obstacle detection indices for different lighting conditions in the
test set are shown in Table 4, results show that the mAP of the front-light condition is 0.03
higher than that of the back-light condition, with the mAP value of the tree trunk and
the obstacle person detection in the front-light condition is 0.037 and 0.024 higher than
that of the back-light condition, respectively. Thus, the model works a little better under
front-light than the back-light condition.

Table 4. Model detection performance under different lighting conditions.

Class
P/% R/% mAP/%

Front-Light Back-Light Front-Light Back-Light Front-Light Back-Light

All 90.50 90.40 90.50 83.30 94.20 91.20
Trunk 88.00 86.20 82.20 72.30 89.50 85.80

Obstacle 93.00 94.70 98.70 94.30 99.00 96.60

3.5. In Field Detection on a Carrier Platform

The orchard carrying platform is a crawler type movement vehicle, with experimental
computer and image acquisition camera. This vehicle also has power, relay, control modules
and so on, the detailed configuration is listed in Table 5. The overall working framework is
shown in Figure 12. The camera is used to collect the actual orchard environment video,
and the improved YOLOv5s model implemented on the computer can detect and recognize
the moving targets. The traveling speed of the orchard carrier platform is 0–1.4m/s, thus
the detection speed of the proposed model is suitable for the intelligent equipment of apple
orchard. Since human is indispensable in the actual orchard environment, the real-time
detection of human as a kind of obstacles can effectively avoid the interference of obstacles
in the working condition.
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Table 5. Experimental platform specifications.

Configuration Parameter

Power 2 × 48 V
Power inverter HS-08

Camera OPENMV4 H7 PLUS
Control module STM32F103ZET6

Relay MY4N-J
AC contactor NXC-40
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Figure 13 shows the real-time detection of tree trunks and obstacles in a video. Since
the target is moving relative to the camera and the detection of moving target is more
difficult than that of static target. In the video, the differentiation degree between tree
trunks and background and obstacles is obvious, and the trunks and obstacles are correctly
detected, which fully embodies the superiority of the improved YOLOv5s model.
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4. Discussion

This paper compares the proposed improved YOLOv5s model with the existing
trunk detection methods, including the comparison of the detected targets in the orchard
environment, whether the detection results are considered for the application on the path,
and the influence of different seasons on the detection results.

Li et al. proposed a target detection method based on YOLOv3 that only detected
typical obstacles (such as humans, cement columns and utility poles), without combining
with path problems, and seasonal effects were not considered [2]. Yang et al. proposed a
method called yolov3_trunk_model (Y3TM) to detect trunks, streetlight and telephone poles
in the forest [21]. The study was conducted in a forest rather than an orchard environment,
and the effects of seasonal changes were not considered, and no further study of the routing
problem was done. Chen et al. presented a novel tree trunk detection method based on the
histograms of oriented gradient (HOG) and support vector machine (SVM) and reduced
the error of mobile robot localization identification by fusing multiple cameras, ultrasonic
sensors, and moving average filters in an orange orchard [7]. Through the combination of
tree trunk detection and position data, the mobile robot was guaranteed to travel, but the
influence of orchard seasonal changes on tree trunk detection was not considered.

In the actual orchard operation, the requirements on detection speed and time varies
according to the job type. The driving speed of the orchard crawled carrier platform is
0–1.4 m/s, and the scheme is proposed to be suitable for the intelligent production of the
landing orchard [31]. In current studies about orchard path detection, Aguiar et al. pro-
posed the Single Shot Multibox Detector model with average precision value of 84.16% and
inference time of 23.14 ms [32]. Badeka et al. used Faster R-CNN and two YOLO versions
with average precision of 73.2% and execution time of 29.6 ms [33]. In terms of network
selection, the YOLOv5s model could balance speed and accuracy, and better detection
performance is achieved after improvement. The mAP value of the proposed model is
95.2%, and the detection time is 33 ms. Compared with current studies, the improvement
in model size and detection time by the improved YOLOv5s model is meaningful.

The method proposed in this paper is to monitor the tree trunk in real time. Due to the
serious occlusion of the tree trunk in the back row of the collected images, the back rows can
easily be mistaken as branches, so only the first two rows of tree trunks are annotated, it is
not possible to perform non-real-time path calculation at the entrance of the orchard. Non-
real-time computation is more efficient, and the algorithm needs to be further improved
to increase the detection accuracy of the trunk in the back row [34]. Through comparative
analysis, the method proposed in this paper considers the influence of different seasons on
the detection results, and uses the tree trunk detection results to determine the traveling
direction of the carrying platform, so the analysis is more comprehensive. The comparison
results are shown in Table 6.

Table 6. The proposed method is compared with existing methods.

Source Method Object Orchard Season
Considerations Result

Li et al. [2] YOLOv3 humans,
cement columns and utility poles No mAP:

88.64%

Yang et al. [21] YOLOv3 trunk, telephone poles
and streetlight No Recall:

>93.00%

Chen et al. [7] ultrasonic sensors trunk No Recall:
92.14%

Proposed method YOLOv5s trunk, obstacle and determine
the direction Yes mAP:

95.20%

5. Conclusions

To improve the detection accuracy of tree trunks and obstacles and meet the real-time
requirements of the carrier platform in the orchard operation, in this paper, we propose a
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method based on improved YOLOv5s. After adding SE module in YOLOv5s network, the
K-means clustering algorithm is used for training and pruning operation, and the target
recognition model is obtained after fine-tuning. The improved model reduces 13.6 MB
smaller than the original YOLOv5s model, the average detection accuracy 1.30% higher,
and the average detection time is 2 ms shorter. The Grad-CAM technology is used to
visualize the network before and after improvement, and the improved network can focus
on the target well. Finally, the trained model is applied in a real orchard environment, and
the trunks and obstacles are detected correctly. The centric coordinates of recognition frame
obtained after the trunk detection are fitted by the least square method to obtain the end of
the path, and the forward direction of the carrier platform is determined. This will provide
technical reference for orchard path planning.
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