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Abstract: Wheat is one of the most important crops in the world and was considered the major grain
crop grown in Egypt. Nowadays, Egypt is the largest wheat importer in the world and consumes an
extensive amount of it. To decrease the gap between production and consumption and increase the
yield, we need to control wheat diseases, especially stripe rust, due to its major damage to wheat.
Further, we need to advise farmers as early as we can to control and treat them. The paper proposed
an interactive intelligent system to monitor, predict and give the correct advice at the right time to
farmers. This system is called MISSR (Mentoring Interactive System for Stripe Rust). The system is
considered an important means to effectively prevent risks in agricultural production. It also plays an
important role in guiding farmers and decision-makers to plan and implement suitable practices to
increase yield and mitigate stripe-rust disease. On the other hand, it can acquire relevant and timely
information in the areas where this information or data is unavailable. To build this model for the
wheat crop in Egypt, we used wheat experts’ knowledge and climate data API. MISSR is available as
a mobile application to provide access for more farmers and increase its availability.

Keywords: wheat; rust; Puccinia; mobile app; interactive system

1. Introduction

Wheat is the major winter grain crop in Egypt. It represents about 10% of the agricul-
ture production in Egypt and about 20% of the total value of the agriculture imports. Wheat
production in Egypt is not adequate for the urgent needs of people, thus more than 50% of
the consumption is annually imported. The damage caused by rust diseases is considered
one of the major obstacles facing the production of wheat crops. Stripe rust caused by
Puccinia striiformis f.sp. tritici is a serious wheat disease that causes a severe economic loss
in wheat production in many parts of the world including Egypt [1–4]. Stripe rust requires
two distinct hosts.

Since 2010, it has been considered to be macrocyclic rust, after the identification of
Berberis spp. as an alternative host and elucidation of the complete life history of this rust
pathogen for the first time by Jin et al. [5]. Briefly, it spends its Telial/uredinial stages on
the primary host(s), including T. aestivum, however, it spends its pycnial/aecial stages
on an alternate host(s), which mainly include Berberis spp. Fortunately, alternate hosts of
P. striiformis do not exist in Egypt and its urediniospores cannot persist or survive in Egypt
during the summer; nevertheless, the source of a primary inoculum is typically brought in
by northern winds from foreign sources annually [6,7].

In Egypt, wheat stripe rust was epidemic in 1967, 1995, 1997, and 2015, attacking bread
wheat cultivars removed and discarded soon after their introduction and widespread usage in
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agriculture due to their susceptibility to stripe-rust disease, i.e., Giza-144, Giza-150, Gemmieza-
1, Giza-163, Sakha-69, Sids-1, Sids-12, Sids-13, Gemmeiza-7, and Gemmeiza-11 [1,8–10].

In Egypt, grain yield losses due to stripe-rust infection in some susceptible wheat
cultivars reached 56.3%, depending on several factors, including the degree of cultivar
susceptibility, infection time, rate of disease development, and duration of disease [1,11,12].
These crop and disease factors are influenced by environmental factors, among which
temperature and moisture are the most important in determining disease severity and yield
loss [13,14]. As temperature and moisture conditions vary significantly from year to year in
most wheat-producing regions, they are the major limiting factors for the development of
stripe-rust epidemics and therefore have been used to develop descriptive and forecasting
models for the disease. To control the spreading of the stripe rust as far as possible, some
actions should be taken: (i) The use of resistant cultivars, (ii) Monitor crops and trap
nurseries so that early decisions can be made on whether fungicide sprays would be
beneficial, and (iii) The use of fungicide sprays [15].

Over time, agronomists and researchers have a great concern to implement a multitude
of techniques for the early detection and prediction of diseases that acutely affect the crops
and the quality of the grain. Early warning systems are commonly used methods in the
current research to monitor and predict the symptoms of pests and diseases in agriculture.
Currently, a concept name “smart agriculture” is widely used in agriculture to incorporate
advanced technologies in agriculture practices as a strategy for crop management and
decision-making [16]. An EWS developed in Ethiopia involves a complicated framework
that integrates field and mobile phone collecting data, spore dispersal, and environmental
disease suitability forecasting, as well as providing timely information to the policy-makers,
advisors, and smallholder farmers. A short message service and reports to 10,000 develop-
ment agents and about 275,000 smallholder farmers in Ethiopia were sent wheat rust alerts
and advisories [17].

Several mobile applications have been developed in the agriculture sector which has
many objectives, such as optimization of resource use, better agronomical practices, and
task programming, among others [18–20]. Carmona et al. developed the AgroDecisor
EFC application which can help farmers and crop consultants assess the risk of late-season
soybean disease epidemics as well as yield and economic response from foliar fungicide
applications based on the weather, disease pressure, and other factors [18]. Ramírez-
Gil et al. [21] have designed a mobile application which is used as an early warning system
for avocado wilt complex disease. They designed an electronic device for the collection and
transmission of climatic variables from inside the soil including moisture and temperature.
Moreover, a mobile application was designed with three functions: (i) Available information
immediately, which may be used as an early warning system for the avocado welt complex,
(ii) Diagnosis of causal agents based on patterns associated with image processing, and
(iii) Management of avocado welt complex. Lida Sharafi et al. [22] designed a study that
could aid policy-makers to design early alert systems to minimize the risk of drought
and move from conventional to climate-smart agriculture. A questionnaire was used to
gather data from 370 wheat farmers using randomization, and finally, this study used
a quantitative methodology to assess farmers’ decisions to use a drought early warning
system for monitoring drought to reduce its serious consequences. Khattab et al. [23]
used the Internet of Things (IoT) to design an IoT-based monitoring system for epidemic
disease control. IoT has been considered as state-of-the-art in implementing distributed
and controlling systems in different application areas. Several studies imply that global
warming and climate change harm food production and safety, especially with population
growth worldwide [24–26]. This problem clearly shows the need for timely decisions in
planting, pest and disease management, and harvesting.

To the best of our knowledge, no such system for predicting wheat stripe-rust disease
risk has been developed for Egypt’s weather conditions. So, this work has two main
objectives: (i) to design a model to collect and transmit the climatic change in Egypt,
including rain, wind, humidity, and temperature, and (ii) to develop a model with two
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functions: (1) an EWS for climate change that will affect the development of wheat stripe
rust in Egypt, and (2) to recommend the appropriate agriculture practices directed towards
correct farm management to wheat stripe rust.

2. Materials and Methods

The proposed method combines a knowledge-based module with a weather forecast
module for early prediction of the wheat stripe-rust disease and how to control it.

2.1. Wheat Stripe Rust Knowledge Acquisition

Wheat yellow rust disease surveys are collected by expert pathologists and recorded
using the traditional survey method [27]. Fourteen yellow rust races were identified in the
yellow rust greenhouse in the Wheat Diseases Research Department at Sakha Agriculture
Research Station, ARC, Egypt (Table 1). Some wheat-resistant varieties became susceptible
where the “Warrior” race (PstS7) in the Pst populations in Egypt and the other countries
were detected [4,28,29]. This “Warrior” race broke the resistance in the genes responsible
for resistance to stripe rust such as Chinese 166 (W, Yr1), Yr32/6*Avocet S, Yr27/6*Avocet S
and Yr17/6*Avocet S as shown in Figure 1.

Table 1. Virulence pattern of stripe-rust races detected at seedling stage under greenhouse conditions.

Race Virulence Phenotype *

PstS1,v3,v27,v32 -, 2, 3, -, -, 6, 7, 8, 9, -, -, -, -, 25, 27, 32, -, Avs, -
PstS1,v3,v17,v27,v32 -, 2, 3, -, -, 6, 7, 8, 9, -, -, 17, -, 25, 27, 32, -, Avs, -
PstS2 -, 2, -, -, -, 6, 7, 8, 9, -, -, -, -, 25, -, -, -, Avs, -
PstS2,v27 -, 2, -, -, -, 6, 7, 8, 9, -, -, -, -, 25, 27, -, -, Avs, -
PstS2,v10, v27 -, 2, -, -, -, 6, 7, 8, 9, 10, -, -, 24, 25, 27, -, -, Avs, -
Other/Eg2015 1, 2, -, -, -, 6, 7, -, 9, -, -, 17, -, -, 27, -, -, Avs, -
PstS3 -, -, -, -, -, 6, 7, 8, -, -, -, -, -, -, -, -, -, Avs, -
PstS1 and PstS2 -, 2, -, -, -, 6, 7, 8, 9, 10, -, -, 24, 25, 27, -, -, Avs, -
Warrior (PstS7) 1, 2, 3, 4, -, 6, 7, -, 9, -, -, 17, -, 25, -, 32, Sp, Avs, Amb
Warrior (-)
(PstS10) 1, 2, 3, 4, -, 6, 7, -, 9, -, -, 17, -, 25, -, 32, Sp, Avs, -

PstS1,v3,v27,v32 -, 2, 3, -, -, 6, 7, 8, 9, -, -, -, -, 25, 27, 32, -, Avs, -
PstS2,v3,v17,v27,v32 -, 2, 3, -, -, 6, 7, 8, 9, -, -, -, -, 25, 27, 32, -, Avs, -
PstS13
(Triticale2015) -, 2, -, -, -, 6, 7, 8, 9, -, -, -, -, -, -, -, -, Avs, -

PstS14 -, 2, 3, -, -, 6, 7, 8, 9, -, -, 17, -, 25, -, 32, Sp, Avs, -

* Symbols designate virulence and avirulence (-) corresponding to yellow rust resistance genes: Yr1, Yr2, Yr3, Yr4,
Yr5, Yr6, Yr7, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr25, Yr27, Yr32, and the resistance specificity of Spalding Prolific
(Sp), Avocet S (AvS), and Ambition (Amb), respectively.
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Figure 1. Symptoms of stripe rust on Chinese 166 (W, Yr1), Yr17/6*Avocet S, Yr32/6*Avocet S, and
Yr27/6*Avocet S.
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Due to the early appearance of stripe-rust infection on the wheat of the susceptible
wheat cultivars—in addition to the early detection of both initial infection and time of
the outbreak, the high amount of rainfall, combined with the lower degrees of average
minimum and maximum temperatures, recorded during this season—all of these reasons
significantly contributed to the establishment, spread, and subsequent epidemic outbreak
of stripe rust.

Furthermore, Table 2 shows the knowledge about the most common wheat varieties
in Egypt during three successive seasons (2020, 2021, and 2022) and their resistance status
to stripe rust in six different Egypt governorates. Each variety is classified either as
resistant (R), moderately resistant (MR), moderately susceptible (MR), or susceptible (S).
It is worth mentioning that although most of the tested varieties were susceptible or
moderately susceptible in Lower Egypt (Kafr El-Sheikh, Beheira, Menoufia, and Sharkiya
governorates), the same varieties were resistant or moderately resistant when grown in
Upper Egypt (Minia and Beni Swef governorates).

Table 2. Final rust severity of some Egyptian wheat varieties to yellow rust in the six governorates
during the 2020–2022 growing seasons.

Wheat Variety
Governorate/Season/Rust Infection Type

2020 2021 2022
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Sakha-93 20S 30S 20S 30S 0 5S 10S 5S 10S 10S 0 TrS 60S 40S 50S 60S 0 10S
Sakha-94 5MS 5MS 0 0 0 0 5MS 0 0 0 0 0 20S 10S 5S 5S 0 0
Sakha-95 0 0 0 0 0 0 0 0 0 0 0 0 5MR 0 0 0 0 0
Gemmeiza-7 20S 10S 20S 10S 0 5S 20S 5S 10S 10S 0 TrS 40S 30S 20S 30S 0 10S
Gemmeiza-9 5MS 0 0 0 0 0 0 0 0 0 0 0 10S 10S 5S 5S 0 0
Gemmeiza-10 10S 5S 5S 55 0 0 0 0 0 0 0 0 20S 20S 10S 10S 0 0
Gemmeiza-11 60S 50S 50S 40S 0 10S 40S 20S 20S 20S 0 5S 90S 60S 70S 40S 0 20S
Gemmeiza-12 5MS 5MS 5MS 5MS 0 0 TrMS 0 0 0 0 0 20S 10S 10S 20S 0 5S
Sids-12 40S 30S 50S 40S 0 10S 30S 20S 30S 30S 0 5S 90S 80S 80S 80S 0 20S
Sids-13 5S 5S 5S 5S 0 0 5MS 0 0 0 0 0 30S 10S 10S 5S 0 5MS
Sids-14 20S 10S 10S 20S 0 5S 10S 5S 5S 10S 0 0 60S 40S 50S 40S 0 10S
Giza-168 20S 10S 10S 10S 0 5S 5MS 0 0 0 0 0 10S 10S 20S 10S 0 TrS
Giza-171 5MS 5MS 5MS 5MS 0 0 0 0 0 0 0 0 5MR TrMR 5MS 5MS 0 0
Misr-1 40S 30S 20S 20S 0 10S 20S 10S 10S 10S 0 5S 70S 60S 50S 60S 0 20S
Misr-2 20S 20S 30S 10S 0 10S 20S 10S 10S 10S 0 5S 60S 50S 60S 50S 0 20S
Misr-3 5MR 0 0 0 0 0 0 0 0 0 0 0 5MR 5MR 0 0 0 0
Shandweel-1 5S 10S 5S 5S 0 0 5S 5MS 5MS 5S 0 0 40S 30S 20S 20S 0 5S

(R) = Resistant, (MR) = Moderately resistant, (MS) = Moderately susceptible, and (S) = Susceptible.

Additionally, the two-way hierarchical cluster analysis showed a clear separation
between tested varieties, as well as tested locations. For instance, the most susceptible
varieties (Sids-12 and Gemmeiza-11) were clustered together and separately from other
varieties during the 2020 and 2021 seasons. However, during the 2022 season, both varieties
were clustered in the middle of the dendrogram close to Misr-1, Misr-2, Sids-14, and Sakha-
93. Interestingly, the final rust severity during the 2020 season ranged from 0 to 60%, but it
reached no more than 40% during the 2021 season; however, stripe-rust disease was more
epidemic during the 2022 season since it peaked up to 90% on the susceptible varieties in
Lower Egypt governorates (Figure 2).



Agronomy 2022, 12, 2416 5 of 15

Agronomy 2022, 12, 2416 5 of 16 
 

 

Misr-2 20S 20S 30S 10S 0 10S 20S 10S 10S 10S 0 5S 60S 50S 60S 50S 0 20S 
Misr-3 5MR 0 0 0 0 0 0 0 0 0 0 0 5MR 5MR 0 0 0 0 
Shandweel-1 5S 10S 5S 5S 0 0 5S 5MS 5MS 5S 0 0 40S 30S 20S 20S 0 5S 
(R) = Resistant, (MR) = Moderately resistant, (MS) = Moderately susceptible, and (S) = Susceptible. 

Additionally, the two-way hierarchical cluster analysis showed a clear separation be-
tween tested varieties, as well as tested locations. For instance, the most susceptible vari-
eties (Sids-12 and Gemmeiza-11) were clustered together and separately from other vari-
eties during the 2020 and 2021 seasons. However, during the 2022 season, both varieties 
were clustered in the middle of the dendrogram close to Misr-1, Misr-2, Sids-14, and 
Sakha-93. Interestingly, the final rust severity during the 2020 season ranged from 0 to 
60%, but it reached no more than 40% during the 2021 season; however, stripe-rust disease 
was more epidemic during the 2022 season since it peaked up to 90% on the susceptible 
varieties in Lower Egypt governorates (Figure 2). 

 
Figure 2. Two-way hierarchical cluster analysis (HCA) of final rust severity of Puccinia striiformis f. 
sp. tritici on 17 Egyptian varieties in six different governorates during three successive seasons, 2020, 
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Figure 2. Two-way hierarchical cluster analysis (HCA) of final rust severity of Puccinia striiformis
f. sp. tritici on 17 Egyptian varieties in six different governorates during three successive seasons,
2020, 2021, and 2022 ((A), (B) and (C), respectively). The final rust severity (%) of P. striiformis f. sp.
tritici is visualized in the heatmap diagram where dark red signifies the highest severity whereas the
light-yellow color signifies the lowest severity (see the scale at the bottom-right corner of the heat
map). Rows represent the individual locations, while columns represent the tested varieties.
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2.2. Knowledge-Based Module

Any knowledge-based system consists of two main modules: a knowledge base and
an inference engine. In this paper, the knowledge base of the wheat stripe-rust disease
has been extracted from different domain experts from the Agricultural Research Center
in Egypt. To build the knowledge base for the wheat stripe-rust disease, we used the
knowledge acquisition tool (KAT) [30] to build it. We created a new project for wheat
stripe-rust disease and used KAT to construct a knowledge base of variety selection and
pest identification. To use KAT, we start by building a global ontology of all concepts
related to wheat stripe-rust disease, and then we specified all concepts and properties
which are related to it.

The main concepts are:

1. Disorder: it includes properties of diseases such as name and evolution stages.
2. Variety: it includes different properties including variety name, stripe rust-resistant

status, and other properties to specify if it is recommended and if it is a new variety.
3. Region: it has a property to specify the governorate or region name.
4. Weather: it includes most of the weather variables such as rain, humidity, and minimum

and maximum temperature to represent data that are related to stripe rust susceptibility.

The knowledge base is elastic and we can add and edit new concepts. After that, KAT
generates a data entry form for entering knowledge. We used the data entry form to enter
knowledge that is related to wheat stripe-rust disease and resistant wheat varieties. We
used a rule-based mechanism. A rule-based mechanism is represented as “if-then” rules, in
which, if condition(s) happen, then one makes a decision.

2.3. Weather Forecast Module

This module allows us to obtain weather forecasts in different geographical locations
around Egypt. We used OpenWeatherMap API that is available from “api.openweathermap.org”.
OpenWeatherMap is a commercial provider of meteorological data. It avails access to weather
data for every part of the world. Anyone who needs to use minute forecasts, hourly predictions,
historical data, and other weather data must register using an email address. Many pricing plans
enable weather forecasting for 30 days; also, there is a free plan for forecasting for five days for
three hours.

For this research, the OpenWeatherMap free plan option was used to obtain a weather
forecast five days ahead. Hence, the five-day prediction and climate control are adequate
to expect the occurrence of wheat stripe rust. Temperature and humidity forecasts are
obtained to be used as inputs to the stripe-rust prediction module.

To use the endpoint, api.openweathermap.org for the API calls, we registered and
then we called the API. “https://openweathermap.org/api/one-call-3” (accessed on
18 September 2022)”.

This web-based service requires basic parameters such as latitude, longitude, and
number of hours for the forecast. The response format is either XML or JSON. In this
paper, the used response format is JSON format. Figure 3 shows part of the returned JSON
data. It displays the expected weather variables at “18 June 2022 18:00:00” according to the
specified latitude and longitude that represent the coordinates of the selected region.

After calling the API, we parsed it and extracted weather variables such as minimum,
maximum temperature, and humidity. Figure 4 shows a sample of the forecasted humidity
and maximum temperature for the Kafr-El-Sheikh governorate. The horizontal access
represents the sequence of measurement (three-hour prediction) per five days.

https://openweathermap.org/api/one-call-3
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We used the forecast data as an input to the disease prediction module to predict the
wheat stripe rust five days ahead. The weather forecast module will be combined with the
knowledge-based module to predict the occurrence of wheat stripe rust. The output of this
module is a list of five days ahead with maximum and minimum temperatures for every
day and an early warning to the wheat farmers.
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3. System Structure

The proposed system consists of selection and recommendation practices. Additionally,
it has a component for the weather as shown in Figure 5.
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3.1. Variety Selection

MISSR enables farmers to find suitable wheat varieties to maximize yield and mitigate
and resist stripe-rust disease. The farmer has to specify the farm’s governorate then he will
get the recommended varieties. Additionally, he can obtain information about the degree
of resistant and susceptible varieties to stripe rust. Based on the farmer’s input, the variety
selection component will obtain the knowledge of the varieties from the wheat knowledge
base files. It will use the variety knowledge file.
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3.2. Recommendations

MISSR avails the best agriculture practices to prevent and reduce the effect of stripe rust.
This component uses the wheat knowledge base files which are related to cultural practice.

3.3. Following the Weather to Predict Yellow Rust Vulnerability

MISSR is the most crucial component; it uses a weather API service to forecast weather
data. Moreover, it uses the wheat knowledge base to obtain the knowledge that associates
stripe rust growth stages with weather data. This component empowers farmers by availing
weather data for five days and declaring the possibility of occurrence of stripe rust on specific
days based on weather data. Hence farmers can take proactive procedures and be ready.

3.4. Wheat Knowledge Base Files

MISSR includes files of wheat knowledge: it includes files for variety knowledge,
cultural practices, and disease identification of stripe rust and other diseases.

3.5. Weather API

MISSR uses weather API services to forecast weather data for five days. These weather
data will be used by the “following weather” component. The input of this component is
the latitude and the longitude in addition to other parameters such as language and units
of temperature which are available in Fahrenheit, Celsius, and Kelvin.

4. Results and Evaluation

To evaluate the proposed system, we developed a mobile application to be a tool for
farmers, extension agents, and researchers. The domain experts run different test cases to
check if it displays the correct knowledge. Many iterations of the test have been applied
until we reached the satisfaction of the domain experts.

The developed app is having a bilingual interface in English and Arabic. Figure 6 shows
the main page of the app. The end-user can obtain information about stripe-rust disease,
follow weather data, and select wheat varieties that are resistant to stripe rust.Agronomy 2022, 12, 2416 10 of 16 
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The farmer can obtain information about symptoms and the time of the infection
symptoms by clicking the stripe-rust button as shown in Figure 7. Furthermore, the farmer
can select and search for varieties that are resistant to stripe rust and recommended for the
selected governorate as shown in Figure 7.
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Moreover, Figure 8 shows the result of the following weather data in the Kafr El-
Sheikh governorate. Figure 8A: illustrates the case of wheat cultivation where conditions
are not suitable for infection with stripe rust. While Figure 8B: illustrates another case when
weather conditions are suitable for infection by stripe-rust disease. It displays the minimum
and maximum temperature for the coming five days. Further, it displays susceptibility to
stripe rust including growth stages of fungal and suitable temperatures and humidity for
its growth.
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Usability Testing and Evaluation of MISSR Mobile System

To build a better product, usability testing was carried out to collect data before a
MISSR app was launched. Briefly, the MISSR app was set up on the smartphones of
100 farmers from each of the six targeted governorates (Kafr El-Sheikh, Beheira, Menoufia,
Sharkiya, Minia, and Beni Swef) during the 2022 growing season. In all Nile-Delta gover-
norates (Kafr El-Sheikh, Beheira, Menoufia, and Sharkiya), more than 90% of the users were
satisfied with the program and confirmed that the MISSR mobile system provides new
information promptly. However, this percentage was reduced to 76 and 83%, respectively,
in upper-Egypt governorates (Minia and Beni Swef) (Figure 9). Approximately, 93% of
the Nile-Delta governorates (Kafr El-Sheikh, Beheira, Menoufia, and Sharkiya) confirmed
that the MISSR program predicted yellow rust disease correctly, and more than 95% of
the users agreed that the MISSR mobile system changed the behavior of farmers in the
terms of choosing varieties, nevertheless, this percentage was reduced again in Minia and
Beni Swef governorates (75% and 80%, respectively). As a result, more than 90% of the
system users in Nile-Delta governorates (Kafr El-Sheikh, Beheira, Menoufia, and Sharkiya)
reported that the program reduce losses resulting from yellow rust disease and increased
wheat productivity in the next stage during the 2022 season. Additionally, they suggested
that the provided information via the MISSR mobile system should cover all governorates,
and also, they highly recommended to include all wheat diseases, particularly the other
rust diseases (stem rust and leaf rust) with the app.
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5. Discussion

The world faces a multi-layered global food crisis that seriously threatens global food
security in general, and wheat supply in particular [31]. The near-term food security risks
include COVID-19, climate change, and recently, the Ukraine–Russia war [31]. Egypt is one
of the most affected countries by wheat supply disruptions since it imports more than half
of its consumption mainly from Russia (50%) and Ukraine (30%) [31]. Moreover, global food
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security these days relies greatly on only a few crops, so a single plant disease potentially
can cause a food crisis [32]. In context, wheat stability can be impaired by several abiotic
and biotic stressors. For instance, most cultivated wheat varieties are susceptible to one or
more wind-borne rust diseases [33].

It has been reported that stripe-rust disease caused by P. striiformis f. sp. tritici is
one of the most destructive diseases of wheat worldwide. It caused yield losses of up to
40% in Azerbaijan, Egypt, Ethiopia, Iraq, Morocco, Syria, Tajikistan, and Uzbekistan [34].
Five years ago, newly emerged lineages of P. striiformis f. sp. tritici were introduced into
Argentina, quickly spread into three million hectares, and caused a severe epidemic during
the 2017 season [35]. Stripe rust can cause severe losses ranging from 10 to 70% [11]; these
losses are mainly due to a reduction in the photosynthetic area leading to both reduced grain
yield and quality [36]. Therefore, rapid emergency response(s) to wheat rust epidemics in
general, and newly introduced lineages of the pathogen of stripe rust, P. striiformis f. sp.
tritici particularly, are required to mitigate negative near-term food security effects.

Although it is well known that breeding for rust-resistant wheat cultivars is the most
effective, long-term control strategy [37], chemical control using agrochemicals such as
fungicides is heavily used to control rust diseases due to the absence of effective resis-
tance [38]. Despite the effectiveness of commonly used fungicides, their extensive use is
harmful to the environment, human and animal health, and other non-targeted microor-
ganisms [38], and, as well, it might help the development of resistant races of the pathogen.
Therefore, the need for control alternatives and a further improvement in the yield potential
of wheat is essential [39]. Recently, Bentley and others reviewed the actions that might help
in increasing the resilience of wheat supply from the local to global scale [31]. Interestingly,
they mentioned the expanded technical support as one of the effective mid-term actions
that could ensure sufficient wheat supply [31].

Provision of technical support to wheat producers includes the development and de-
ployment of disease early warning systems (DEWS). DEWS might help smallholder wheat
farmers to increase the yield of their cultivated area by providing near real-time recommen-
dations for resistant cultivars and optimizing the efficient use of chemical fungicides [38].
In the current study, we introduced an easy-to-use mentoring interactive system for stripe
rust (MISSR). MISSR is a mobile application system that helps farmers protect their crops
against wheat stripe-rust disease. It is an early warning decision-making system that uses
data which were collected by using automatic monitoring equipment and a prediction
model for wheat stripe-rust disease based on deep learning technology.

The MISSR mobile application system helps farmers to mitigate the negative impact of
stripe-rust disease that is caused due to weather and climate change. MISSR integrates field
survey data and environmental disease suitability forecasting, as well as communication to
makers of wheat cultivar policy, advisors, and smallholder farmers. The proposed system
has a knowledge base component to acquire and store knowledge of weather data such as
humidity, minimum and maximum temperatures, and vulnerability to plant diseases.

Temperature and relative humidity are the most critical meteorological variables
to explain the development of stripe rust [40]. It has been reported previously that the
causal agent of stripe-rust disease, P. striiformis f. sp. tritici, favors cold temperatures [41].
Moreover, based on the modeled global climate vulnerability for stem rust, upper Egypt
was reported as a seasonally vulnerable area suitable for stem-rust infection, whereas the
Nile delta was reported as a persistently vulnerable area where stem rust can establish
and persist [33]. Collectively, these findings highlighted the importance of integration
of weather data within the newly developed DEWS. In 2020, Rodríguez-Moreno and
others proposed a weather-data-based model for forecasting leaf and stripe rust on winter
wheat [42]. This model used classification and regression trees (CARTs) for data analysis, an
hourly weather dataset, and a three-year field disease severity survey of winter wheat rust
to forecast pathogens’ presence/absence [42]. In the current study, we modeled the effects
of meteorological parameters (particularly maximum temperature and relative humidity),
virulence pattern of stripe-rust races, and three-year final stripe-rust severity of 17 Egyptian
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wheat varieties to develop an easy-to-use, efficient, cost-effective DEWS based on the
Internet of Things.

The developed system helps farmers and any agriculture specialist to enter farm
locations and combines these data with the weather forecast data to predict the occurrence
of the disease five days ahead which helps farmers and agriculture specialists make more
informed decisions to keep them out of the danger of the occurrence of the wheat stripe- rust
disease [43]. Furthermore, it enables farmers to find suitable wheat varieties to maximize
yield and mitigate and resist stripe-rust disease. It is the first time in Egypt that we built
such an application to predict the wheat stripe-rust disease by using a combination of
knowledge-based components and an API service to provide the users with the early
detection of the disease to make better control decisions to help them minimize losses of
the crop. However, as this is considered a novel system in Egypt, there are still future
improvements to be made. We can add knowledge about other wheat diseases, and we can
apply the proposed system to other crops. In the near future, it will begin experiments in
different locations and on different varieties to obtain more data, develop and verify the
accuracy of the model, and study the fixed mechanism of disease occurrence to adapt to
their long-term prevalence. It is hopeful that this concept can be extended to other crops,
thereby accelerating the modernization of Egyptian agriculture.

6. Conclusions

In conclusion, our findings provide valuable baseline information to identify key
weather–disease links. We suggest that the integration of meteorological parameters,
virulence pattern of P. striiformis f. sp. tritici races, and accumulative stripe-rust severity to
build real-time DEWS might offer helpful information to forecast the stripe-rust disease
at both large and small scales. Herein, we tried to better understand how stripe-rust
epidemics are correlated with weather variables using automatic monitoring equipment
and a prediction model for stripe rust based on deep learning technology. The proposed
system has a knowledge-based component to acquire and store knowledge of weather
data such as humidity, minimum and maximum temperatures, and vulnerability to plant
diseases. The developed system helps farmers and any agriculture specialist to enter farm
locations and combines these data with the weather forecast data to predict the occurrence
of the disease five days ahead. Furthermore, it enables farmers to find suitable wheat
varieties to maximize yield and mitigate and resist stripe-rust disease. For future work, we
can add knowledge about other wheat diseases and we can apply the proposed system to
other crops.
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