
Citation: J., A.; Eunice, J.; Popescu,

D.E.; Chowdary, M.K.; Hemanth, J.

Deep Learning-Based Leaf Disease

Detection in Crops Using Images for

Agricultural Applications. Agronomy

2022, 12, 2395. https://doi.org/

10.3390/agronomy12102395

Academic Editors: Ahmed Kayad

and Ahmed Rady

Received: 30 August 2022

Accepted: 30 September 2022

Published: 3 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Deep Learning-Based Leaf Disease Detection in Crops Using
Images for Agricultural Applications
Andrew J. 1 , Jennifer Eunice 2 , Daniela Elena Popescu 3 , M. Kalpana Chowdary 4,* and Jude Hemanth 2

1 Department of Computer Science and Engineering, Manipal Institute of Technology,
Manipal Academy of Higher Education, Udupi 576104, Karnataka, India

2 Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India
3 Faculty of Electrical Engineering and Information Technology, University of Oradea, 410087 Oradea, Romania
4 Department of Computer Science and Engineering, MLR Institute of Technology,

Dundigal 500043, Hyderabad, India
* Correspondence: dr.kalpana@mlrinstitutions.ac.in

Abstract: The agricultural sector plays a key role in supplying quality food and makes the greatest
contribution to growing economies and populations. Plant disease may cause significant losses
in food production and eradicate diversity in species. Early diagnosis of plant diseases using
accurate or automatic detection techniques can enhance the quality of food production and minimize
economic losses. In recent years, deep learning has brought tremendous improvements in the
recognition accuracy of image classification and object detection systems. Hence, in this paper, we
utilized convolutional neural network (CNN)-based pre-trained models for efficient plant disease
identification. We focused on fine tuning the hyperparameters of popular pre-trained models, such
as DenseNet-121, ResNet-50, VGG-16, and Inception V4. The experiments were carried out using the
popular PlantVillage dataset, which has 54,305 image samples of different plant disease species in
38 classes. The performance of the model was evaluated through classification accuracy, sensitivity,
specificity, and F1 score. A comparative analysis was also performed with similar state-of-the-art
studies. The experiments proved that DenseNet-121 achieved 99.81% higher classification accuracy,
which was superior to state-of-the-art models.

Keywords: deep learning; transfer learning; CNN; leaf pathology; leaf disease

1. Introduction

Agriculture, being a substantial contributor to the world’s economy, is the key source
of food, income, and employment. In India, as in other low- and middle-income countries,
where an enormous number of farmers exist, agriculture contributes 18% of the nation’s
income and boosts the employment rate to 53% [1]. For the past 3 years, the gross value
added (GVA) by agriculture to the country’s total economy has increased from 17.6% to
20.2% [2,3]. This sector provides the highest share of economic growth. Hence, the impact
of plant disease and infections from pests on agriculture may affect the world’s economy
by reducing the production quality of food. Prophylactic treatments are not effective for
the prevention of epidemics and endemics. Early monitoring and proper diagnosis of crop
disease using a proper crop protection system may prevent losses in production quality.

Identifying types of plant disease is extremely important and is considered a crucial
issue. Early diagnosis of plant disease may pave the way for better decision-making
in managing agricultural production. Infected plants generally have obvious marks or
spots on the stems, fruits, leaves, or flowers. Most specifically, each infection and pest
condition leaves unique patterns that can be used to diagnose abnormalities. Identifying
a plant disease requires expertise and manpower. Furthermore, manual examination when
identifying the type of infection of plants is subjective and time-consuming, and, sometimes,
the disease identified by farmers or experts may be misleading [4]. This may lead to the
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usage of an unsuitable drug during the process of evaluating the plant disease, which may
deteriorate the quality of the crops and end up polluting nature.

With the evolution of computer vision, there are numerous ways to resolve the de-
tection issues for plants, since the infection spots are initially seen as spots and patterns
on leaves [5]. Researchers have proposed several techniques to accurately detect and
classify plant infections. Some use traditional image processing techniques that incorporate
hand-crafted—that is, manual—feature extraction and segmentation [6]. Dubey et al. [7]
proposed a K-means clustering algorithm to segment the infected portion of leaves, with the
final classification achieved using a multi-class support vector machine (SVM). Yun et al. [8]
used probabilistic neural network to extract meteorological and statistical features. The
experiments were carried out in cucumber plants infected with cucumber downy mildew,
anthracnose, and blights. Further, many models using traditional methods have been
proposed for disease recognition in plants, such as in the work of Liu et al. [9], who used
SVM and K-means clustering techniques, along with a backpropagation neural network.
Although the image processing methods achieved promising results, the process involved
in disease recognition is still tedious and time-consuming. Furthermore, the models rely on
hand-crafted featuring techniques, classification, and spot segmentation. In the computer
vision era, following the emergence of artificial intelligence, much research has utilizes
machine learning [10] and deep learning [11] models to achieve better recognition accuracy.

With the advent of machine learning and deep learning techniques, the progress made
in plant disease recognition has been enormous and represents a massive breakthrough
in research. This has made it easy for automatic classification and feature extraction to
express the original characteristics of an image. Furthermore, the availability of datasets,
GPU machines, and software supporting complex deep-learning architectures with lower
complexity has made it feasible to switch from traditional methods to the deep-learning
platform. In recent times, convolution neural networks (CNNs) have gained wide attention
for their recognition and classification abilities, which work by extracting low-level complex
features from images. Hence, CNNs are preferred for the replacement of traditional
methods in automated plant disease recognition as they achieve better outcomes [12].
A CNN-based predictive model has been proposed by Sharma et al. [13] for classification
and image processing in paddy plants. Further, Asritha et al. [14] used a CNN for disease
detection in paddy fields. In general, researchers use four- to six-layer convolutional neural
networks for the classification of different plant species. Mohanty et al. [15] also used a CNN
with a transfer learning approach for the classification, recognition, and segmentation of
different diseases in plants. Although many kinds of research have been carried out using
CNNs and better outcomes have been reported, there is little diversity in the datasets
used [16]. The best outcome is likely to be achieved by training the deep-learning model
using a large dataset. Although very good outcomes have been attained in the previous
studies, improvement in the diversity of the image databases is still required. The models
trained with the existing datasets lack diversity in the data and backgrounds compared to
realistic photographed materials obtained from real agricultural fields.

Pennsylvania State University published a plant disease dataset named PlantVil-
lage [17]. PlantVillage consists of 54,305 RGB images in 38 plant disease classes. It contains
the images of 14 different plants. Each plant has at least two classes of images showing
healthy leaves and diseased leaves with dimensions of 256 × 256. Sample images from
the dataset are shown in Figure 1. Since the release of this dataset, several plant disease
identification studies have been carried out [18–21].

CNN deep-learning models are popular for image-based research. They are efficient in
learning low-level complex features from images. However, deep CNN layers are difficult
to train as this process is computationally expensive. To solve such issues, transfer learning-
based models have been proposed by various researchers [22–26]. Popular transfer learning
models include VGG-16, ResNet, DenseNet, and Inception [27]. These models are trained
with the ImageNet dataset, which consists of multiple classes. Such models can be used
for training with any dataset as the features of the images, such as edges and contours, are
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common among the datasets. Hence, the transfer learning approach has been found to be
the most suitable and robust model for image classification [28]. Further, transfer learning
can improve learning even when there is a smaller dataset. Figure 2 shows the basic idea
behind transfer learning.
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With transfer learning [22], tasks are more precise, as the model can be trained by
freezing the last or the first layers. Thus, by freezing the layers, the model parameters
cane be retained and tuned for feature extraction and classification [29]. In this study, we
performed a comparative performance analysis of different transfer learning models with
deep CNNs in order to enhance recognition and classification accuracy and attenuate time
complexity. Our workflow architecture is depicted in Figure 3. The experiments were
carried out using the PlantVillage dataset with pre-trained CNN models, such as VGG-16,
DenseNet-121, ResNet-50, and Inception V4. The major contributions of this manuscript
can be summarized as follows:

• Development of a deep learning model for the diagnosis of various plant diseases;
• Determination of the best transfer learning technique to achieve the most accurate

classification and optimal recognition accuracy for multi-class plant diseases;
• Resolution of distinct labeling and class issues in plant disease recognition by propos-

ing a multi-class, multi-label transfer learning-based CNN model;
• Resolution of the overfitting problem through data augmentation techniques;

The rest of the article is arranged as follows. Section 2 provides a literature survey. The
methodology used in this work is presented in Section 3. Section 4 discusses the various
experiments conducted. The results and discussion are presented in Section 5. Finally,
Section 6 concludes the paper with future directions.
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2. Related Work

In the field of agricultural production, ignoring the early signs of plant disease may
lead to losses in food crops, which could eventually destroy the world’s economy [30].
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This section presents an in-depth survey of state-of-the-art research in the field of leaf
disease identification.

A CNN-based deep learning model was proposed for the accurate classification of
plant disease in [31], and the model was trained using a publicly available dataset with
87,000 RGB images. Initially, preprocessing was undertaken, followed by segmentation.
For classification, a CNN was used. Although this model attained a recognition accuracy of
93.5%, it failed to classify some classes, leading to confusion with the classes in subsequent
stages. Further, the performance of the model deteriorated due to limited availability of
data. However to improve recognition accuracy, Narayanan et al. [32] proposed a hybrid
convolutional neural network to classify banana plant disease. In their approach, the raw
input image was preprocessed without altering any default information, and the standard
image dimensions were maintained using a median filter. This approach used a fusion
SVM along with a CNN. A multiclass SVM was used in the testing phase to identify the
type of infection or disease in infected banana leaves, whereas the SVM was used in phase 1
to classify whether the banana leaves were healthy or infected. The classified CNN output
was fetched as an input to the support vector machine, attaining a classification accuracy of
99%. The previous work stated that the CNN had better accuracy outcomes than traditional
methods but this approach lacked diversity.

Jadhav et al. [33] proposed a CNN for the identification of plant disease. In this
approach, they used pre-trained CNN models to identify diseases in soybean plants. The
experiments were carried out using pre-trained transfer learning approaches, such as
AlexNet and GoogleNet, and attained better outcomes, but the model fell behind in the
diversity of classification. Many existing models focus on identifying single classes of plant
disease rather than building a model to classify various plant diseases. This is mainly due
to the limited databases for training deep learning models with diversified plant species.

Jadhav et al. [34] were the first to propose a novel histogram transformation approach,
which enhanced the recognition accuracy of deep learning models by generating synthetic
image samples from low-quality test set images. The motive behind this work was to
enhance the images in the cassava leaf disease dataset using Gaussian blurring, motion
blurring, resolution down-sampling, and over-exposure with a modified MobileNetV2
neural network model. In their approach, synthetic images using modified color value
distributions were generated to address the data shortage that a data-hungry deep-learning
model faces during its training phase and achieve better outcomes.

Following Olusola et al., Abbas et al. [35], in their work proposed, a conditional
generative adversarial network to generate a database of synthetic images of tomato plant
leaves. With the advent of generative networks, previously expensive, time-consuming and
laborious real-time data acquisition or data collection have become possible. Anh et al. [36]
proposed a benchmark dataset-based multi-leaf classification model using a pre-trained
MobileNet CNN model and found it efficient in classification, attaining a reliable accuracy of
96.58%. Further, a multi-label CNN was put forward in [20] for the classification of multiple
plant diseases using transfer learning approaches, such as DenseNet, Inception, Xception,
ResNet, VGG, and MobileNet, and the authors claim that theirs’ is the first research
work that classifies 28 classes of plant disease using a multi-label CNN. Classification of
plant diseases using the Ensemble Classifier was proposed in [37]. The best ensemble
classifier was evaluated with two datasets; namely, PlantVillage and Taiwan Tomato Leaves.
Pradeep et al. [21] proposed the EfficientNet model using a convolutional neural network
for multi-label and multi-class classification. The secret layer network in the CNN had
a better impact on the identification of plant diseases. However, the model underperformed
when validated with benchmark datasets. An effective, loss-fused, resilient convolutional
neural network (CNN) was proposed in [38] using the publicly available benchmark
dataset PlantVillage and achieved a classification accuracy of 98.93%. Though this method
improved the classification accuracy, the model lagged in its performance when using
real-time images under different environmental conditions. Later, Enkvetchakul and
Surinta [39] proposed a CNN network with a transfer learning approach for two plant
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diseases. NASMobileNet and MobileNetV2 were the two pre-trained network models
used for the classification of plant diseases, among which the most accurate prediction
outcome was that based on the NASMobileNet algorithm. Overfitting in deep learning
can be resolved using the data augmentation approach. The data augmentation technique
was implemented in an experimental setup that included cut-out, rotation, zoom, shift,
brightness, and mix-up. Leaf disease datasets and iCassava 2019 were the two kinds of
dataset used. The maximum test accuracy attained after the evaluation was 84.51%. Table 1
shows the different convolutional neural network models that have been proposed to
improve accuracy.

Table 1. Detailed summary of the CNN models used in the recognition and classification of plant disease.

Reference Crop Focus Disease Addressed Dataset Classes Model Model
Performance

[29] Several
Citrus canker, black
mould, bacterial
blight, etc.

Plant disease
symptoms
database

12
56 diseases
under 12 classes

CNN GoogLeNet
with tenfold
cross-validation

Accuracy:
84%

[40] Several Black rot, late blight,
early blight

Self-collected
database

527 species
of diseases
under 5 classes

CNN Accuracy:
96.5%

[41] Tomato
plant

Various diseases and
pests in tomato plant

Self-generated
database 9

Faster
Region-based CNN
with SSD 1

and Region-based
Fully
Convolutional
Network

Precision:
85.98%

[42] Several

Powdery mildew, early
and late blights,
cucumber mosaic,
downy mildew, etc.

Open dataset 58
CNN with
pre-trained VGG
network

Accuracy:
99.53%

[27] Several Black rot, late blight,
early blight PlantVillage 38

VGG-16, Inception
V4, ResNet with 50,
101, and 152 layers,
and DenseNet with
121 layers

Accuracy:
99.75%

[43] Several
Pepper bell bacterial
spot, tomato early and
late blight

PlantVillage 38

Pre-trained with
ImageNet,
GoogLeNet, and
VGG-16 models

Accuracy:
99.09%

[44] Apple

Apple scab, apple grey
spot, general and
serious cedar apple
rust, serious apple scab

AI-Challenger
plant disease
recognition

6 DenseNet-121 Accuracy:
93.71%

[45] Tomato
ToMV, leaf mould
fungus, powdery
mildew, blight

AI-Challenger
plant disease
recognition

4 Faster regional
CNN

Accuracy:
98.54%

[46] Several

Rice leaf smut, maize
common rust, maize
eyespot, rice bacterial
leaf streak

Public database 7 Pre-trained
models

Accuracy:
92%

[47,48] Rice plant Sheath blight, rice blast,
bacterial blight

Self-generated
database 4

Pre-trained CNN
with SVM
classifier

Accuracy:
91.37%

1 Single shot detector.

3. Methodology

CNN models are best suited for object recognition and classification with image
databases. Despite the advantages of CNNs, challenges still exist, such as the long duration
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of training and the requirement for large datasets. To extract the low-level and complex
features from the images, deep CNN models are required; this increases the complexity of
the model training. Transfer learning approaches are capable of addressing the aforemen-
tioned challenges. Transfer learning uses pre-trained networks, in which model parameters
learned on a particular dataset can be used for other problems. In this section, we discuss
the methodologies used in this work.

3.1. Multi-Class Classification

Plant disease datasets hold multiple images infected and healthy plant samples, with
each sample mapped to a particular class. For instance, if we consider the banana plant
as a class, then all the images of healthy and infected samples of banana plants will be
mapped to that specific class. Now, the classification of the target image is purely based on
the features extracted from the source image. Considering the same example of the banana
plant, the banana class has four sets of diseases; namely, xanthomonas wilt, fusarium
wilt, bunchy top virus, and black sigatoka [32]. When a sample of one particular disease
is fetched as input after training with all four sets of disease samples under the banana
class, the testing phase output will classify the exact label of the disease from among
the four categories mapped under that particular class. Thus, multi-class classification
is mutually exclusive, whereas, in multi-label classification, each category inside a class
is itself considered a different class. Suppose we have N classes, then we can refer to N
multi-classes, and if the N classes have M categories, then each category inside each of the
N classes is itself considered a class.

3.2. Transfer Learning Approach

In general, it takes several days or weeks to train and tune most state-of-art models,
even if the model is trained on high-end GPU machines. Training and building a model
from scratch is time-consuming. A CNN model built from scratch with a publicly available
plant disease dataset seemed to attain 25% accuracy in 200 epochs, whereas using a pre-
trained CNN model using a transfer learning approach attained 63% accuracy in almost
half the number of iterations (over 100 epochs). Transfer learning methods include several
approaches, the choice of which depends on the choice of the pre-trained network model
for classification and the particular nature of the dataset.

3.3. ResNe-50

ResNet-50 is a convolutional neural network that has 50 deep layers. The model has
five stages, with convolution and identity blocks. These residual networks act as a backbone
for computer vision tasks. ResNet [49] introduced the concept of stacking convolution
layers one above the other. Besides stacking the convolution layers, they also have several
skip connections, which bypass the original input to reach the output of the convolutional
neural network. Furthermore, the skip connection can be placed before the activation
function to mitigate the vanishing gradient issue. Thus, deeper models end up with more
errors, and to resolve these issues, skip connections in the residual neural network were
introduced. These shortcut connections are simply based on identity mapping.

Let us consider x as the input image, F(x) as the nonlinear layers fitting mappings, and
H(x) as the residual mapping. Thus, the function for residual mapping becomes:

H(x) = F(x) + x (1)

ResNet-50 has convolution as an identity block. Each identity block has three con-
volutional layers and over 23 M trainable parameters. Input x and shortcut x are the
two matrices, and they can only be added if the output dimension from a shortcut and
the convolution layer after the convolution and batch normalization are the same. Other-
wise, shortcut x must go through a convolution layer and batch normalization to match
the dimension.
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3.4. VGG-16

The VGG-16 [50] network model, also known as the Very Deep Convolutional Network
for Large-Scale Image Recognition, was built by the Visual Geometry Group from Oxford
University. The depth is pushed to 16–19 weight layers and 138 M trainable parameters.
The depth of the model is also expanded by reducing the convolution filter size to 3 × 3.
This model requires more training time and occupies more disk space.

3.5. DenseNet-121

DenseNet-121 [51] is a deep CNN model designed for image classification using
dense layers with shorter connections between them. In this network, each layer receives
additional inputs from its preceding layers and passes its generated feature maps to the
succeeding layer. Concatenation is performed between each layer, through which the next
successive layer receives collective knowledge from all the preceding layers. Further, the
network is thin and small since the preceding layers’ feature maps are mapped to the
subsequent layers. In this manner, the number of channels in a dense block is reduced,
and the growth rate of a channel is denoted by k. Figure 4 shows the working principle
of a dense block in DenseNet. For each composition layer, regularization, activation, and
convolution operations are carried out for the output feature maps of k channels. Batch
normalization, ReLu activation and convolution, and pooling are performed to transform
the outcome of subsequent layers:

Y = W3{x, h1(x), h2(x), h3(x)} (2)
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The layers have a strong gradient flow and more diversified features. DenseNet is
small compared to ResNet. Further, the classifiers in the standard ConvNet model process
complex features, whereas DenseNet uses all features, even with different complexities,
and provides smooth decision boundaries.

3.6. Inception V4

Images contain lots of details and salient features and may vary in size. With these
variations in size, choosing the right filter size for feature extraction is challenging. For
local information extraction, a smaller kernel size should be chosen, whereas, for global
information, the kernel size should be large. Stacking up the convolution layers may
result in overfitting and vanishing gradient problems. To solve this, the Inception modules
incorporate different kernel sizes in each block, such that the network model becomes
wider instead of deeper [52]. For instance, the naïve Inception module can use 3 × 3, 1 × 1,
or 5 × 5 sizes for the filter after three different stages of convolution. Max-pooling is then
performed and the outcome is concatenated and passed to the next layer. The stem of the
Inception layer is meant for setting up an initial set of operations to be performed before
the Inception module. Further, Inception V4 has reduction blocks to alter the height and
width of the grids.
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4. Experiments

The baseline system for evaluation of our experiments was a GPU NVIDIA GeForce
GTX workstation. The operating environment was Windows 10, GDDR5 graphic memory
type, Core i5 9th generation, 8 GB RAM. Software implementation was undertaken using
the Anaconda3, Keras, OpenCV, Numpy CuDNN, and Theano libraries. CUDNN and
CUMeM are simple libraries specially designed to carry out deep learning implementations
with less memory and faster execution. Both these libraries were designed by NVIDIA to
work in the Theano backend. OpenCV supports both academic and commercial project
development and supports Linux, Windows, Mac OS, iOS, Python, Java, and Android
interfaces. In this work, for each experiment, the training accuracy and the testing accuracy
were evaluated. The losses obtained during the testing and training phases were calculated
for each model. The models were trained using the PlantVillage dataset with the aim of
accelerating the learning speed of the CNN with transfer learning models. The pre-trained
models chosen for our study included ResNet-50, Inception V4, VGG-16, and DenseNet-121,
which had been previously trained using the ImageNet dataset with 1.2 M images and 1000
image categories.

4.1. Description of Dataset

The PlantVillage [17] dataset is a publicly available dataset with different categories of
plant diseases. This dataset comprises 38 classes with 54,305 images. For our experimental
analysis, we split the dataset into training samples, testing samples, and validation samples.
The pre-trained models were trained with 80% of the PlantVillage dataset, and 20% was
used for validation and testing. Further, the total number of samples available for the plant
classes was 54,305, out of which 43,955 samples were used for training, 4902 for validation,
and 5488 for testing. All these train, test and validation sets include all the 38 classes of the
different plant diseases. The details of the dataset split are presented in Table 2.

Table 2. Details of PlantVillage dataset split for training, validation, and testing.

Plant Type Diseases Classes Total
Samples

Training
Samples

Test
Samples

Validation
Samples

Apple

Apple_scab 573 510 63 57
Apple_black_rot 565 502 63 56
Apple_cedar_apple_rust 250 222 28 25
Apple_healthy 1497 1332 165 148

Blueberry Blueberry_healthy 1366 1215 151 136

Cherry Cherry_powdery_mildew 957 851 106 95
Cherry_healthy 777 691 86 77

Corn

Corn_gray_leaf_spot 466 414 52 47
Corn_common_rust 1084 964 120 108
Corn_northern_leaf_blight 896 797 99 89
Corn_healthy 1057 940 117 105

Grape

Grape_black_rot 1073 955 118 107
Grape_black_measles 1258 1119 139 125
Grape_leaf_blight 979 871 108 97
Grape_healthy 385 342 43 38

Orange Orange_haunglongbing 5011 4460 551 496

Peach
Peach_bacterial_spot 2090 1860 230 207
Peach_healthy 327 291 36 33

Pepper Pepper bell_bacterial_spot 997 807 100 90
Pepper Bell_healthy 1478 1197 148 133
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Table 2. Cont.

Plant Type Diseases Classes Total
Samples

Training
Samples

Test
Samples

Validation
Samples

Potato
Potato_early_blight 1000 810 100 90
Potato_healthy 1000 810 100 90
Potato_late_blight 152 122 16 14

Raspberry Raspberry_healthy 664 299 38 34

Soybean Soybean_healthy 5295 4122 509 459

Squash Squash_powdery_mildew 1669 1485 184 166

Strawberry Strawberry_healthy 1009 898 111 100
Strawberry_leaf_scorch 415 369 46 41

Tomato

Tomato_bacterial_spot 2127 1722 213 192
Tomato_early_blight 1000 810 100 90
Tomato_healthy 1591 1546 191 172
Tomato_late_blight 1909 770 96 86
Tomato_leaf_mold 952 1433 178 160
Tomato_septoria_leaf_spot 1771 1357 168 151
Tomato_spider_mites_two-
spotted_spider_mite 1676 1136 141 127

Tomato_target_spot 1404 4338 536 483
Tomato_mosaic_virus 373 301 38 34
Tomato_yellow_leaf_curl_virus 3209 1287 160 144

Total 54,305 43,955 5448 4902

4.2. Preprocessing and Data Augmentation

The dataset held 38 classes with 26 diseases and 14 species of crops. For our experimen-
tal purpose, we used the colour images from the PlantVillage dataset, as they fit well with
the transfer learning models. The images were downscaled to 256 × 256 pixels as a stan-
dardized format since we used different pre-trained network models that require different
input sizes. For VGG-16, DenseNet-121 and ResNet-50, the input size is 224 × 224 × 3
(height, width, and channel width), whereas, for Inception V4, the input shape of images
is 299 × 299 × 3 (height, width, and channel width). Though the dataset is huge, with
around 54,000 images of different crop diseases, the images match the real-life images
captured by farmers using different image acquisition techniques, such as Kinect sensors,
high-definition cameras, and smart phones. Further, a dataset of such a size is prone to
overfitting. Therefore, to overcome this, overfitting regularization techniques, such as data
augmentation after preprocessing, were introduced. The augmentation processes used
with the preprocessed images included clockwise and anticlockwise rotation, horizontal
and vertical flipping, zoom intensity, and rescaling. The images were not duplicated but
augmented during the training process, so the physical copies of the augmented images
were not stored but were temporarily used in the process. This augmentation technique not
only prevents the model from overfitting and model loss but also increases the robustness
of the model so that, when the model is used to classify real-life plant disease images, it
can classify them with better accuracy.

4.3. Fine-Tuning of Hyperparameters in Pre-Trained Models

The advantages of the transfer learning model are that it learns faster compared to
models built from the scratch and that layers of the model can be frozen and the last
layers trained for more accurate classification. Initially, certain standardizations of the
hyperparameters for different pre-trained models were performed. The details of the
hyperparameter tuning are listed in Table 3.



Agronomy 2022, 12, 2395 11 of 19

Table 3. Hyperparameter specifications.

Hyperparameters Epochs

Dropout 0.5
Epochs 30
Activation ReLu
Regularization Batch normalization
Optimizer Stochastic gradient descent (SGD)
Learning rate 0.001
Output classes 38

The models were optimized using stochastic gradient descent. The initial learning rates
of the DenseNet-121, ResNet-50, VGG-16, and Inception V4 models were set to 0.001. Each
model was run for 30 epochs and the dropout value was fixed as 0.5. In our experiment,
the output graph started to converge after a few iterations (i.e., from 30 epochs the graph
started to converge); thus, our experiment overcame overfitting and degradation issues.

4.4. Network Architecture Model

The pre-trained network models where chosen based on their applicability for the
plant disease classification task. The details of the model architecture are given in Table 4.
Each network has different filter sizes for extracting specific features from feature maps.
Filters play a key role in feature extraction. Further, each filter, when convolved with the
input, will extract different features from it, and the specific feature extraction from the
feature maps depends on the specific values of the filters. In our experiments, we used the
actual pre-trained network models with the actual combinations of convolution layers and
actual filter sizes used for each network model.

Table 4. Pre-trained network architecture model.

Network Model VGG-16 Inception V4 ResNet-50 DenseNet-121

Total layers 16 22 50 121
Max pool layers 5 5 1 4
Dense layers 3 - 3 4
Drop-out layers 2 - 2 -
Flatten layers 1 - 1 -
Filter size 3 × 3 1 × 1, 3 × 3, 5 × 5 3 × 3 3 × 3, 1 × 1
Stride 2 × 2 2 × 2 2 × 2 2 × 2
Trainable
parameters 41.2 M 119.6 M 23.6 M 7.05 M

4.4.1. VGG-16 Tuning Details

The input image dimensions for the network are 224 × 224 × 3, and it has 64 channels
in the first two layers with a filter size of 3 × 3 and stride of 2. The next two layers in the
VGG-16 have 256 channels with 3 × 3 filters; followed by this is a max-pooling layer with
stride of 2. After the pooling layer, there are two convolution layers with 256 channels
with a 3 × 3 filter size. Following the two convolution layers, there are two sets of three
convolution layers, along with a pooling layer, with 3 × 3 filters. The network includes one
flatten layer, five max pool layers, and two dense layers.

4.4.2. Inception V4 Tuning Details

The Inception V4 block has two phases: one is for feature extraction and the other uses
fully connected layers. Inception V4 includes a stem block and the Inception A, B, and C
blocks, which are followed by the reduction blocks A and B and an auxiliary classifier block.
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4.4.3. ResNet-50 Tuning Details

This residual CNN network has 50 layers, and the first layer is a convolutional layer
with kernel size 7 × 7, a stride of 2, and 64 channels. The next three stages are convolution
layers with filter sizes of 1 × 1, 3 × 3, and 1 × 1 and 64, 64, 256 channels. These are
repeated three times. Similarly, the next convolution layers are repeated four times and the
subsequent convolutional blocks are repeated six times.

4.4.4. DenseNet-121 Tuning Details

DenseNet-121 increases the depth of the convolutional neural network by solving the
vanishing gradient issues. It has four dense blocks. In the first dense block, convolution
is performed with 1 × 1 and 3 × 3 filter sizes, and this is repeated six times. Similarly, in
the second dense block, convolution is performed using the filter sizes 3 × 3 and 1 × 1
and the steps are repeated 12 times. In the third dense block, convolution operations with
the same filter size are repeated 24 times, and in the fourth dense block, the steps are
repeated 16 times. In between the dense blocks are transition blocks with convolution and
pooling layers.

5. Results and Discussion

This part of the study employed state-of-the art deep learning models using the
transfer learning approach for the diagnosis of plant diseases. PlantVillage, a publicly
available dataset, was used to further train the pre-trained deep CNN networks, which
were previously trained with the ImageNet dataset. For our experiment, each model was
standardized with a learning rate of 0.01, a dropout of 0.5, and 38 output classes.

The dataset was split into training, test, and validation samples. A total of 80% of the
samples from PlantVillage were used for training the pre-trained Inception V4, VGG-16,
ResNet, and DenseNet-121 models. Each model was run for 30 epochs and it was found that
our model started to converge after 10 epochs with high accuracy. The graph in Figure 5a
depicts the recognition accuracy of the Inception V4 model. The training accuracy achieved
using the inception V4 model was 99.78, and Figure 5b shows the log loss of the Inception
V4 model.
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Figure 5. Performance analysis of Inception V4 model using PlantVillage dataset. (a) Model recogni-
tion accuracy; (b) train and test loss.

The second experiment evaluated the VGG-16 model using the same dataset. After
standardization of the hyperparameters, the model was trained with 80% of the same
dataset, with 10% used for testing and the remaining 10% of the image samples used
for testing and validation. It can be observed from Figure 6a that the model recognition
accuracy reached around 78% in the initial 10 epochs, after which is steadily increased to
attain the maximum recognition accuracy of 84.27%, which was lower than the Inception
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V4 model. The training loss and the validation model were found to be 0.52% and 0.64%,
respectively, as seen in Figure 6b.
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Figure 6. Recognition accuracy of VGG-16. (a) Training and testing accuracy; (b) training and
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The third experiment was undertaken with the ResNet-50 model. The same method
was applied in the evaluation of model loss and recognition accuracy, and the graphs for
recognition accuracy and validation and training loss are plotted in Figure 7a,b. This model
achieved an accuracy of 99.83 and a model loss of 0.027. It outperformed the Inception V4
and VGG-16 models.
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After hyperparameter standardization, the final experiment was executed with DenseNet-
121, which has 121 layers with four dense blocks and a transition layer between each dense
block. Figure 8a,b show the graphs plotted for the training and validation accuracy/loss for
30 epochs. In the testing phase after training, the maximum accuracy achieved was 99.81%
and the maximum validation loss calculated was 0.0154%. A comparative performance
analysis is shown in Table 5 for the pre-trained network model experiments.
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Table 5. Comparative performance analysis of various network models.

Network
Models

Training
Accuracy (%)

Training Loss
(%)

Test Accuracy
(%) Test Loss (%)

Inception V4 99.78 0.01 97.59 0.0586
VGG-16 84.27 0.52 82.75 0.64

ResNet-50 99.82 6.12 98.73 0.027
DenseNet-121 99.87 0.016 99.81 0.0154

In agricultural production, early diagnosis of crop disease is essential for high yields.
To maintain a high production rate, the latest technologies should be implemented in
the early diagnosis of plant disease. It was observed from the literature study that deep
learning models are efficient in image classification, and transfer learning based models
are efficient in eliminating training complexity and huge dataset requirements. Hence, in
this work, we evaluated four pre-trained models—VGG-16, ResNet-50, Inception V4, and
DenseNet-121—to determine the model that was best capable of classifying various plant
diseases. The results for the pre-trained models were evaluated with evaluation metrics,
such as specificity, sensitivity, and F1 score values. The validation accuracy in terms of
the F1 score was calculated and a graphical representation the validation accuracy for the
pre-trained models is depicted in Figure 9. It was inferred that DenseNet-121 (Figure 9d)
outperformed the other network models (Figure 9a–c) and attained the highest validation
peak with 0.998, which is very close to an F1 score of 1. In general, the value of an F1 score
ranges from 0 to 1. A model’s performance is relatively better when it is closer to 1. In our
analysis, after repeating the same experiments for all the pre-trained models, we found that
the highest validation accuracy in terms of the F1 score was achieved by DenseNet-121 at
0.998, whereas it was 0.887 for Inception V4, 0.901 for VGG-16, and 0.935 for ResNet-50.

A statistical representation of the pre-trained network models based on the evaluation
metrics is shown in Figure 10. The vanishing gradient issues resulting from skip connec-
tions were eliminated using regularization techniques, such as batch normalization. With
deeper models, various challenges, such as overfitting, covariant shifts, and training time
complexity, occurred. To overcome these challenges in our experiments, we fine-tuned
the hyperparameters. The experiments used sensitivity to predict the proportion of actu-
ally healthy plants classed as healthy (true positive) and actually healthy plants classed
as unhealthy (false negative). From the evaluation, it was observed that ResNet-50 and
DenseNet-121 performed better than the VGG-16 and Inception V4 models. A performance
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analysis of the different pre-trained models based on the specificity, sensitivity, and F1 score
is shown in Figure 10.

sensitivity (recall) =
True Positive

(True positive + False Negative)
(3)Agronomy 2022, 12, 2395 16 of 20 
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Specificity is a measure of the proportion of actually unhealthy plants predicted to
be unhealthy (true negative) and the actually unhealthy leaves predicted to be healthy
(false positive)

speci f icity =
True Negative

(True Negative + False positive)
(4)

Table 6 presents a comparison of the obtained results with those from state-of-the-art
studies from the literature that used transfer learning models. We considered state-of-
the-art studies from the literature that experimented on the PlantVillage dataset. It was
observed from the analysis that our work considered more plant disease classes. Further,
our fine-tuned, pre-trained model achieved the best accuracy of 99.81%.

Table 6. Comparison with state-of-the-art transfer learning models.

References Dataset Used Pre-Trained
Model Multi-Classes Recognition

Accuracy (%)

[53] PlantVillage VGG-16 10 91.2

[54] PlantVillage ResNet-50 6 97.1

[55] PlantVillage AlexNet 7 98.8

Our Work

PlantVillage Inception V4 38 97.59
VGG-16 38 82.75

ResNet-50 38 98.73
DenseNet-121 38 99.81

6. Conclusions

In this work, we successfully analysed the different transfer learning models suitable
for the accurate classification of 38 different classes of plant disease. Standardization
and evaluation of state-of-the-art convolutional neural networks using transfer learning
techniques were undertaken based on the classification accuracy, sensitivity, specificity,
and F1 score. From the performance analysis of the various pre-trained architectures,
it was found that DenseNet-121 outperformed ResNet-50, VGG-16, and Inception V4.
Training the DenseNet-121 model seemed to be easy, as it had a smaller number of trainable
parameters with reduced computational complexity. Hence, DenseNet-121 is more suitable
for plant disease identification when there is a new plant disease that needs to be included
in the model, demonstrating reduced training complexity. The proposed model achieved
a classification accuracy of 99.81% and F1 score of 99.8%.

In future work, we will address the problems in real-time data collection and develop
a multi-object deep learning model that can even detect plant diseases from a bunch of
leaves rather than a single leaf. Furthermore, we are working towards implementing
a mobile application with the trained model from this work. It will help farmers and the
agricultural sector in real-time leaf disease identification.
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