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Abstract: Deep learning with convolutional neural networks represents the most used approach in
recent years in the classification of leaves’ diseases. The literature has extensively addressed the
problem using laboratory-acquired datasets with a homogeneous background. In this article, we
explore the variability factors that influence the classification of plant diseases by analyzing the same
plant and disease under different conditions, i.e., in the field and in the laboratory. Two plant species
and five biotic stresses are analyzed using different architectures, such as EfficientB0, MobileNetV2,
InceptionV2, ResNet50 and VGG16. Experiments show that model performance drops drastically
when using representative datasets, and the features learned from the network to determine the class
do not always belong to the leaf lesion. In the worst case, the accuracy drops from 92.67% to 54.41%.
Our results indicate that while deep learning is an effective technique, there are some technical issues
to consider when applying it to more representative datasets collected in the field.

Keywords: deep learning; convolutional neural network; benchmark; plant disease prediction

1. Introduction

Plant disease prediction has become a research hotspot as it embraces important appli-
cation areas such as food security, environmental sustainability [1] and climate change [2].
According to [3], the current state of the art includes considerable advancements in un-
derstanding these dynamic processes, adopting distinct scientific techniques such as Data
Mining [4], Artificial Intelligence [5], Machine Learning [6] and Deep Learning [7]. New
Information and Communication Technologies (ICT) such as the Internet of Things (IoT),
remote sensing and cloud computing have played a central role.

As defined by [3], based on the different factors that interact with plant disease
epidemiology, and the different approaches that can be followed, disease prediction models
are divided into three main groups based on input parameters: (i) forecasting models
based on weather data; (ii) forecasting models based on image processing; (iii) forecasting
models based on different types of data from several heterogeneous sources. Image-based
prediction models can be adopted to predict disease onset at a presymptomatic stage (i.e.,
the symptom is not visible to the naked eye) or to make a diagnosis (i.e., the symptom is
visible on the leaf surface). In the first case, the prediction of the onset of the disease is
fundamental for the adoption of defense strategies. In the second scenario are involved
two use cases: (i) supporting the hobbyist farmer in identifying the disease (ii) enabling
field robots to spray pesticides in diseased areas.

1.1. Related Works

A considerable amount of literature has investigated the diagnosis of the disease.
Several methods have been adopted for the classification of diseased leaves, including
the supervised learning method and the unsupervised learning method. Supervised
learning methods have received more attention. Initially, the problem was analyzed using
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conventional machine learning models [6]. Subsequently, the investigation moved towards
deep learning, as it is characterized by a broad horizon of analysis. In [8], the authors
demonstrated that convolutional neural networks lead to a more effective response. Indeed,
GoogleNet has outperformed the Support Vector Machine and Random Forest algorithms.
The first proof of concept involved classic architectures such as GoogleNet [9], CaffeNet [10],
LeafNet [11] and AlexNet [12]. Several studies have been conducted to improve the results.
The authors in [13] proposed a deep convolutional neural network to identify apple leaf
diseases, based on AlexNet and GoogleNet Incpetion structure, reaching a recognition
accuracy of 97.62%. The research in [14] studied a deep convolutional neural network
to predict rice disease, where the experimental results achieved an average accuracy of
95.48%. Later, more complex convolutional architectures were used. The authors of [15]
performed a study to predict different diseases, where DensNet obtained a test accuracy
score of 99.75%.

1.2. Open Issues

While we recognize the work being carried out in plant disease prediction, the gener-
alizability of much of the published research on this topic is problematic.

As delineated by [16], plant disease diagnosis is a difficult problem with a wide
variety of associated challenges divided into intrinsic and extrinsic factors. Extrinsic
factors are defined as interference caused by the image acquisition in-field (e.g., complex
backgrounds, reflections, blur etc.), while intrinsic factors are defined as particular biotic
and abiotic features related to symptoms that can cause disorders (e.g., color, shape and
size of symptoms) [16].

Several studies employed the PlantVillage dataset [17,18] or their own dataset either
collected under controlled conditions [13,19], recording results with high accuracy. As
pointed out by [20], even if all these studies have made relevant contributions, these datasets
do not reproduce the range of conditions expected to be found in practice. In the real world,
it is difficult to obtain perfectly focused images as well as a real-world application should
be able to classify leaf diseases directly in the field without detaching the leaf from the
plant to place it on a homogeneous background. As outlined by the authors in [20,21], the
extrinsic factors depend on the construction of more representative datasets.

The situation is largely caused by the difficulties involved in building truly comprehen-
sive databases [20]. In agriculture, it is unthinkable and impossible to be able to capture the
vast climatic–environmental variability [3]. Their creation is a complex task, and labeling
the images is a labor-intensive process that takes several hours, and often needs to be
carried out by an expert. Many research works were conducted using datasets built in
laboratories such as PlantVillage [22], in which 54 thousand foliar diseases are portrayed
on the ventral surface of the leaf on a homogeneous background.

Due to these issues, few studies have explored datasets collected directly in the field.
The study in [7] collected a field dataset of pear leaf disease, called DiaMOS Plant [23],
A Dataset for Diagnosis and Monitoring Plant Disease, containing images of an entire
growing season of pear trees. The authors developed a multi-output system based on
convolutional neural networks to diagnose plant diseases and stress severity in a pear
orchard [7]. A comprehensive review of the datasets collected in the field is provided
in [23].

A first investigation into how the size and variety of the dataset impact the effective-
ness of deep learning techniques applied to plant pathology was performed in [20]. The
author employed an image database of limited size (1383 pictures), containing 12 plant
species with distinct characteristics in terms of the number of samples and diseases. From
the study, it was observed that any plant disease classifier will have a number of associated
limitations that are directly related to the completeness of the dataset used to train it, which
are identified by three main factors: (1) number of classes considered; (2) similarity of
characteristics between the images present in the training and test datasets; (3) characteris-
tics and variability of the image backgrounds. Even if the work used a limited number of
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samples that was often too small for the CNN to fully capture the salient features relating
to each class, it resulted in a wealth of information useful for interpreting the results in
relation to the representative limits associated with the dataset used.

1.3. Our Contribution

The main contribution of this study is to extend this knowledge by evaluating and
estimating the impacts that occur in plant diseases classification, analyzing datasets col-
lected under different conditions, i.e., laboratory and field condition. The contribution of
this paper is summarized as follow:

• We investigate and quantify the factors that occur and affect the plant disease classifica-
tion performance, analyzing the same crop and disease under different environmental
conditions using the recent CNNs architectures such as MobileNetV2, EfficientB0,
InceptionV2, VGG16 and ResNet50;

• We evaluate the results with a range of metrics, including classification accuracy
metrics, convergence speed comparison and the feature visualization process;

• We analyze the effects of background removal;
• We inspect the features learned from the models to better understand the strengths

and limitations of deep learning models. We outline the main reasons that conduct
the classifiers to misclassifications, and which ones are more important in the classifi-
cation process;

• We released our code as a toolbox, called LeafBox, to facilitate the reproduction of the
results obtained (https://leafbox.francescamalloci.com, accessed on 17 October 2022).

1.4. RoadMap

The paper is structured as follows. Section 2 describes the dataset, the experimental
approach and the setup adopted to conduct the study. Section 3 illustrates the experimental
results, while Section 4 presents a discussion of our main findings and future lines of
research. We conclude the paper in Section 5.

2. Case Study
2.1. Image Dataset
2.1.1. Introduction

The datasets analyzed in this report are open available datasets in the literature, which
are RoCoLe [24], BRACOL [25], Plant Pathology [26] and Plant Village [22] (see Table 1 and
Supplementary Material).

We decided to investigate the aforementioned datasets because they are in line with the
scientific objectives of this work. The samples are portrayed under different environmental
conditions, such that the performance of the models under different acquisition conditions
can be investigated and quantified. RoCoLe and BRACOL contain leaf images of coffee. In
RoCoLe, leaves are captured on the plant; in BRACOL, the leaves are photographed against
a homogeneous background under controlled lighting conditions. Similarly, Plant Pathol-
ogy and Plant Village include leaf images of apple trees. Plant Pathology is a field-collected
dataset, while Plant Village is a laboratory dataset. There are multiple variables present
for each of them (see Table 1 for full description). Among them, there are several shared
diseases (see Table 2), allowing us to inspect the performance of the models by analyzing
the same crop and symptom in the field and in the laboratory. Considering the same culture
symptomatology means keeping stable intra-class variability, symptom-specific characteris-
tics, and more quantification of the robustness of the models in classifying the same disease
under different environmental conditions. Therefore, comparing these datasets allows us
to demonstrate that classification under realistic field conditions is much more complex
than using laboratory-collected images, identifying the performance GAP and the factors
restraining the transferability and robustness of the models themselves.

https://leafbox.francescamalloci.com
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Table 1. The Table shows an overview of the datasets used, reporting the variables monitored and
the total size, respectively. For a detailed description of the entire dataset, the reader is referred to the
relevant manuscript.

Dataset Leaf Side Variables Number of Images

RoCoLe [24] Adaxial and Abaxial Healthy 1560
Red spider mite

Rust level 1
Rust level 2
Rust level 3
Rust level 4

BRACOL [25] Abaxial Healthy 1747
Miner
Rust

Phoma
Cercospora

Severity

Plant Pathology [26] Adaxial Healthy 3651
Cedar rust

Scab
Multiple diseases

Plant Village [22] Adaxial Healthy 3172
(only apple images) Cedar rust

Scab

Table 2. Datasets details. The Table presents only the samples and the classes used to conducted the
present case study as described in Section 2.2. For a detailed description of the entire dataset, the
reader is referred to the relevant manuscript.

Dataset Condition Plant Disease Number of Images

RoCoLe [24] Field Coffee Healthy 602
rust 602

BRACOL [25] Laboratory Coffee Healthy 684
rust 684

Plant Pathology [26] Field Apple Healthy 516
Cedar rust 516

Scab 516

Plant Village [22] Laboratory Apple Healthy 630
Cedar rust 630

Scab 630

2.1.2. Description

RoCoLe is the acronym referring to the Robusta Coffee Leaf images dataset, containing
1560 leaf pictures divided into six classes: healthy, red spider mite presence, rust level
1, rust level 2, rust level 3 and rust level 4. The photos were captured from the adaxial
(upper) and abaxial (lower) leaf side under a natural uncontrolled environment. BRACOL
is the abbreviation of Brazilian Arabica Coffee Leaf images dataset including 1747 leaves
pictures affected by the following biotic stresses: leaf miner, leaf rust, brown leaf spot and
cercospora leaf spot. The photos were taken from the abaxial side of the leaves under
partially controlled conditions and placed on a white background.

For the purpose of our study, only healthy and rust disorders were taken into consider-
ation. Plant Pathology, as defined by authors, is a dataset that consists of 3651 high-quality
(i.e., high-resolution) images of multiple apple foliar diseases captured in field conditions,
and annotated into four classes: scab, cedar apple rust, multiple diseases and healthy. A
subset of this dataset was made available to the Kaggle community for a Plant Pathology
Challenge. In our work, only healthy, cedar rust and scab leaves were examined. The
PlantVillage dataset comprises healthy and diseased leaf images into 38 labels (54,306 im-
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ages, 26 diseases, 14 crop species), portrayed only on the ventral side of the leaf, on a
homogeneous background. From this dataset, we selected only the apple leaves affected
by three main biotic stresses: cedar rust, scab and healthy leaves. For each dataset, we
balanced the classes. Table 2 summarizes the dataset in its entirety, reporting the cultivation,
the conditions in which it was collected, the disease and the number of images for each of
them. Figure 1 shows samples of images in each dataset.

Agronomy 2022, 1, 0 5 of 21

ages, 26 diseases, 14 crop species), portrayed only on the ventral side of the leaf, on a
homogeneous background. From this dataset, we selected only the apple leaves affected
by three main biotic stresses: cedar rust, scab and healthy leaves. For each dataset, we
balanced the classes. Table 2 summarizes the dataset in its entirety, reporting the cultivation,
the conditions in which it was collected, the disease and the number of images for each of
them. Figure 1 shows samples of images in each dataset.

Figure 1. Examples of leaves from the dataset employed. In the first line are reported the leaves
collected in field, where (a,b) belong to ROCOLE dataset, and (c–e) belong to Plant Pathology dataset.
From left to the right: (a) healthy coffee leaf; (b) rust coffee leaf; (c) cedar rust apple leaf; (d) scab
apple leaf; (e) healthy apple leaf. In the second lines are reported the related leaves collected in a
controlled environment, where (f,g) belong to BRACOL dataset, and (h,i,l) belong to Plant Village
dataset. From left to the right: (f) healthy coffee leaf; (g) rust coffee leaf; (h) cedar rust leaf; (i) scab
leaf; (l) healthy leaf.

2.2. Experimental Approach

We adopted five notable convolutional neural networks architectures for the investiga-
tion of our study, including VGG16 [27], ResNet50 [28], InceptionV2 [9], MobileNetV2 [29]
and EfficientNetB0 [30]. We considered these architectures not only because their effec-
tiveness was proven in previous works [21,31–33] that deal pretty well with plant disease
classification, but also because they portray a representative sample of the modern architec-
tures studied today for the solution of the problem under examination.

Since the first moment in which convolutional neural networks were theorized in
the literature, they have undergone a progressive evolution aimed at: (1) improving
performance; (2) solving technical problems such as vanishing gradient problem, overfitting,
(3) improving the use of resources. The VGG network [27] follows the archetypal pattern of
classic convolutional networks. It was designed to achieve high accuracy. Indeed, thanks
to its simplicity, and the use of deep layers with small filters, it scored first place in the
image localization task and second place in the image classification task in the Image Net

j

Figure 1. Examples of leaves from the dataset employed. In the first line are reported the leaves
collected in field, where (a,b) belong to ROCOLE dataset, and (c–e) belong to Plant Pathology dataset.
From left to the right: (a) healthy coffee leaf; (b) rust coffee leaf; (c) cedar rust apple leaf; (d) scab
apple leaf; (e) healthy apple leaf. In the second lines are reported the related leaves collected in a
controlled environment, where (f,g) belong to BRACOL dataset, and (h–j) belong to Plant Village
dataset. From left to the right: (f) healthy coffee leaf; (g) rust coffee leaf; (h) cedar rust leaf; (i) scab
leaf; (j) healthy leaf.

2.2. Experimental Approach

We adopted five notable convolutional neural networks architectures for the investiga-
tion of our study, including VGG16 [27], ResNet50 [28], InceptionV2 [9], MobileNetV2 [29]
and EfficientNetB0 [30]. We considered these architectures not only because their effec-
tiveness was proven in previous works [21,31–33] that deal pretty well with plant disease
classification, but also because they portray a representative sample of the modern architec-
tures studied today for the solution of the problem under examination.

Since the first moment in which convolutional neural networks were theorized in
the literature, they have undergone a progressive evolution aimed at: (1) improving
performance; (2) solving technical problems such as vanishing gradient problem, overfitting,
(3) improving the use of resources. The VGG network [27] follows the archetypal pattern of
classic convolutional networks. It was designed to achieve high accuracy. Indeed, thanks
to its simplicity, and the use of deep layers with small filters, it scored first place in the
image localization task and second place in the image classification task in the Image Net
Large-Scale Visual Recognition Challenge (ILSVRC). After its introduction in research, more
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efforts were concentrated on the development of architectures that suffered less from the
vanishing gradient problem and overfitting. He et al. [28] ideated the concept of residual
learning, developing a residual neural network called ResNet50. Furthermore, to cope with
the need to integrate intelligent models into devices with limited resources, more branched
and performing networks have been built in real-time mode, such as InceptionV2 [9], as
well as lighter networks, structured for an efficient use of computational resources, both
in terms of memory and time, such as MobileNet [29] and EfficientNet [30]. The reader
is referred to the respective papers for a detailed description of each of them. From the
brief historical excursus, it is inferred that the comparison of these architectures provides a
baseline that can be used in future studies on the subject.

Although CNNs are shown to achieve significant results on image classification task,
there are problems with implementation and use. Among these, neural networks require a
large number of samples for proper training. Thus, designing and training a CNN from
scratch is not considered an ideal solution when dealing with a small dataset. In light of
this challenge, the concept of transfer learning is adopted.

2.3. Transfer Learning

Transfer learning is a strategy widely used in deep learning to yield reasonable results
despite a relative lack of data. It consists of taking features learned on one problem and
leveraging them on a new similar problem [34]. In other words, it reuses the weights of a
pretrained model, to initialize and estimate the weights in a new model designed for the
target task.

2.4. Data Augmentation

Data augmentation is a method used to mitigate overfitting in computer vision. It is a
data enrichment method in which new training samples are generated from the training
dataset by applying a series of random transformations. At the state of the art, there are
several tools that introduce more variability into the dataset. The standard techniques
include rotation, shearing, zooming, cropping, flipping and color variation. In this work, we
focused on standard methods in order to improve the performance and the generalizability
of the model.

2.5. Experimental Setup

The experimental framework written in Python language exploits the Keras deep
learning 2.4.3 library based on Tensorflow 2.2.1 environment, executed on a server equipped
with a 3.000 GHz Intel(R) Xeon(R) Gold. To carry out the study, we divided the dataset
into training, validation, and test datasets with a ratio of 6:2:2, respectively. To preserve the
percentage of samples for each class, the dataset was split using the ShuffleSplit strategy
provided by the scikit-learn 0.23.2 library. Before training, we preprocessed the data to
meet the requirements of CNN networks. All images were resized to 224 × 224 × 3,
reshaped into the shape the networks expect and scaled so that all values were in the [0, 1]
interval. A data augmentation technique was applied in real time during the training
phase with a probabilistic execution of horizontal and vertical mirroring, rotation, and
color variation. The CNN networks received slightly different images for each batch, and
the analysis allowed them to adjust the network’s weights until the network learned the
most relevant features for the given problem [7]. The transfer learning as feature extraction
was performed by adapting CNN networks trained using the ImageNet dataset [35], which
consists of images from a large variety of objects (1000 categories). During this step, the
top layers were frozen to prevent their weights from being updated during training. Thus,
with this configuration, the features that were previously learned from the convolutional
base were not lost. The hyper-parameters configurations used are presented in Table 3,
where loss function was set to binary entropy for binary classification (RoCoLe, BRACOL
datasets), while cross entropy was employed for multi-label classification (Plant Village,
Plant Pathology datasets). We monitored the model’s validation loss to reduce the learning
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rate when it stopped improving. This strategy allowed us to get out of local minima during
training, a phenomenon known as Plateau [36]. The learning rate decreased when the
validation loss stopped improving for 4 epochs, dividing it by 10. Finally, the states (set of
weights) in which the networks presented the lowest loss value for the validation set were
saved. The saved models are evaluated with the test dataset and the results are computed
in terms of Accuracy, Precision, Recall, F1-score.

Table 3. CNN training hyper-parameters.

Parameter Value

Optimizer RMSprop
Loss function Binary-Entropy, Cross-Entropy
Learning rate 2 × 10−5

Momentum 0.9

2.6. Metrics

Given the nature of our work, which distinguishes healthy leaves from diseased leaves
affected by different pathogens, we evaluated the impact that occurred in the classification
of plant diseases using datasets captured under different conditions in terms of classification
accuracy metrics, including Accuracy, Precision, Recall and F1 score. In addition, the
Confusion Matrix was computed to better understand how the classifiers performed with
respect to the target classes in the dataset. To interpret the reasons for misclassifications,
a visual explanation from the deep networks with attention maps was also provided by
applying the Gradient-Weighted Class Activation Mapping (Grad-CAM) technique.

2.6.1. Classification Accuracy Metrics

In the description of these evaluation metrics, we used the following definitions: False
Positives (FP): diseased leaves that were misclassified as healthy; False Negatives (FN):
heathy leaves that were misclassified as diseased; True Positive (TP): diseased leaves that
were correctly classified as diseased; True Negative (TN): healthy leaves that were correctly
classified as healthy. We measured the following metrics:

• Accuracy is defined as (TP + TN)/(TP + TN + FP + FN);
• Precision is defined as TP/(TP + FP);
• Recall is defined as TP/(TP + FN);

• F1 score is defined as 2 ∗ (Precision ∗ Recall)
(Precision + Recall) ;

• The confusion matrix is a table that displays and compares actual values with the
model’s predicted values. It provides detailed information on how a classifier per-
formed on a dataset. Table 4 reports a template of the confusion matrix used for the
binary classification.

Table 4. Confusion Matrix.

Predicted Y

Positive Negative

Actual Y
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

2.6.2. Interpreting the Classification through Feature Visualization

Initially, deep learning was regarded as a “black box” [9] because the features that
are learned by CNN-based models are difficult to represent in a human-readable form.
In recent years, the contents of the black box have been unveiled thanks to the recent
growth of deep learning research. Researchers developed different techniques capable
of extracting the CNN calculation process in a human-interpretable form, such as via
visualization. A detailed analysis of these techniques applied to plant classification is
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provided in [37]. In our work, the Gradient-Weighted Class Activation Mapping (Grad-
CAM) technique [38] was applied to reveal the features and regions within the image which
have been important in the classification. As described by the authors [38], Grad-CAM
uses the gradient information flowing into the last convolutional layer of the CNN to
assign importance values to each neuron for a particular region of interest. Although this
technique is fairly general, in that it can be used to explain activations in any layer of a
deep network, in our study, we focus on explaining output layer decisions only, in order to
better understand the correct classification and misclassifications.

3. Results

This section reports the results obtained to assess how much the representativeness of
the datasets affects the classification of diseased leaves.

3.1. Classification Accuracy Metrics and Convergence Speed Comparisons

Table 5 lists the test accuracy obtained with deep neural networks as feature extractors
for each dataset, while Figure 2 plots the accuracy curve during the training phase. Through
analysis of the results, it can be seen that all classifiers scored better in the laboratory
datasets than the field datasets, both for binary classification and for multiclass classification.
This behavior can be attributed to the different levels of variability present in field images,
where real-world factors increase the complexity of the problem, e.g., the background
and different angles of the light beam. MobileNetV2 identified the salient patterns for
classification in all four datasets, followed by EfficientNetB0, InceptionV2, VGG16, and
ResNet50. In detail, MobileNetV2 and EfficientNetB0 achieved very close performance
for laboratory datasets, and outperformed the other architectures. MobileNetV2 scored
87.02% (RoCoLe), 87.31% (Plant Pathology), while EfficientNetB0 scored 82.90% (RoCoLE)
and 82.57% (Plant Pathology). VGG16 achieved high results for the BRACOL (96.54%) and
Plant Village (97.84%) datasets, but had a marked decline in accuracy for the field datasets,
79.83% for RoCoLe, and 70.11% for Plant Pathology. Lower results across all datasets were
recorded by ResNet50. In terms of convergence speed, as expected considering the nature
of the architectures, the EfficientNetB0, MobileNetV2 and InceptionV2 networks converge
faster than the VGG16 and ResNet50 networks. The first models converge after 20 epochs,
while the last two models converge after 40 epochs (see Figure 2).

Table 5. Test accuracy results using feature extraction.

Laboratory
Dataset Field Dataset Laboratory

Dataset Field Dataset

Coffee Leaf Coffee Leaf Apple Leaf Apple Leaf

BRACOL (%) RoCoLE (%) Plant Village (%) Plant Pathology
(%)

EfficientNetB0 99.31 82.90 99.57 82.57
InceptionV2 97.23 85.36 98.06 81.94

MobileNetV2 99.31 87.02 99.35 87.31
ResNet50 83.39 67.40 92.67 54.41
VGG16 96.54 79.83 97.84 70.11

Table 6 graphically shows the precision, recall and F1 score for each model. Evalu-
ating the models using these metrics confirms the rankings identified with accuracy, in
which MobileNetV2 performed best, followed by EfficientNetB0, InceptionV2, VGG16 and
ResNet50. In this case, MobileNetV2 is more accurate than EfficientNetB0. In terms of recall,
MobileNetV2 obtained a high rate for field datasets 87.02% (RoCoLe) and 87.31% (Plant
Pathology), while EfficientNetB0 achieved 82.59% (RoCoLe) and 82.79% (Plant Pathology),
respectively. The MobileNetV2, EfficientNetB0, InceptionV2, VGG16 architectures are all
precise and sensitive. Indeed, the F1 score metric that carries out a harmonic average of
the two metrics remains raised. On the contrary, ResNet50 is highlighted, as its precision
and recall are inversely proportional. In fact, the model is more precise and less sensitive.
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This inference is more notable in field datasets. Graphs of training accuracy and loss are
released as supplemental material.

Figure 2. Comparison in terms of convergence speed and training accuracy. In the first column, we
report laboratory datasets: (a) BRACOL, (c) Plant Village. In the second column, we report field
datasets: (c) RoCoLe, (d) Plant Pathology.

Table 6. Recall, Precision, F1 score obtained on test set.

BRACOL RoCoLe Plant Village Plant Pathology

Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
EfficientNetB0 98.82% 99.51% 99.16% 85.91% 82.59% 82.18% 99.65% 99.64% 99.64% 87.4% 82.79% 81.43%
InceptionV2 96.94% 96.25% 96.59% 87.27% 85.35% 85.16% 96.2% 97.99% 98.09% 84.94% 81.93% 80.76%
MobileNetV2 99.15% 99.15% 99.15% 89.23% 87.01% 86.83% 99.47% 99.47% 99.47% 89.24% 87.31% 86.59%
ResNet50 83.24% 74.32% 76.92% 72.47% 67.4% 85.45% 92.93% 93.58% 93.12% 69.78% 54.4% 44.95%
VGG16 96.08% 95.41% 95.74% 83.38% 79.83% 79.28% 98.25% 98.23% 98.23% 76.73% 70.1% 66.29%

By analyzing the confusion matrix of the networks that achieved high results, it is
possible to perform a more detailed observation of the errors made by the classifiers (see
Figure 3). For the RoCoLe dataset, all three classifiers swapped rust-affected leaves for
healthy leaves. For the respective laboratory dataset named BRACOL, the InceptionV2
model made multiple mistakes in labeling healthy leaves as diseased. In the laboratory
datasets for the multiclass classification, it is observed that errors are more committed in
classifying the leaves affected by scab as healthy. The same trend is present in the field
dataset. The classifiers find it very difficult to distinguish the scab class from the healthy
class, as the symptoms of the disease are mild and superficial, so much so that they are
not clearly visible in uncontrolled environmental conditions. By observing the incorrectly
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classified photographs with the naked eye, it is inferred that these symptoms are more
evident, marked and distinguishable in laboratory photographs (see Figure 1d,e).

Figure 3. Confusion matrices obtained on test set. The first column contains the results for the binary
classification of coffee leaves (BRACOL and RoCoLe datsets), while the second column contains the
multiclass classification of apple leaves (Plant Village and Plant Pathology datasets). Each column
on the left contains the results obtained via the laboratory dataset, and the right columns contain
those obtained using the field dataset. The images (a,b) are the scores obtained by EfficientNetB0.
The images (c,d) are the scores obtained by InceptionV2. The images (e,f) are the scores obtained by
MobileNetV2.

3.2. Interpreting the Classification through Feature Visualization

The Gradient-Weighted Class Activation Mapping (Grad-CAM) technique [38] was
applied to reveal the features and regions within the image which were important in
the classification of the leaves. Indeed, its use on the misclassified images enabled us to
understand the reason why the CNN made an error, and its application to the correct
classifications highlighted which regions of the image led to the individuation of the class.

The investigation was conducted for the three models that performed best, i.e., Mo-
bileNetV2, InceptionV2, and EfficientB0. Figure 4 shows some examples of misclassification
common to all three models for the field dataset. For each picture from left to right, we can
see the original image, the generated heatmaps of class activation of the last convolution
layer and the overlap of the two images. The first column shows the errors for the RoCoLe
dataset. The leaf (a) affected by rust was classified as healthy, while the healthy leaf (b)
was classified as diseased. In both cases, the network was unable to identify the leaf in
the foreground, and the features that influenced the classification belonged to the leaves
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in the background. However, in image (a) the foreground leaf is completely out of focus.
This distortion may have introduced a bias into the process and caused the classifier to
analyze the elements in the background. The second column shows the errors for the Plant
Pathology dataset. The scab class (b),(d) was classified as the healthy class. Note that the
leaf in the (d) picture is partially focused, while the lesion is completely blurred. Similar to
(a) image, the network may have been misled due to the noise in the photo. In photograph
(d), the model gave more weight to the light-colored patches in the background, leading
to a classification error. The same trend occurred in image (e), in which scab disease was
classified as rust disease.

Figure 4. Misclassified pictures on field datasets obtained from MobileNetV2, InceptionV2, and
EfficientB0. In each photo, from left to right, we see the original image, the generated heatmaps of the
last convolution layer, and the overlap of the two images. The first column shows the errors for the
RoCoLe dataset, whereas the second column depicts the error for the Plant Pathology dataset.

Alongside the investigation of the features through the Grad-Cam technique, we
analyzed the groups of incorrect classifications on the RoCoLe and Plant Pathology field
datasets, and outlined the factors that affected the results, reported below by adopting the
categorization carried out by [16]:

3.3. Extrinsic Factors

The complexity of the background, the lighting of the environment, the focus of the
device, the location and the inclination of the leaf in the frame influence the classification of
the images. The greatest difficulties are encountered when the background has a significant
amount of green. Indeed, as shown by the Figure 5 the distribution of the green channel is
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the most pronounced, followed by red and blue. In particular, the distribution of the red
color shows a slight rightward skew (positive skew), and a large variation in the average
values of red across the images. The lighting of the image is a disturbing factor at certain
angles of view, especially when it is directed at the leaf. Focus compromises analysis
in photos where the leaf is completely or partially out of focus on a sharp background.
Furthermore, the classifier tends to make mistakes when the leaf is not well centered in
the frame, when it is very far from the capture point or when it is partially occluded by
another leaf.

(a)

(b)

Figure 5. Distribution of cluster channels (a) and (misclassification) (b).

3.4. Intrinsic Factors

There are leaves in the datasets where the disease is more pronounced and marked
than others. The largest misclassifications occurred with mild or small symptoms, and
with dissolved contours. The location of the symptom appears difficult to identify if placed
along the midrib or lamina, as shown in Figure 6. Further, we observed that the size and
shape of the leaf also affect the classification process. Indeed, considerable difficulties
arise when the leaf is small, when it is folded in on itself, when it has leaf holes or when it
is broken.
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Figure 6. Major misclassifications occur when the leaf symptom is along the midrib or lamina.

A detailed inspection of the correctly identified images by MobileNetV2, EfficientB0,
and InceptionV2, was further conducted alongside the misclassifications. Figures 7 and 8
show some representative examples of the Plant Pathology and Plant Village datasets,
respectively. From this investigation, we can observe how the classifier behaves in detecting
the health status of the leaf in different environmental conditions. In the laboratory dataset,
the convolutional neural network always focuses on the leaf and its symptom as a point
of interest (see Figure 8). The correct analysis is certainly facilitated by the little extrinsic
variability present due to a homogeneous background that increases the contrast of the
edges, and well-configured lighting conditions. However, the same trend is not found for
the leaves retracted on the plant. The first column of Figure 7 depicts the images in which
the damaged leaf parts contributed most to the distinction of classes. On the contrary, in
the second column, we observe a similar trend to the wrong classifications. Although the
leaf was correctly classified, the features learned from the model do not belong to the leaf
in the foreground, but to the leaves in the background. From the (b), (d), and (f) images of
Figure 7, we can observe the regions where the activations occurred (regions in yellow),
which belong to the underlying leaves affected by the same disease as the leaf in relief.

3.5. Investigating Preprocessing Impact

Based on the results obtained (see Section 3) and feature inspection, an additional
experiment was conducted to investigate the impact of preprocessing in the field datasets.
Specifically, the RoCoLe dataset was examined. For each image, based on the bounding box
and its mask, the background was removed. Therefore, the image was cropped and resized
to meet the input size requirement illustrated in Section 2.5. The results are presented in
Table 7. The scores obtained reveal a negative impact. Removing the background lowered
the performance of the top three convolutional networks from an average of 85% accuracy to
an average of 72% accuracy. In theory, this practice should not deteriorate the classification
performance, but it is assumed that it should produce an improvement. Therefore, we
infer that in this case study, models exploit background features in the decision-making
phase. In light of these observations, we investigated from the set of misclassifications
whether the detected errors were committed on the same images to which preprocessing
was not applied. We found that EfficientNetB0 committed the same errors on 50% of the
original images, MobileNetV2 38%, and InceptionV2 36%, respectively. The models had
more difficulty in discriminating the rust class.

Given O the set of misclassifications of the original images to which preprocessing was
not applied and given P the set of misclassifications to which preprocessing was applied,
for each network n ∈ N = {E f f icientNetB0, MobileNetV2, InceptionV2}, we applied the
Grad-Cam technique to the set P−O = P ∩OC in order to investigate why the original
correctly classified images were misclassified following the application of background
removal. Representative samples of the misclassifications are shown in Figure 9. The
correct classification obtained in the first case study is shown on the left; on the right is the
same image with the background removed, but classified incorrectly.
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Figure 7. Damaged leaves (a,c,e) underlying leaves (b,d,f). Examples of images that were classified
correctly belonging to Plant Pathology dataset. In each photo, from left to right, we see the original
image, the generated heatmaps of the last convolution layer, and the overlap of the two images.

The analysis shows that the classification had a negative impact for several reasons.
As Figure 9 shows, in most of the correctly classified images, the background played a
decision-making role in the final prediction. The leaf in the background (Figure 9a), circled
in red, strongly activated the network. Indeed, following the isolation of the region of
interest, the classifier was unable to identify the disease. Similarly, it is observed that errors
occurred under suboptimal illumination conditions (Figure 9b), i.e., strong contrasts due to
overexposure or underexposure of the image. Finally, it was observed as occurring in the
analysis without preprocessing. The factors that hindered class discrimination were small
size (Figure 9c) and dissolved symptom contours.

Table 7. Test accuracy results obtained on RoCoLe dataset.

Without Preprocessing With Preprocessing

EfficientNetB0 82.90% 71.27%
InceptionV2 85.36% 72.93%

MobileNetV2 87.02% 73.30%
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Figure 8. Examples of images that were classified correctly belonging to Plant Village dataset. In each
photo, from left to right, we see the original image (a), the generated heatmaps of the last convolution
layer (b), and the overlap of the two images (c).
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Figure 9. Representative examples of the correct classifications without preprocessing (left) and
relative misclassifications with preprocessing (right). (a) is an example in which the classifier used
parts of the background for the final decision. (b) shows the neural activations of the model un-
der suboptimal lighting conditions. (c) highlights the behavior of the network in the presence of
small symptoms.

4. Discussion

The proposed study was designed to evaluate factors limiting the classification of
plant diseases using datasets acquired under different conditions, e.g., laboratory, and field.

In recent years a number of researchers have provided different proof of concept
regarding the use of deep learning for the classification of leaf diseases. Due to the limited
availability of data, several experiments have been conducted on similar and laboratory-
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built datasets, the use of which has led the models to achieve high performance in terms of
accuracy (see Table 8).

In this study, we conducted an evaluation on the datasets’ representativeness, analyz-
ing the problem both as a binary classification and as a multiclass classification.

The results obtained are not directly comparable with other studies in the literature,
as different datasets, plant diseases and parameters were considered. However, there is
some coherence concerning the results achieved with those of similar works. For example,
the research in [31] compared VGG and AlexNetOWTBn architectures to estimate 58 plant
diseases. The dataset employed contained images captured in both experimental setups,
i.e., laboratory and field conditions. The authors noted that success rates were significantly
lower when the model was trained solely on laboratory-condition images. Similarly, the
study in [39] classified six biotic stresses captured in field conditions, comparing different
CNN architectures, including VGG16, ResNet50 and Inception. The experiments performed
by the authors achieved overall accuracy of 76.20% (VGG16), 81.70% (ResNet50), and 85%
(Inception) and in our experiments, we achieved accuracy of 79.83% (VGG16), 67.40%
(ResNet50), and 85.36% (Inception), respectively. This indicates the need to understand the
degree of transferability of the models trained on the laboratory datasets in a real-world
scenario, quantifying the factors limiting the classification.

Even if our investigation involved four datasets, due to their limited availability in the
literature, the results obtained provide a useful reference line for the construction of more
robust models and comprehensive datasets.

Inspection of the confusion matrices and activation maps of the last layers revealed
several aspects. In the laboratory dataset, the healthy class is well identified. Conversely,
some errors occur in the field dataset. Likewise, classifiers detect rust disease caught in
the lab and slightly less so in the field. This behavior reported in the binary classification
becomes more pronounced in the multiclass classification, where a high number of leaves
affected by scab were classified as healthy and affected by rust.

To this end, in addition to providing a GAP performance among recent convolutional
architectures to predict the same crop disease in different environmental conditions, we
quantified the impact of extrinsic and intrinsic factors.

Among the factors enunciated in [16], in our study, we have identified the most
significant: background complexity (45%), direct lighting (28%), leaf inclination and rotation
(15%), focus of the device (12%), symptom color (43%), symptom size (29%) and location of
the sympthoms (17%) (see Fig. 10).

When the image contains a background with a high distribution of green color, the
classifier is unable to focus the leaf in the foreground, but tends to analyze the elements
near the leaf in question and at the edges of the image. This behavior is found especially
when the symptom is very mild, clear, dissolute, small and localized on the midrib and/or
lamina (see Figure 6). The markedness of the symptom is a very important factor for the
management of parasitic adversities. If any classifier does not encounter major obstacles
in identifying small lesions under controlled conditions, the difficulties arise when they
are photographed in the field. However, the automatic recognition of the disease in the
early stages of onset is an essential tool to act promptly and stem possible damage. For
farmers, this tool is particularly useful in the early stages, when the symptom is not yet
well defined and is minor, and subtle injuries can lead to decision errors. It must be borne
in mind that when the symptom is in a more advanced and defined phase, farmers are
able to recognize it with the naked eye; therefore, the usefulness of automatic recognition
systems is attenuated. These tools remain equally essential in rural areas in which access to
agronomic advice is difficult.

Finally, by analyzing the correct clusters, it is observed that the features and parts of
the image that lead the network to its final decision do not always belong to the object
under examination. Several times, the classifier uses elements belonging to the background,
e.g., other leaves that have the same/different symptoms as the foreground leaf. This
behavior occurs more when the leaf is distant from the capture device, and the background
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occupies a significant amount in the frame. In light of this, the impact of the background
was investigated. We have observed that the removal of the background degrades the
results when the dataset is collected under realistic conditions. This is due to the fact that
the prediction of the original images without preprocessing is highly dependent on the
presence of the background, which—in its absence—results in a lower accuracy rate.

Figure 10. Factors influencing plant disease prediction classified as extrinsic and intrinsic factors.

Table 8. Comparison of several CNN architectures in terms of performance metrics.

Dataset Models Accuracy Authors

Plant Village AlexNet 99.45% [40]
Plant Village VGG16 99.81% [40]
Plant Village ResNet50 99.77% [40]
Plant Village InceptionV3 99.81% [40]
Plant Village EfficientNet 99.91% [40]
Plant Village DenseNet-201 99.91% [41]
Plant Village InceptionV3 85% [41]

Laboratory-built dataset ResNet20 92.76% [13]
Laboratory-built dataset VGG16 96.32% [13]

Plant Village MobileNet 98.65% [42]
Plant Village AlexNet 95.81% [43]
Plant Village VGG16 96.19% [43]
Plant Village CNN 98.02% [44]
Plant Village VGG16 90.04% [45]

5. Conclusions

The classification of plant diseases from leaf images has been addressed via deep
learning in recent years. The literature has focused more on the exploration of laboratory
datasets, with less investigation of the transferability of models in practice. Generalizing an
algorithm—that is, achieving performance of similar classifications—is possible only when
the training data are similar to the new data to which you want to apply the model. The
main contribution of this study was the evaluation of the factors limiting the classification
by analyzing the same leaf disease in different capture conditions, controlled and not,
quantitatively investigating the categorization of the extrinsic and intrinsic factors stated
in [20]. To this end, four state-of-the-art datasets were used, to which class balancing was
applied, and binary and multiclass classification were studied. The scores obtained show a
drastic drop in performance from the laboratory dataset to the field dataset. In the worst
case, the accuracy dropped from 92.67% to 54.41%. Among the most relevant extrinsic
factors were the complexity of the background, while the most relevant intrinsic factors
included the size and color of the symptom.

The results are strongly influenced and linked to the dataset representativeness, but
also to the ability of the model to learn the salient features when the analysis is carried
out on small objects of interest. The region focused by the CNN does not always belong
to the lesion of the leaf in the foreground. Sometimes, the classifier tends to focus on
the background elements. The removal of the background had a serious impact on the
results, showing that the models achieve high performance by exploiting the elements of
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the background. Indeed, the algorithm errs when the symptom is in the initial stage of
appearance, small in size, not very pronounced, and with clear and dissolved contours.

In conclusion, in this study, we have provided a baseline performance of the most
recent convolutional architectures, quantifying the factors limiting the resolution of the
problem to be taken into consideration both for the construction of algorithms and for the
construction of new datasets. These limitations still prevent this technology from being
used in practice. The latter can be overcome by building more consistent datasets [23],
and more complex models that integrate a leaf spot attention mechanism to increase the
discriminatory power and extract information features from the leaf blade.

Our results can be easily reproduced using our open-source toolbox, called Leaf-
Box (https://leafbox.francescamalloci.com/, https://github.com/mallociFrancesca/leaf-
disease-toolbox, accessed on 17 October 2022), written in python as a modular and reusable
tool. This allows us to combine different analysis techniques in order to simplify the analy-
sis processes and facilitate the reproducibility and sharing of experimental results with the
scientific community.
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