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Abstract: Parcel-level cropland maps are an essential data source for crop yield estimation, precision
agriculture, and many other agronomy applications. Here, we proposed a rice field mapping approach
that combines agricultural field boundary extraction with fine-resolution satellite images and pixel-
wise cropland classification with Sentinel-1 time series SAR (Synthetic Aperture Radar) imagery.
The agricultural field boundaries were delineated by image segmentation using U-net-based fully
convolutional network (FCN) models. Meanwhile, a simple decision-tree classifier was developed
based on rice phenology traits to extract rice pixels with time series SAR imagery. Agricultural fields
were then classified as rice or non-rice by majority voting from pixel-wise classification results. The
evaluation indicated that SeresNet34, as the backbone of the U-net model, had the best performance in
agricultural field extraction with an IoU (Intersection over Union) of 0.801 compared to the simple U-
net and ResNet-based U-net. The combination of agricultural field maps with the rice pixel detection
model showed promising improvement in the accuracy and resolution of rice mapping. The produced
rice field map had an IoU score of 0.953, while the User‘s Accuracy and Producer‘s Accuracy of pixel-
wise rice field mapping were 0.824 and 0.816, respectively. The proposed model combination scheme
merely requires a simple pixel-wise cropland classification model that incorporates the agricultural
field mapping results to produce high-accuracy and high-resolution cropland maps.

Keywords: satellite image segmentation; cropland mapping; rice field mapping; U-net; convolutional
neural network; fully convolutional network

1. Introduction

Timely and accurate monitoring of cropland extent is essential for crop yield estimation,
agricultural land use administration, and climate change simulations [1]. Thus, cropland
mapping with remote sensing data has drawn research attention for decades. Precision
agriculture has increased the demand for parcel-level cropland maps in recent years. As
with other remote sensing image classification problems, cropland mapping from remote
sensing imagery generally falls into pixel-based and object-based categories.

Traditional pixel-based crop classification with satellite imagery suffers from the ‘salt
and pepper’ effect, which impairs the integrity of cropland parcels [2]. Therefore, pixel-
based crop type classification can hardly fulfill the task of parcel-level cropland mapping.
On the other hand, object-based cropland mapping approaches rely on the segmentation of
the image and the construction of a hierarchical network of homogenous objects on which
cropland classifications were made. Object-based approaches incorporate both spatial
and spectral structure of remote sensing data and often yield better results. As implied
by previous studies, field boundary improves the accuracy of crop type classification [3].
A critical step of object-based cropland mapping is delineating agricultural field bound-
aries at certain levels. Two categories of methods are commonly used for this purpose.
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The first adopts an edge detection strategy that uses filters to identify discontinuities in
images where pixel values change rapidly, e.g., Scharr [4], Sobel [5], and Canny opera-
tors [6,7]. The second is via image segmentation, which includes unsupervised traditional
computer vision algorithms and novel deep learning models. Traditional computer vision
algorithms, e.g., Multi-Resolution Segmentation (MRS) [8–12], Simple Linear Iterative Clus-
tering (SLIC) [6,13], and watershed segmentation [14,15], were commonly used on satellite
images for crop type classification. However, edge detection and unsupervised computer
vision algorithms suffer from parameterization issues. Finding the optimal segmentation
parameters is an error-prone process and often leads to non-optimal results. Moreover,
edge detection operators are sensitive to high-frequency noise, thus constantly creating
false edges, resulting in unreliable field boundary extraction [16]. In recent years, deep
learning models, such as convolutional neural networks (CNNs), have drawn enormous
attention in computer vision tasks, including image classification [17,18] and semantic
segmentation [19,20]. Owing to its superiority in high-level feature representation, image
segmentation with CNNs does not require the feature engineering step. It is highly adap-
tive for new study areas compared to other field boundary detection methods mentioned
above [16]. An increasing number of studies have adopted CNN approaches directly
for agricultural field boundary delineation, for instance, Waldner and Diakogiannis [16],
Garcia-Pedrero, et al. [21], Masoud, et al. [22], or as a critical step in object-based cropland
mappings [13,23–27]. Yet, object-based rice mapping that combines fine-resolution satellite
image segmentation with pixel-wise rice mapping is still to be verified.

Amongst those CNN-based image segmentation or classification problems of remote
sensing images, two types of strategies were commonly adopted: patch-based CNNs and
fully convolutional networks (FCNs) [28]. The former divides images into small patches in
which the target pixels are contained. Then the typical CNN was applied to the target pixel
on the corresponding patch. FCNs, on the other hand, are built with convolutional layers
that only perform convolution operations (subsampling or upsampling). Equivalently, an
FCN is a CNN without fully connected layers. FCNs learn representations directly based
on local spatial information, which makes them more efficient than patch-based CNN [28].
This merit is highlighted for remote sensing applications since spatial autocorrelation plays
a vital role in geographic phenomena. Recently, several studies presented outstanding
results using FCNs for image segmentation of remote sensing imagery [16,21,29,30]. Those
studies focused on general field boundary extraction by image segmentations. U-Net
architecture [20] has become acclaimed for image segmentation with FCNs since its first
application in medical image segmentation. In particular, a few studies attempted to
delineate agriculture parcel boundary with FCNs of U-Net architecture. Gracia-Pedrero
et al. [21] classified RGB satellite images into three classes: field, buffered boundary, and
background to extract agriculture field boundaries using a U-Net architecture. Waldner and
Diakogiannis [16] employed a ResUNet-a network for multi-task image segmentation to
identify the extent of fields, the field boundaries, and the distance to the closest boundary
simultaneously. Although satellite image segmentation with FCNs has shown superior
performance for agriculture field boundary extraction, its potential to assist object-based
crop mapping has yet to be investigated.

Most crop mapping studies with satellite remote sensing data employ median spatial
resolution imagery, e.g., Landsat, Sentinel-1/2. However, the width of boundaries between
cropland parcels is often on a sub-meter scale in many agricultural regions worldwide.
Using satellite imagery with 10 m or coarser resolution alone would encounter mixed pixel
problems and fail to distinguish parcel boundaries. Fine-resolution (1 m or finer) satellite
imagery provides more detailed ground details that are competent for delineating the
boundary of cropland parcels. However, compared to median-resolution satellite imagery,
the nature of the high cost and long revisit period of fine-resolution satellite imagery
hampers its application in cropland mapping. Another issue of optical remote sensing
imagery is that optical sensors are prone to disturbance of weather conditions, e.g., cloud
cover. Radar sensors, on the other hand, provide more integrated time series data owing
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to their all-weather capability. Using single-temporal fine-resolution satellite images to
generate land parcels as the ‘objects’ for object-based image analysis (OBIA) on multi-
temporal medium-resolution radar satellite images is expected to be a low-cost approach to
producing high-resolution crop field maps. We adopted this strategy for rice field mapping
that uses deep learning-based image segmentation to delineate land parcel boundaries
and subsequently classifies each parcel into target crop types with a simple decision-tree
classifier. In this study, we attempt to address the following issues: (1) Formulate an
image segmentation scheme with appropriate data labeling process, model structure, and
post-process methods, specifically for crop mapping applications; (2) Solve the prediction
errors and conflicts near the border of the patches that the U-Net segmentation model uses
as input; (3) Verify the feasibility of rice field mapping by incorporating a simple pixel-wise
classifier with satellite image segmentation.

2. Materials and Methods
2.1. Study Area

The study area is a typical rice-planting region in Heilongjiang Province, the northmost
part of China. It is a 10.5 km × 17.5 km rectangle region in Wuchang County, as shown
on the maps in Figure 1. The county is famous for its high-quality japonica rice, with an
approximate rice-growing area of 166,000 hectares (2021). A single rice cropping system is
practiced in the area. In particular, transplanting is the predominating planting method,
while very few direct seeding cases emerged in recent years. The rice-growing season starts
in early May and ends in October. Figure 2 illustrates a scene showing the study area’s
typical rice field boundary bank.
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Figure 2. A picture obtained in the study area shows a typical rice field boundary bank, around 1 m
in width.

2.2. Data Source and Data Annotation
2.2.1. Remote Sensing Data

1. Fine-resolution RGB satellite image

Fine-resolution remote sensing data are a requisite to extract field boundaries in
our study case since rice field boundaries are commonly around one meter in width.
Nonetheless, only the true-color RGB imagery is required for image segmentation purposes.
We acquired the RGB composite of the study area from CNES/Airbus Pléiades satellite
imagery captured in September 2018. The RGB image is in 20,992×35,072 pixels and 0.5 m
spatial resolution.

2. Sentinel-1 time series images

We acquired the time series of the European Space Agency (ESA) Sentinel-1 Level-1
Ground Range Detected (GRD) data product between May to October 2018 for pixel-
wise rice mapping. Previous studies suggested that VH polarization has an advantage
in characterizing rice growth compared to VV [31,32]. The VH band of the GRD images
was derived for identifying rice field pixels. The data acquisition and processing were
completed on the Google Earth Engine (GEE) cloud computing platform. The GRD data has
already undergone several preprocessing steps, provided with a backscattering coefficient
(σ◦) in decibels (dB) value.

The Sentinel-1 two-satellite constellation has a 6-day repeat cycle. However, it should
be noted that only Sentinel-1 B data were accessible. There were overlaps of orbits in the
study area. Hence the number of available SAR images reached 27. Spatial resolution of
the SAR images is 10 m.

2.2.2. Agricultural Field Boundary Annotation

We selected three rectangle sampling regions on the fine-resolution RGB image to
sketch agricultural field boundaries by visual interpretation (see Figure 3). With the
assistance of GIS software, the three sample regions were labeled into polygons representing
three landcover classes: field boundary, the agricultural field, and background landcover.
The data labeling process involves the following steps:
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Figure 3. A portion of field boundary annotation on the fine-resolution satellite image (0.5 m
spatial resolution).

(1) Sketch the boundaries of agriculture fields to generate field polygons by
visual interpretation.

(2) Create buffers on both sides of the polygon’s edges from step (1) with a distance
of 0.5 m, resulting in boundary buffers of one meter width, which is a typical distance for
field boundaries for our study case.

(3) Generate agricultural field polygons (excluding the field boundary bank) by erasing
the boundary buffers of step (2) from polygons from step (1).

(4) Rasterize the boundary buffers, agricultural field polygons, and the rest into a
Geotiff image with different raster values (0, 1, and 2) and in the original image’s pixel size,
representing field boundary, agricultural field, and background land cover, respectively.

2.2.3. Rice Field Samples

Rice is the only crop that grows in wetland conditions. The flooding signal at its early
growing stage provides crucial information to identify paddy fields. We managed to label
100 rice fields based on the radar backscatter value during the rice transplanting season with
the assistance of visual interpretation on the fine-resolution Pléiades satellite imagery. Half
of the sample rice fields were used to determine the thresholds for a simple decision-tree
classifier, and the other half was used to evaluate the final rice field mapping results.

The mean values of the VH band of GRD data from middle May to middle June (rice
transplanting season) were computed on the GEE platform. Agricultural fields identified by
fine-resolution image whose SAR backscatter coefficient during that period were generally
low and close to the water surface were asserted as rice fields.

2.3. Methodology

The general strategy of this work is to leverage agricultural field maps to improve
crop mapping. Therefore, we emphasize fine-resolution satellite image segmentation
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designed explicitly for agricultural field mapping. Only a simple pixel-based crop mapping
classifier was required with extracted field boundaries to yield a high-resolution crop
field map. The workflow of this work is illustrated in Figure 4. We first implemented
the data labeling processes using a fine-resolution true-color satellite image and time
series SAR images. Using the labeled data, we test three FCNs, namely a simple U-net,
ResNet34-based U-net, and SeresNet34-based U-net, with different parameterizations. We
applied a smooth prediction method to deal with prediction errors near the edges of image
patches. Meanwhile, rice field pixels were identified with a decision-tree classifier based
on phenological traits. The two outputs of field boundary extraction and rice field pixel
identification were combined to produce a high-resolution rice field map.
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2.3.1. Image Segmentation Model

1. Data preprocessing

The original RGB satellite image and the rasterized annotated target images form
the training data for image segmentation. Several preprocessing steps were carried out
before model training: (1) The original image and target images were clipped into 126 small
patches of 256×256 pixels; (2) The original RGB image channels were transformed into the
range [0, 1] using the Min–Max scaler; (3) Not all image patches contain adequate field
boundary pixels. We screened out those image patches whose field boundary pixels were
less than 100; (4) The resulting training patches underwent data augmentation by flipping
(vertically and horizontally) and rotating (at 90◦ intervals).
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2. U-net architecture-based CNN

The U-net is a convolutional neural network initially developed for medical image
segmentation. The neural network is an improvement based on the FCN and showed
its superiority with fewer training data [20]. The U-net is a CNN model of multi-scale
encoders–decoders with skip connections. It has a symmetric architecture that consists of
two parts: the contracting path or encoder on the left and the expansive part or decoder
on the right (Figure 5). The encoder part follows the general convolutional process, which
compresses the spatial information and extracts feature information while reducing the
height and width of the input image. The decoder part is constituted by transposed 2D
convolutional layers that upscale the encoded features and spatial information to a higher
resolution pixel space to achieve a dense classification.
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Many state-of-the-art CNN models have been developed in recent years for computer
vision tasks, e.g., VGGNet, ResNet, DenseNet, EfficientNet, and InceptionNet. We tested
the original U-net (‘simple U-net’ hereunder) by Ronneberger, Fischer, and Brox [20],
ResNet34, and SeresNet34 as the backbone networks in the U-net architecture model since
those are reported to be effective in satellite image segmentation tasks [21,33,34]. Each
backbone network block of the simple U-net consisted of two convolution layers, a dropout
layer, and a maxpooling layer. We refer to He, et al. [35], Hu, et al. [36] for details of
ResNet and SerestNet, respectively. Pre-trained weights on the ImageNet dataset [37] were
adopted for the backbone networks for faster and better convergence on a small training
set. Parameters used to train the networks are listed (Table 1). The image segmentation
tasks were conducted using Python 3.7 language, TensorFlow 2.0, and an open-source
Python library Segmentation Models (https://github.com/qubvel/segmentation_models
(accessed on 12 August 2022)) on a server with Nvidia V100 graphic cards.

Table 1. Parameters for training the U-net segmentation models.

Optimizer Epochs Loss Function Batch Size Metrics

Adam 150 Dice loss + Focal loss 16 Jaccard coefficient

https://github.com/qubvel/segmentation_models
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2.3.2. Smooth Predictions for Image Patches

The original satellite image was cropped into small patches (256×256 pixels) to feed
into the trained segmentation models at the prediction phase. The segmentation models
make predictions solely on those small local windows of the image patch rather than
the whole study area. As a result, prediction errors and conflicts near the border of the
patches were not neglectable. We applied a smooth blending strategy for predicted image
patches to solve this issue. First, for each image patch, the eight transformations of Dihedral
Group D_4 were used, i.e., three possible 90 degree rotations and a mirrored version of
those rotations and the patch itself. As a result, each patch has an eight-fold augmented
prediction before merging the predictions.

While making predictions on the whole study area, the original satellite image was
cropped into patches with 50% overlapping to eliminate the border effects. All the predic-
tions for each patch were spatially merged by weighting pixels. The basic idea of merging
the overlapping region is that if the pixel location is closer to the patch center, the more
weight it has from that patch’s prediction. The weights are computed by interpolating with
a 2-D Gaussian function. The final prediction label L is defined by soft voting strategy with
the following equations.

L = arg max
c

∑k
i wi ∗ pi,c

k
c ∈ {0, 1, 2} (1)

wi(x, y) = e
−x2−y2

10000 (2)

Equation (1) is the voting rule for each pixel, where wi is the ith weight of prediction
and pi,c is the ith prediction on the probability of class c. wi is a function of the pixel location
relative to the image center as (0, 0). The weight wi(x, y) is computed by Equation (2),
where (x, y) denotes the pixel’s coordinates ranging from (−127, −127) to (128, 128). k is the
number of predictions. Depending on pixel location on the original image, k can be either
8, 16, or 32.

Following the above procedures, the image segmentation of each image patch was
blended to produce a full-size segmentation result image. The resulting image then under-
went several processing steps for future use in crop mapping:

(1) Vectorization of segmentation results in an image while keeping the topology of fields and
boundaries. Connected pixels of the same class will result in an individual polygon.

(2) Delete the boundaries from the map and keep the only agricultural field and back-
ground category for crop mapping. At this point, the boundary class was redundant
information since agricultural fields were extracted.

The output vector data contain a large number of objects (polygons) of agricultural
fields and background land parcels, while the field boundary bank areas were excluded.

2.3.3. Rice Field Identification

Due to the rice field’s unique wetland condition during the vegetative phase, rice
fields show a unique temporal profile of radar signal compared to other landcover types.
A few days before and after transplanting, the radar signal of rice fields is dominated by
the water surface and is at its lowest level. The development of the rice canopy during the
vegetative phase leads to a continuous increase in radar backscatter, reaching a maximum
at the heading stage [38]. Based on this phenological characteristic of the radar signal, we
devised a simple decision-tree classifier to discriminate between rice and non-rice pixels
using Sentinel-1 SAR images. The time series of radar backscatter from Sentinel-1’s VH
polarization was used to detect flooding signals at the transplanting stage and peak signals
at the heading stage. Figure 6 illustrates the temporal profile of the SAR backscatter of
the sample rice fields from the training set. Based on the local cropping calendar, the time
window for flooding signal was set to 10 May to 01 June, and 20 August to 10 September
for peak signal.
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Figure 6. Temporal SAR backscatter profile (VH polarization) of sample rice fields. The green zone
(10 May to 1 June) is the time window for the flooding signal and the orange zone (20 August to 10
September) for the peak signal.

Two thresholds were fixed according to the mean pixel value (VH band) of sample
rice fields from multiple SAR images during the two windows. For the flooding signal, the
lower threshold was the upper quartile of sample rice pixels, i.e., −25.43 dB. For the peak
signal, the upper threshold was the lower quartile −13.83 dB.

rice pixel =
{

f looding signal ≤ −25.43 dB
peak signal ≥ −13.83 dB

(3)

This simple decision-tree classifier (Equation (3)) generated a map showing rice pixels
and non-rice pixels. The final step of producing a more precise rice field map is to combine
the pixel-based rice map with the field boundary map resulting from satellite image
segmentation. A field from the image segmentation is classified as rice or non-rice by
majority voting from the pixels within its spatial extent.

2.3.4. Evaluation Metric

We used Intersection over Union (IoU) as the key metric to evaluate the image segmen-
tation and rice field mapping results. IoU is the ratio of the overlap area to the combined
area of prediction and ground truth, ranging from 0 to 1 (Equation (4)). It is equivalent to
the Jaccard coefficient and is commonly used to evaluate image segmentation tasks. For
the evaluation of rice field mapping in this study, IoU is a better metric than the User’s
Accuracy and Producer’s Accuracy since IoU evaluates classification accuracy and spatial
coherency simultaneously between test rice fields and the prediction.

IoU =
prediciton ∩ ground truth
prediciton ∪ ground truth

(4)

Meanwhile, User’s Accuracy (UA, precision), Producer’s Accuracy (PA, recall), and F1
were used to evaluate pixel-wise rice identification and agricultural boundary extraction.
The three metrics for class C are defined as:

UAC =
Number o f correctly classi f ied samples o f C

Sum o f samples classi f ied as C
(5)

PAC =
Number o f correctly classi f ied samples o f C

Sum o f samples with true lael o f C
(6)
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F1 =
2×UAC × PAC

UAC + PAC
(7)

3. Results
3.1. Satellite Image Segmentation Results

Evaluation on the test images shows that the U-net with SeresNet34 had the best
performance, with 0.801 for IoU and 0.782 for F1 on boundary detection. The ResNet34-
based U-net had an IoU of 0.755 and 0.757 for F1 on boundary detection, while the metrics
for the simple U-net structure were 0.687 and 0.758, respectively (Table 2). Figure 7 is a
comparison of the three image segmentation models’ performance. Predictions on a test
image show that simple U-net (A) and ResNet34-based U-net (B) had considerable errors
in classifying agricultural fields into background land cover. SeresNet34-based U-net (C),
on the other hand, overcame this problem with a higher IoU score. Nonetheless, all three
models had matching performance levels detecting the field boundaries, which is our
study’s most critical predicting target. Figure 8 shows the satellite image segmentation
map. The map illustrates a good matching of agricultural field boundary extraction with
ground truth.

Table 2. Evaluation scores of the three image segmentation models.

Model Backbone IoU User’s Accuracy on
Boundary Detection

Producer’s Accuracy on
Boundary Detection F1 on Boundary Detection

Simple U-net 0.687 0.763 0.754 0.758
ResNet34 0.755 0.795 0.723 0.757

SeresNet34 0.801 0.797 0.768 0.782
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3.2. Rice Field Mapping Results

The simple decision-tree classifier produced a 10 m spatial resolution rice pixel map.
However, the mixed pixel problem and the ‘salt and pepper’ effect were evident. According
to the model evaluation on test data, SeresNet34 had the best overall performance for land
parcel delineation, hence was used to produce the rice field map. The comparison of rice
field maps (Figure 9) produced by the decision-tree classifier and by that combined with
the image segmentation map proves that the combination of the two outputs tremendously
improved rice field mapping in terms of the ‘salt and pepper’ effect and spatial consistency.
The rice field map was assessed with the 50 rice field polygons of the test set. The IoU score
reached 0.953. Pixel-wise rice field mapping was evaluated with User’s Accuracy (preci-
sion), Producer’s Accuracy (recall), and F1 which were 0.824, 0.816, and 0.820 respectively
(Table 3).

Table 3. Evaluations of rice field mapping results.

Model IoU User’s Accuracy Producer’s Accuracy F1

Proposed combination method 0.953 - - -
Pixel-wise decision-tree classifier - 0.824 0.816 0.820
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Figure 9. Rice field (orange area) maps produced by the simple decision-tree classifier with Sentinel-
1 SAR imagery (left) and by that combined with agriculture field boundary delineation by the
SeresNet34-based U-net image segmentation model (right).

Figure 10 illustrates a comparison of the two rice field mapping results on some sample
rice fields from the test set. The pixel-wise rice mapping was unable to distinguish the
field boundaries and mixed pixel problem occurred on and around the field boundaries.
Combining the two mapping results greatly improves the rice mapping precision and the
mixed pixel problem with exclusion of boundary pixels.
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rice fields overlay with pixel-wise classification by decision-tree classifier, and (C) sample rice fields
overlay with rice field map produced by the proposed method.
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4. Discussion

Satellite image segmentation and crop mapping are two valued areas in remote sensing
application research. This study combined these two techniques to enable an OBIA on
pixel-wise classification for rice field mapping. Our strategy was to use objects generated
from fine-resolution image segmentation and a crop map produced by a simple pixel-
wise classification model to utilize multi-source remote sensing data. Several issues and
implications about this methodology should be highlighted.

The satellite image segmentation process was designed for agricultural field bound-
ary extraction. The delineated individual agricultural field relies on the connectivity of
field boundaries. Therefore, the field boundary is the foremost target for segmentation
performance among the three classification targets (field, field boundary, and background).
Experiments on three backbone networks presented similar F1 scores in field boundary
extraction, although varied in IoU score for all three categories. The speculated reason is
that field boundaries form the most prominent features for the CNN model to extract in
the training process, compared to the other two categories that comprise most pixels. A
higher IoU score would contribute to a more precise agricultural field map.

We noted that with many trials on the different model hyperparameters, evaluations
presented slight improvement with the IoU score. A significant factor that hampered
the model performance was the limited training set. The training data were manually
annotated with laborious work. A larger training set is anticipated to improve the image
segmentation results. It should be noted that the date of the fine-resolution has a substantial
visual effect on detecting field boundaries. The image acquisition date should be chosen
before the planting date or at the late phase of crop growing so that field boundaries are
visually contrasting against the background.

Agricultural fields were identified based on closed field boundaries. Some of the
predicted field boundaries were discontinuous, leading to the merging of multiple actual
fields on the field map. The impact of the delineated field boundaries on crop mapping
should be noted. The agricultural land use of this study area is dominated by rice growing.
The field boundaries on the ground at our study level were mainly built for agronomic
instead of cadastral purposes. The merging of several neighboring fields would have
an acceptable impact on rice field mapping. However, this impact should be further
investigated in a study area with complex agricultural land use.

The pixel-wise classification model for rice field detection was based on rice phenology
traits. The simple decision-tree model had a mediocre performance in precision and recall
scores. Combining the result with agricultural field maps generated a precise and high-
resolution rice field map. Many more sophisticated pixel-wise crop mapping methods
were developed using time series remote sensing data, e.g., Deep Neural Network [39–
42], support vector machines [43–45], and Random Forest [46,47]. These pixel-wise crop
mapping studies reported overall good results (0.85 or above in F1 score). However, mixed
pixel and the ‘salt and pepper’ effect were inevitable in their resulting crop maps as with
other pixel-wise classification tasks. On the other hand, those sophisticated pixel-wise crop
mapping methods are likewise eligible to incorporate into the agricultural field map of this
study to yield precise crop maps. Nonetheless, the necessity of developing those complex
pixel-wise crop mapping models is debatable since the OBIA on the classified pixels was
based on majority voting.

5. Conclusions

This study proposed a crop mapping framework that combines agricultural field
boundary extraction with fine-resolution satellite images and pixel-wise crop detection
with time series SAR imagery. We solved the prediction errors and conflicts near the border
of the patches with a smooth blending strategy from multiple weighted predictions. An
OBIA on the pixel-wise crop maps was employed based on majority voting to produce
high-resolution crop maps.
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Several conclusions can be drawn from the experiment results: (1) SeresNet34 as the
backbone of the U-net model had the best performance in agricultural field extraction
compared to a simple U-net and ResNet-based U-net; (2) A combination of agricultural
field maps with a rice pixel detection model showed promising improvement in accuracy
and resolution of rice mapping. The proposed model combination scheme only requires a
simple pixel-wise crop detection model incorporating an OBIA to produce high-precision
and high-resolution crop maps. This would potentially lower the cost of producing high-
resolution crop maps.
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