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Abstract: Low availability of native soil phosphorus (P) is a major constraint limiting sustainable
crop production especially in alkaline calcareous soils. Application of organic manure in this regard
has gained attention of the scientific community. Yet, the potential of fermented animal manure in
improving P use efficiency and subsequent crop yield has not been assessed. This pot experiment
was designed to study the performance of wheat under application of non-fermented and fermented
animal manure in combination with 0, 45 or 90 kg·ha−1 phosphorus in the form of diammonium
phosphate (DAP). Results show that non-fermented animal manure and split dose of phosphorus
fertilizer improved plant quantitative attributes including plant growth, yield and nutrient uptake
parameters. However, the placement of fermented animal manure combined with the full amount of
P (90 kg·ha−1) fertilizer gave the mean highest value of fertile tillers per pot (12) and their grain yield
(5.2 g). Moreover, plant physiological parameters were enhanced with fermented animal manure and
the recommended rate of P fertilizer compared with the control. Likewise, the biochemical properties
of wheat grain such as fat, fiber, ash and protein contents were increased by 1.24, 2.26, 1.47 and 11.2%,
respectively, in plants receiving fermented animal manure and P fertilizer (90 kg·ha−1). Furthermore,
co-application of fermented animal manure with P (90 kg·ha−1) into soil improved phosphorus
uptake from 0.72 to 1.25 g·pot−1, phosphorus usage efficiency from 0.715 to 0.856 mg·pot−1, and
soil phosphorus extent from 7.58 to 16.1% over controls. It is thus inferred that this new approach
resulted in release of P from fermented manure that not only reduced fixation but also enhanced the
growth, yield, physiology and nutrient uptake in wheat.

Keywords: fermented animal manure; inorganic phosphorus; P use efficiency; wheat yield;
diammonium phosphate
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1. Introduction

The ever-increasing human population is one of the pressing issues in modern agri-
culture as it has become a global challenge to feed around 9 billion people by 2050 [1]
Moreover, rapid decline in the soil productivity coupled with increased urbanization and
human population has reduced the available cropland [2,3]. The scarcity of the existing
cropland further threatens the food security and nutrition needs of the growing population.
Among all staple food crop, wheat (Triticum aestivum L.) is dominant because wheat stores
both micro- (calcium and iron) and macro-nutrients (sugars, fat and protein), which helps
in the establishment of a healthy society [4]. So, the demand for wheat is globally increasing
and there is need to produce sufficient food from the existing land base. Wheat contributes
18.9% to the GDP and accommodates 42.3% of labor force in Pakistan [5].

Currently, 40–60% of cereal production depends on fertilizers and by 2050, almost
110% grain production will have to depend on fertilizers. Phosphorus (P) is one of the
most important macronutrients for optimal crop production and its deficiency caused
growth reduction and delayed maturity [6–8]. When inorganic phosphorus is applied to
the soils, only 10–20% is taken up by the crops [9–12], whereas the rest is precipitated
through adsorption and precipitation reactions with cations such as calcium, magnesium,
iron and aluminum [13–15]. Thus, over-abundant application of inorganic sources not only
causes yield losses but also environmental issues, for example, waterway eutrophication
and groundwater contamination [16].

If we look at Western countries, there is an effort to fulfill the crop requirements by
application of organic amendments. For that purpose, 10 million animals are being grown
annually that can generate manure of about 5–6% of their body weight each day, a dry mass
of roughly 5.5 kg per animal per day [17]. Animal manure directly spread on the land can
stay for a longer period, which causes greenhouse gases to be released to the atmosphere
and the overrunning of nutrients and pathogens to water bodies. Thus, thermochemical
and biochemical management practices are unacceptable [18].

In order to address the P fixation in calcareous soil, the use of fermented manures seems
a promising technique to reduce P surplus in wheat crops. Manure can undergo anaerobic
fermentation naturally that results in the breaking of its components down to produce a stable
solid digestate along with biogas. It can produce humic and organic acids that can alter the
precipitation and adsorption of P in soil [19]. Through electrostatic competition, organic acids
that have low molecular weight can compete with P for adsorption sites [20–22]. Similarly,
humic acids that have high molecular weight can form complexes with metal ions such as iron
(Fe) which reduces the availability of P due to fixation [23]. A review of past work concluded
that adequate decomposition of organic materials is essential for obtaining better quality
of organic matter, not only by way of crop nutrition but also to improve soil quality and
productivity [24,25].

It also improves the P availability and manure suitability because pH controls the P sol-
ubility in manure [26]. Phosphorus availability increases at low pH; therefore, phosphorus
content can be altered in manure by the acidification process. Moreover, microorganisms
utilize organic matter and increase their population, which helps to change organic and
inorganic phosphorus reserves in the root zone, which greatly affects biological processes
and root characteristics. Generally, it is accepted that manure phosphorus is 80–100% more
effective than mineral P [27]. Similarly, anaerobic fermentation may also reduce ammonia
volatilization. Application of manure to Zai pits increased nutrient uptake by 43–87% and
yield by 35–220% [28]. In Niger, manure application in Zai pits resulted in 2–68 times
higher grain yields than in non-amended Zai pits [29]. Previous studies have focused on
the application of manure either alone or combined with mineral fertilizers. However,
how fermentation of manure with varying pH ranges with or without a split dose of P
fertilizer (DAP in this case) affects soil physio-chemical and crop growth characteristics has
remained relatively neglected. Furthermore, the comparison of responses of fermented and
non-fermented manure on soil fertility and crop nutrient uptake and use efficiency have
been the least explored, which in the present study constitutes the novelty of this work.
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It was thus hypothesized that application of fermented animal manure in combina-
tion with chemical P fertilizer would improve wheat yield by enhancing P use efficiency,
however, their effects on plant nutrients may vary depending upon the type and rate of P
fertilizer applied. The objectives of the present study were to assess the effect of anaero-
bically fermented manure with inorganic P fertilizer on the soil properties, growth, yield
and P uptake in wheat crop. Furthermore, we examined the nutrient status of the soil and
plants due to temporary changes in pH and analyzed its effect on improving the yield and
growth of wheat crop.

2. Materials and Methods
2.1. Incubation Experiment and Preparation of Fermented Animal Manure

Fermented animal manure was prepared by incubating 7 kg of cattle dung collected
from the Directorate of farms, University of Agriculture Faisalabad (UAF), Pakistan. The
organic material was transferred to a vessel (500 kg capacity) under controlled temperature
and aeration (shaking at 60 rev·min−1). An optimum moisture level of the organic material
(v/w) was maintained during the fermentation process, which was carried out at 25 ◦C
for (2–3) weeks. Molasses (as carbon source), rice polish (starch), gram floor (protein) and
mustard oil cake (fat) sources were added at the rate of 1% (w/w) along with an inoculum of
a cellulose-degrading bacterial strain Bacillus sp. MN54 (109 CFU·mL−1) as a decomposer.

For fermentation of manure, nine treatments were arranged as follow: (T1) untreated
animal manure, (T2) molasses + animal manure, (T3) molasses + Bacillus sp. MN54 + an-
imal manure, (T4) molasses + gram floor + animal manure, (T5) molasses + gram floor
+ Bacillus sp. MN54 + animal manure, (T6) molasses + gram floor + rice polish + animal
manure, (T7) molasses + gram floor + rice polish + Bacillus sp. MN54 + animal manure,
(T8) molasses + gram floor + rice polish + mustard oil cake + animal manure and (T9) molasses
+ gram floor + rice polish + mustard oil cake + Bacillus sp. MN54 + animal manure.

The pH was monitored during treatment by inserting a (Hanna portable) pH meter [30].
The pH was reduced in the T9 treatment from 8.02 to 4.5 within 18 days at 25 ◦C. For the
pot experiment T1 (non-fermented animal manure) and T9 (fermented animal manure)
were selected and tested with half and full rate of P fertilizer (Table 1). After drying,
manure phosphorus content (g.kg−1) was determined using a spectrophotometer model
UV–visible spectrophotometer (T-60) at wavelength 880 nm [31]. Manure nitrogen (g.kg−1)
was determined using the method described by Jackson [32]. Manure K content (g.kg−1)
was determined using a flame photometer (EI 392) at wavelength 767 nm [33]. All reagents
and chemicals were analytical grade, provided by Sigma-Aldrich, St. Louis, MO, USA and
Merk, Darmstadt, Germany.

2.2. Preparation and Analysis of the Experimental Soil

Soil samples were taken randomly from a field area at the Institute of Soil and Envi-
ronmental Sciences (ISES), UAF Pakistan, from a depth of 0–15 cm, and the selected soil
properties were determined (Table 2). Samples were air dried and ground to pass through
a <2 mm sieve prior to analysis. Soil EC and pH were determined by preparing a 1:1 (w/v)
suspension in distilled water [34]. Soil texture was determined by standard methods using
a Bouyoucos hydrometer [35]. The saturation percentage of the soil was determined by
making a soil saturated paste. Soil phosphorus content (mg.kg−1) was determined using a
spectrophotometer at wavelength 880 nm [31]. Organic matter percentage was estimated
following the protocol described by [36]. Soil nitrogen percentage was determined using
the method described by Jackson [32]. Soil K content (mg.kg−1) was determined using a
flame photometer at wavelength 767 nm [33]. DTPA extractable micronutrient contents
of zinc (Zn), iron (Fe), copper (Cu) and manganese (Mn) were determined using atomic
absorption spectrophotometer [37].
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Table 1. The treatment description applied in the pot experiment.

Treatments Description

1 Control (no P) Unamended control
2 P (45 kg·ha−1) DAP applied at the rate of 45 kg·ha−1

3 P (90 kg·ha−1) DAP applied at the rate of 90 kg·ha−1

4 Non-FAM [pH 7.26] Non-fermented animal manure of pH 7.26

5 P (45 kg·ha−1) + non-FAM DAP applied at the rate of 45 kg·ha−1 combined with
non-fermented animal manure

6 P (90 kg·ha−1) + non-FAM DAP applied at the rate of 90 kg·ha−1 combined with
non-fermented animal manure

7 FAM [pH 4.5] Fermented animal manure of pH 4.5

8 P (45 kg·ha−1) + FAM DAP applied at the rate of 45 kg·ha−1 combined with
fermented animal manure

9 P (90 kg·ha−1) + FAM DAP applied at the rate of 90 kg·ha−1 combined with
fermented animal manure

Note: P applied in the form of DAP; DAP; diammonium phosphate.

Table 2. The measured physico-chemical properties of soil with fermented and non-fermented animal
manures used in the study.

Properties Pre-Soil Analysis
Animal Manure Properties

Non-Fermented Animal Manure Fermented Animal Manure

Organic matter/carbon 05 (g kg−1) 364 (g kg−1) 421 (g kg−1)

Texture Loam - -

Saturation percentage 28.0 (%) 75% 23%

EC 1.83 (dS m−1) - -

pH 8.42 7.26 4.5

N 0.8 (g kg−1) 3.40 (g kg−1) 7.44 (g kg−1)

P 6.7 (mg kg−1) 0.67 (g kg−1) 3.99 (g kg−1)

K 133 (mg kg−1) 1.55 (g kg−1) 1.92 (g kg−1)

Zn 2.24 (mg kg−1) 78 (mg kg−1) 115 (mg kg−1)

Fe 6.25 (mg kg−1) 398 (mg kg−1) 650 (mg kg−1)

Cu 1.15 (mg kg−1) 15 (mg kg−1) 26 (mg kg−1)

Mn 8.40 (mg kg−1) 40 (mg kg−1) 62 (mg kg−1)

2.3. Pot Experiment and Cultivation of Wheat Crop

Each pot was filled and settled with 7 kg of soil for study at the wire house of ISES,
UAF Pakistan, using both manure types, i.e., non-fermented and fermented with no P
(control) or half (45 kg·ha−1) or recommended (90 kg·ha−1) doses of phosphorus fertilizer.
Diammonium phosphate (DAP) was used as a source of phosphorus fertilizer. Non-
fermented and fermented animal manures were selected for the pot trial on the basis of
high and low pH obtained from the incubation study. Treatments were arranged under
factorial complete randomized design with 3 replicates. The treatments included are given
in (Table 1). Amendments (fermented and non-fermented manures) were added to all the
treatments at rate of 1% of dry soil on w/w basis and mixed thoroughly before sowing.
The recommended dose of N (120 kg·ha−1), as urea in two splits, and K (60 kg·ha−1) as
sulphate of potash were applied as the basal dose. In each pot, 7 seeds of winter wheat
variety “Akbar 2019” were sown. The seeds of this wheat variety were provided by the
Ayub Agricultural Research Institute (AARI), Faisalabad, Pakistan. Three plants were
maintained in each pot after germination. The pots were placed into the wire house with
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no control of rainfall, temperature, and relative humidity. Water was applied to the pots
according to the field capacity of the soil when required.

2.4. Harvesting and Determination of Agronomic Parameters

Wheat plants were harvested at the end of the growth period (120 days). Different
agronomic parameters such as plant height, root length and spike length were measured
using a meter rod. The number of spikelets per spike, total number of tillers/pot and number
of fertile tillers per pot were counted manually. The root fresh and dry weight (g·pot−1), straw
weight (g·pot−1) and 100-grain weight (g·pot−1) were determined using a digital balance.

2.5. Determination of Physiological Parameters

Leaf chlorophyll contents were measured using upper leaves through a chlorophyll
content meter (SPAD-502). The relative water content was calculated by taking fresh
leaf weight inside 100% humidity following the protocol of [38]. Electrolyte leakage
was determined following the protocol described by Lutts [39]. The relative membrane
permeability was calculated using the protocol described by Yang [40]. An infrared gas
analyzer (IRGA) was used to measure physiological parameters, i.e., photosynthetic rate,
stomatal conductance, transpiration rate, evaporation rate and internal CO2 concentration.

2.6. Profiling Biochemical Parameters of Wheat Grains

Biochemical parameters, e.g., fat content, was measured using the protocol described
by James [41]. The ash and fiber contents were measured using the methodology described
by Arlington [42]. Crude protein was calculated by a multiplication factor of 6.25 with
nitrogen content [43].

2.7. Determination of the Chemical Parameters

The soil phosphorus content was measured using a spectrophotometer at wavelength
410 nm by taking a 0.5 g soil sample in a 50 mL flask, followed by addition of 5 mL digested
liquid and colored reagent [31]), and phosphorus use efficiency (PUE) and P uptake indices
were calculated following [12].

P uptake = P content in shoot × shoot dry weight per potPUE =
Grain yield (g per pot)
P uptake (mg per pot)

Straw, grain and soil nitrogen contents were estimated using Kjeldahl apparatus [32]
(Jackson, 1962), whereas potassium concentration in straw, grain and soil was estimated
using a flame photometer [44].

2.8. Statistical Analyses

The collected data were analyzed using analysis of variance (ANOVA) at a ≤5% value
of statistical significance [45] for comparison under a factorial complete randomized design
(CRD) with the help of statistics 8.1 software. The linear regression and heat map analyses
were plotted using the computer-based software R studio.

3. Results
3.1. Characteristics of Fermented Manure

In the incubation study, better performance for fermented animal manure was ob-
served in terms of decreased pH and increases in N, P, K, Zn, Fe, C, and Mn by the addition
of different crude sources of carbon (molasses), protein (gram floor), starch (rice polish), fat
(mustard oil cake) and cellulase-producing bacteria as compared with the non-fermented
manure, as shown in (Table 2). Manure treated with different crude sources of carbon, pro-
tein, fat and cellulose-degrading bacteria decreased the pH (4.5) more than non-fermented
animal manure (7.26). The study showed that, a mean higher amount of nitrogen under
application of fermentation was obtained (7.44 g·kg−1) followed by non-fermented animal
manure (3.40 g·kg−1). In the same way, the mean phosphorus value was also increased



Agronomy 2022, 12, 2335 6 of 19

in fermented animal manure (3.99 g·kg−1) compared with non-fermented animal manure
(0.67 g·kg−1). The least pronounced increase in the mean value of K was measured
in fermented animal manure (1.92 g·kg−1) followed by non-fermented animal manure
(1.55 g·kg−1). Likewise, the concentrations of trace elements were also increased after the
fermentation of animal manure (Table 2).

3.2. Crop Performance under Applied Fermented Manure

Pots treated with fermented animal manure and half and recommended rates of P
fertilizer enhanced the growth parameters of wheat more than the non-fermented manure
and control treatments (Figure 1A–F). The maximum plant height (96.66 cm) was recorded
with fermented manure and 90 kg·ha−1 P, whereas the non-fermented manure with the
same P rate produced 89.00 cm height. Data indicate that the highest increase in root length,
13.23 cm, was achieved by application of fermented manure and 90 kg·ha−1 P (Figure 1). In
the same way, root fresh weight was decreased in 90 kg·ha−1 P compared with its combined
effect with animal manure. The least pronounced decrease (11.23 g·pot−1) was found in
the application of fermented animal manure and recommended amount of P fertilizer.
A similar trend was obtained in the case of root dry weight, and it was increased up to
8.00 g·pot−1 by application of fermented animal manure with 90 kg·ha−1 P fertilizer.
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Figure 1. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on
the growth parameters of wheat. (A) plant height, (B) root length, (C,D) root fresh and dry weight,
(E) leaf area and (F) stem diameter. Columns with different letters are significantly different from one
another at a level of significance of p < 5%.
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The combined application of fermented animal manure and a full dose of P fertilizer
showed a 83.33 cm2 leaf area, followed by treatment with fermented manure and a half dose
(45 kg·ha−1) of P fertilizer. The non-fermented manure also showed a significant increase
in leaf area as compared with the untreated control (Figure 1). Likewise, the maximum
stem diameter (6.65 mm2) was obtained by the combined use of fermented manure and
the recommended rate of P fertilizer. Similarly, the total number of tillers (14) and fertile
tillers per pot (12) were at their maximums in the treatment where the combination of
fermented animal manure and the recommended rate of P fertilizer were applied (Figure 2).
Non-fermented manure along with both levels of P fertilizer addition showed a significant
response regarding tiller count compared with the control. The mean highest increase
in spike length (18.33 cm) was found with the application of fermented animal manure
with 90 kg·ha−1 P, whereas the same fertilizer rate with non-fermented manure gave
16.63 cm spike length (Figure 2A,B). Application of non-fermented animal manure had a
great influence on spike length (Figure 2C).

3.3. Influence of Fermented Animal Manure and DAP Fertilizer on Yield Parameters

A significant increase in number of total and fertile tillers, 100-grain weight, shoot
weight and grain yield was recorded in the application of fermented animal manure with
half and recommended levels of P fertilizer as compared with all other treatments, as shown
in Figure 2A-F. Further, the maximum increase in the variant was recorded in 100-grain
weight (5 g·pot−1) through combined application of fermented manure and 90 kg·ha−1 P.
The results show a similar trend in shoot weight, where 11.72 g·pot−1 weight was achieved
by same treatment. The highest grain yield (5.2 g·pot−1) was observed in the application
of fermented manure with 90 kg·ha−1 P, whereas non-fermented animal manure with
90 kg·ha−1 P showed a 4.6 g·pot−1 grain yield. The individual effect of half and recom-
mended levels of P fertilizer showed 2.4 and 3.50 g·pot−1 grain yields, respectively. A
similar trend in number of total and fertile tillers was observed when compared control.

3.4. Physiological Attributes

The data for physiological attributes such as RWC (relative water content), chlorophyll
content, electrolyte leakage, transpiration rate, photosynthetic rate and stomatal conduc-
tance revealed better response in animal manure with 45 and 90 kg·ha−1 P compared
with the respective controls (Figure 3). The data obtained from consortium application of
fermented animal manure and the recommended P amount showed the highest increase
in RWC (74.02) compared with other treatments and controls. Compared with controls,
non-fermented and fermented manures with 45 and 90 kg·ha−1 P, showed higher chloro-
phyll contents, however, the maximum content (54.13 SPAD) was recorded with fermented
manure and 90 kg·ha−1 P. The worst condition for electrolyte leakage occurred with control
treatment and 0 kg·ha−1 P when compared with other treatments. The treatment with
the least response was the application of fermented animal manure with 90 kg·ha−1 P,
which recorded 20.22%. Data regarding the transpiration rate indicated that the maximum
increase of 5.17 mmol·m−2·s−1 was observed by combined application of fermented ma-
nure and the recommended dose of P fertilizer. A similar trend was observed in the case
of photosynthetic rate and stomatal conductance. Combined application of fermented
manure and 90 kg·ha−1 P showed the maximum photosynthesis and conductance rates
(8.61 µmol·m−2·s−1 and 287.97 µmol CO2·m−2·s−1, respectively) in wheat plants when
compared with controls and other treatments.
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Figure 3. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on
physiological parameters of wheat. (A) Photosynthesis, (B) transpiration, (C) stomatal conductance,
(D) chlorophyll, (E) electrolyte leakage and (F) relative water content. Columns with different letters
are significantly different from one another at a level of significance of p < 5%.

3.5. Influence of Fermented Animal Manure and DAP Fertilizer on Biochemical Parameters

The data regarding biochemical parameters such as crude protein content, fat content,
fiber content and ash content (Figure 4) indicated that the application of fermented animal
manure with 90 kg·ha−1 P to pots significantly increased these parameters over controls
as well as non-fermented animal manure. Data regarding crude protein indicated that the
maximum content (11.2%) was achieved with fermented manure and the recommended
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dose of P fertilizer. In the case of fat content, application of fermented manure with
90 kg·ha−1 P showed the maximum fat content of 1.24% as compared with other treatments.
The same trend was followed for the fiber content and ash content. Fiber and ash contents
were higher, i.e., 2.26 and 1.47%, respectively, in the variant with application of fermented
animal manure and the recommended dose P fertilizer.
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Figure 4. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on
the biochemical parameters of wheat. (A) Crude protein content, (B) ash content, (C) fiber content,
(D) fat content. Columns with different letters are significantly different from one another at a level
of significance of p < 5%.

3.6. Influence of Fermented Animal Manure and DAP Fertilizer on Chemical Parameters

Application of fermented animal manure with 45 or 90 kg·ha−1 P increased N, P and
K uptake compared with the control, as shown in Figure 5. The highest value for P uptake
was recorded at 1.25 g·pot−1 in the application of fermented animal manure with 90 kg·ha−1

P. A similar trend was observed in soil P as well as PUE (Figure 6). In the application of
fermented animal manure with the recommended P dose, the maximum 16.1 mg P kg−1

soil was recorded. In the same way, application of manure with both P levels significantly
improved PUE, however, maximum PUE (0.856) was achieved in the treatment with the
recommended P dose and fermented manure. A similar trend was observed in the case of
nitrogen (N) uptake. The application of fermented manure with 90 kg·ha−1 P showed the
highest improvement in N uptake (0.95%) in straw when compared with the other treatments.
The maximum concentration of N (3.28%) was recorded when fermented animal manure
was added with the recommended dose of P fertilizer. Similarly, fermented manure and
the recommended dose of P gave the highest concentration of P in the soil. In the case of
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potassium, the application of fermented manure with 90 kg·ha−1 P markedly improved the
K content (2.08%) in straw in comparison with other treatments. The maximum grain K
content (1.90%) was observed in the treatment where fermented manure was applied with
the recommended dose of P fertilizer. The results show the same trend in soil N (0.016%) by
combined application of fermented animal manure and 90 kg·ha−1 P fertilizer.
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Figure 5. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on
chemical parameters of wheat. (A–C) P in straw, grain and root, (D,E) N in straw and grain and
(F) K in straw. Columns with different letters are significantly different from one another at a level of
significance of p < 5%.



Agronomy 2022, 12, 2335 12 of 19Agronomy 2022, 12, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 6. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on 

biochemical parameters of wheat. (A) K in grain, (B) P uptake, (C) P use efficiency, (D–F) NPK in 

soil. Columns with different letters are significantly different from one another at a level of signifi-

cance of p < 5%. 

3.7. Regression and Heat Map Analyses 

The plant P uptake was highly significantly correlated with wheat agronomic param-

eters, with R2 values ranging from 0.7748–0.8172 (Figure 7A). Moreover, the observed 

physiological parameters were also positively associated with P uptake, with R2 values 

ranging from 0.7245–0.7813 (Figure 7B). The biochemical attributes related to fiber and fat 

and protein contents were highly significantly and positively correlated with P uptake 

Figure 6. Combined use of fermented/non-fermented animal manure and phosphorus fertilizer on
biochemical parameters of wheat. (A) K in grain, (B) P uptake, (C) P use efficiency, (D–F) NPK in soil.
Columns with different letters are significantly different from one another at a level of significance
of p < 5%.

3.7. Regression and Heat Map Analyses

The plant P uptake was highly significantly correlated with wheat agronomic pa-
rameters, with R2 values ranging from 0.7748–0.8172 (Figure 7A). Moreover, the observed
physiological parameters were also positively associated with P uptake, with R2 values
ranging from 0.7245–0.7813 (Figure 7B). The biochemical attributes related to fiber and
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fat and protein contents were highly significantly and positively correlated with P uptake
(Figure 7C). The mineral content (K and N in grains of wheat) showed the most significant
and positive correlations with P uptake, with R2 ranging from 0.965–0.9675 (Figure 7D).
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Figure 7. Relationships between plant P uptake and, (A) agronomic attributes, (B) physiological
attributes, (C) biochemical attributes, and (D) mineral contents of wheat.

Moreover, a two-dimensional visual relationship between the applied treatments and
the observed parameters was built as a hierarchical dendrogram (Figure 8). The dendro-
gram shows the relationship between treatments (rows) and observed plant growth, phys-
iological, biochemical and mineral content attributes. The row hierarchical dendrogram
clearly differentiated treatment 9 (fermented manure with 90 kg·ha−1 P). This suggests that
this treatment was most efficient for improving the observed plant and soil parameters.
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4. Discussion

It was observed in the incubation experiment that the pH of manure was decreased in
the variants where crude sources of carbon, protein, starch, fat and hydrolytic (cellulase)-
enzyme-producing bacteria were added (Table 2). In incubation, we believe that methane
was produced in all treatments except for T9. This may be due to those hydrolytic enzymes
breaking down the complex materials to simple organic compounds that were further
converted into volatile fatty acids (acetic acid, propionic acid) by acidogenic bacteria [46,47].
It is likely that due to the toxic effects of organic and fatty acids, methane production
was abolished in the T9 treatment. This sudden decrease in pH reduced the efficiency of
anaerobic digestion [48]. Moukaize [49] noted that the shortcoming of the decrease in pH
induced by the accumulation of volatile fatty acids is expected to be alleviated by the role
of ammonia nitrogen as an alkalinity buffer in feedstock, such as biochemical methane
potential and semi continuous assay, used in his study.

In the present study, through the application of organic fermented animal manure
with inorganic phosphorus fertilizer (DAP), a positive effect on growth parameters was
observed (Figures 1 and 2). However, it has been found that the contribution of fermented
manure to crop yield tended to be higher in the case of nutrient shortages. Fermented
manure application was identified as the key cause of variability in soil fertility and maize
yield response to fertilizer application in the smallholder farming systems of western
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Kenya [50]. The explanation for this is that when mineral fertilizer was lacking, fermented
manure had a relatively more important role in total nutrient input so that crop yield
will not be greatly affected. This was further supported by the obtained results, whereby
enhanced micronutrients and macronutrients were observed under fermented animal
manure treatments (Table 2). This might be the other reason for the enhanced responses in
soil fertility and crop growth under applied amendments. This increment in plant nutrients
under fermented manure might be due to the activity of bacteria that might have produced
organic acids, resulting in enhanced dissolution of nutrients into the final product [51,52].

However, when organic fertilizer was used as a corresponding nutrient source with
chemical fertilizer, it would increase the contribution of fertilizers to yield, thus decreasing
yield variability of wheat [53]. Our results show that fermented manure application strongly
affected crop yield by increasing soil P supply and plant P uptake. The higher P supply
could be as a result of less transfer from labile to stable P pools [54,55], and the weaker
P fixation due to the higher organic matter content [56]), as fermented manure is the
principal source of organic input in the western Kenya region [57,58]. Our results are
further supported by the heat map analysis, which also showed the fermented manure
combined with the recommended dose of P as the most influential strategy affecting crop
growth and yield formation attributes (Figure 8).

Earlier, it was documented that leaf chlorophyll content, relative water content, pho-
tosynthesis rate, transpiration rate, stomatal conductance and soil physical attributes were
improved with the addition of organic amendments and inorganic amendments. One possible
explanation might be due to the role of organic amendments in improving soil biological
activities that are directly involved in nutrient uptake and ultimately improve growth and
yield parameters [59–62]. The improvement in soil microbial activity enhances soil nutri-
ent mineralization and ultimately improves nutrient availability and their uptake into crop
plants [63,64]. Notably, application of fermented manure alone resulted in a relatively low
crop yield because the manure came from within the farmland system and its amount was
limited. Furthermore, the highest wheat grain yield was obtained with addition of organic
manure along with inorganic fertilizers and this might be due to the improvement in the soil
organic matter content, which supplied not only the additional quantities of NPK directly, but
also secondary and micronutrients that were limited in the soil [65,66].

Biochemical parameters such as protein, crude fat, fiber and ash contents were higher
in treatments where organic and inorganic sources were applied together in the form of
fermented animal manure + 90 kg·ha−1 DAP (Figure 4). The improvement in protein
content can be attributed to its important role in providing secondary and micronutrients
along with primary nutrients and improving the physical chemical and biological properties.
Similar to our results are the findings of Liu et al. [67] and Saha and Mondal [68]. Fat content
in wheat may be higher due to the balanced supply of nutrition. The calculation is same as
that reported by Singh et al. [69] and Patil et al. [70]. Wheat contains higher amounts of bran
portions, which also results in higher ash content compared with other treatments. Nitika
and Khetarpaul [71] reported that the ash content in wheat varieties grown under organic
and inorganic conditions ranged from 1.82 to 2.14%. Likewise, the maximum fiber content
was recorded when 100% P was applied with the processed manure, which might be due
to the better growth and uptake of nutrients resulting from the balanced use of fertilizer
with an organic amendment. Similar to our results, Chauhan et al. [72] reported improved
productivity and biochemical attributes of wheat through integrated use of organic and
inorganic fertilizers.

Chemical parameters, including EC (electrical conductivity), pH, N, P and K were
measured in treatments where organic and inorganic sources were applied together in the
form of fermented animal manure and P fertilizer. Our results indicated that combined
application of fermented animal manure and chemical P fertilizers increased phosphorus
and nitrogen concentrations in plants in higher amounts than sole application of either
organic or inorganic P sources as well as controls. This might be attributed to the improved
growth of roots by fermented animal manure addition that ensures improved nutrient
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acquisition from soil and higher microbial activity. Similar findings were revealed by
Dordas et al. [73], where he added cattle manure and observed higher nutrient uptake and
yields of maize compared with their sole applications. The increase in N, P and K uptake
noted in the present study might be due to the indirect improvement of soil physicochemical
properties. On the one hand, manure could improve soil physical structure and water
conditions, thereby promoting crop growth and nutrient acquisition [74]. K uptake in the
shoot might be due to the stimulatory effect of organic materials on the cation exchange
capacity (CEC) of soil. On the other hand, with the mineralization and decomposition of
organic matter, partial nutrients including P will be released for crop utilization. Several
studies indicated the conversion of non-soluble P to soluble P could be achieved in the case
of manure application [75,76]. The use efficiency of P fertilizer usually ranges from 10 to 30%
during the growing season of application [77]. Thus, most residual fertilizer P remains in
the soil owing to the strong holding capacity of soil and continues to exert its residual effect
for crops [78,79]. Higher P uptake and use efficiency were recorded through combined
application of fermented manure and DAP fertilizer when compared with other treatments.
Regression analysis further suggested that the fermented animal manure combined with
DAP had positive influences on plant growth, physiological, mineral and biochemical
attributes as revealed by the existence of highly positive and significant relationships
(Figure 7A–D). These findings support the premise that use of fermented manure adds to
the effect of phosphorus fertilizer by enhancing crop productivity and reducing P fixation
in calcareous soil.

5. Conclusions

Based on our findings, application of fermented animal manure with the recommended
amount of DAP significantly improved the growth, yield and phosphorus use efficiency
of wheat crops as compared with the controls and use of non-fermented animal manure,
which suggests that the inclusion of animal manure with mineral fertilization could be an
attractive approach for sustaining crop yields. Similarly, combined application of organic
and inorganic amendments also improved the nutrient status of soil and plants by a
temporary change in the pH of the soil and by enhancing the use efficiency of applied
fertilizers. Thus, this approach could be an innovative strategy for enhancing wheat
productivity; however, multi-site field trials need to be performed to warrant successful
performance in the field.
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