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Abstract: While the construction industry consumes more raw materials than any other industrial
sector, agriculture generates a large amount of waste that is not managed properly. The olive industry
produces more than 7.5 million tons of waste that could be recovered. This paper presents a new
method to valorize the leaves of olive tree pruning waste consisting of the manufacture of ecologic
boards without adhesives by hot pressing. In order to analyze their influence, three manufacturing
variables were varied to obtain the boards: leaf type (shredded and whole leaves), temperature
(130, 140 and 150 ◦C) and time (4, and 12 min). Twenty-four boards were made and were then tested
for their mechanical, physical and thermal properties according to the EN standards. The boards
showed good results of thickness swelling (TS), water absorption (WA) and of thermal conductivity
and can be used as an alternative for manufacturing thermal insulation boards. With a smaller
particle size of shredded leaves, longer pressing times and higher pressing temperatures, the me-
chanical behavior of the boards could improve. The olive leaves are a low-cost renewable resource,
and manufacturing products with a long, useful life can be beneficial to the environment.

Keywords: agricultural residues; valorization; Olea europaea L.; fiberboard; particleboard

1. Introduction

Nowadays, there is great social concern about climate change, the environment, bio-
diversity and sustainable development. The European Union has set the goal to be the
first climate-neutral continent by 2050. Both the European Parliament and the Council
have agreed that the reduction of greenhouse gases will be 55% by 2030 compared to
1990 emissions.

While the construction industry consumes more raw materials than any other indus-
trial sector [1], agriculture generates a large amount of waste that is not managed properly.
The use of vegetable fiber-based materials in construction can alleviate this problem and
improve the sustainability of the sector, due to the fact that they are easily recyclable and are
not aggressive with the environment. The recovery of agricultural waste will also improve
the reinforcement of European environmental policy, such as the Framework Directive
on waste [2], the European Directive on industrial emissions [3] and the Directive on the
landfill of waste [4].

In Spain, there are 2,623,721 hectares planted with olive trees, and it is the leading
country in the production of olives and olive oil. This industry produces more than
7.5 million tons of waste that could be recovered [5]. Pruning produces leaves (approx-
imately 25% wt), thin branches (approximately 50% wt) and thick branches or wood
(approximately 25% wt), although the proportions may vary depending on the culture
conditions, tree age, production and/or local pruning practices [6].
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The use of olive pruning waste has been investigated in: basketry [7], animal feed [8],
as a supplement in minced beef meet [9], in substrates for crops [10,11], activated carbons [12,13],
bioremediation and bioabsorbents for soils [14–16], compost and biochar [17–21], cellulose
nanofibers [22,23], Kraft pulp for paper [24], lignin evaluation [25,26], sugars and nat-
ural antioxidants [27,28], bioactive compounds [29,30] and polyphenols [31]. However,
the majority of the studies of olive tree pruning are focused on the production of en-
ergy: biomass [32,33], pellets, briquettes and charcoal [34,35] and biofuel—both liquid and
gaseous [36–40].

A different research line aims to valorize olive tree waste developing different con-
struction materials: thermal and acoustic insulating panels made with olive tree pruning
fibers and sodium silicate [41]; sound-absorbing materials with olive pruning waste and
a chitosan binder [42]; bio-based plasters of olive fibers and a mixture of sand and clay [43];
ceramic lightweight bricks with three different olive tree residues: leaves, olive tree pruning
and olive wood [44]; ceramic bricks with pine–olive pruning ash, olive stone ash and olive
pomace ash [45]; the manufacture of cement with olive pomace and stone for replacing
clinker [46]; and particle board with 80% olive stone and 20% polyester [47].

The present work presents for the first time a new method to valorize the leaves of
olive tree pruning waste consisting of the manufacture of ecologic boards without adhesives.
The aim is to analyze the variables of the manufacture process to develop a product that
can be used in the building sector to counter the high consumption of materials of this
industry by using an easily renewable resource.

2. Materials and Methods
2.1. Materials

The materials used to manufacture boards were leaves from olive tree pruning
(Olea europaea L.) and water from the municipal network.

The leaves were obtained from pruning operations carried out by the Higher Technical
College of Orihuela at Universidad Miguel Hernández, Elche. The pruning waste was left
to dry outdoors for 3 months (Figure 1a). It was then classified in leaves and branches
(Figure 1b). The approximate moisture content of the leaves was 7.4%. Half of the leaves
were shredded in a laboratory-scale ring-knife chipper. Whole leaves were 40 to 60 mm in
length, and shredded leaves had a particle size of 1 to 4 mm.
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2.2. Methods
2.2.1. Board Manufacture

The method applied to manufacture the boards was the conventional dry process used
in the industry. First the material was put into a mold of 400 × 600 mm, and then, a 3% wt
of water was sprayed on the surface before placing it in the hot press (Figure 2a).
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Figure 2. (a) Material in the mold; (b) panel manufactured in the hot press.

Previous experiences in the laboratory indicated that this was the most suitable amount
of addition of water required for the self-bonding process. Contrary to the common 10% of
added water in the literature [48], when more than 9% was added, the boards exploded in
the press.

In order to analyze their influence, 3 manufacturing variables were varied to obtain
the boards: leaf type (shredded and whole leaves), temperature (130, 140 and 150 ◦C) and
time (4, and 12 min) while the pressure was maintained in 2.1 MPa (Figure 2b). Twenty-four
boards were manufactured as shown in Table 1.

Table 1. Types of board manufactured.

Type Leaf Type Temperature (◦C) Time (min) Number

S1a Shredded 130 4 2
S1b Shredded 130 12 2
S2a Shredded 140 4 2
S2b Shredded 140 12 2
S3a Shredded 150 4 2
S3b Shredded 150 12 2
W1a Whole 130 4 2
W1b Whole 130 12 2
W2a Whole 140 4 2
W2b Whole 140 12 2
W3a Whole 150 4 2
W3b Whole 150 12 2

The samples were cut to the appropriate dimensions (Figure 3), as indicated in the Eu-
ropean Standards [49], in order to carry out the tests needed to characterize the mechanical,
physical and thermal properties of each of the boards studied.



Agronomy 2022, 12, 93 4 of 13Agronomy 2022, 12, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 3. Specimens for the different tests. 

2.2.2. Experimental Tests 
The method that was followed was experimental. The tests were conducted in the 

Materials Strength Laboratory of the Higher Technical College of Orihuela at Universidad 
Miguel Hernández, Elche. The values were determined according to the European Stand-
ards established for wood particleboards [50]. 

After they were manufactured, density [51], thickness swelling (TS) and water ab-
sorption (WA) after 2 and 24 h immersed in water [52], internal bonding strength (IB) [53], 
modulus of elasticity (MOE) and modulus of rupture (MOR) [54] and thermal conductiv-
ity and resistance [55] were measured (Table 2). The boards were finally evaluated accord-
ing to the European Standard [56]. 

Table 2. Characteristics of the tests performed. 

Test 
N of Replicates 

(Per Panel) 
Size of the 
Specimens Equipment Used 

Relative Humidity 3 20 g Model UM2000, Imal s.r.l. 
Density 6 50 × 50 mm Model IB700, Imal s.r.l. 

Thickness Swelling (TS) 3 50 × 50 mm Model 76-B0066/B Water Bath, Controls S.A.  
Model UM2000, Imal s.r.l. 

Water Absorption (WA) 3 50 × 50 mm Model 76-B0066/B Water Bath, Controls S.A.  
Model UM2000, Imal s.r.l. 

Modulus of Rupture (MOR) 6 150 × 50 mm Model UM2000, Imal s.r.l. 
Modulus of Elasticity (MOE) 6 150 × 50 mm Model UM2000, Imal s.r.l. 

Internal Bonding Strength 
(IB) 3 50 × 50 mm Model UM2000, Imal s.r.l. 

Thermal Conductivity 1 300 × 300 mm NETZSCH Instruments Inc. 

The moisture content of the material was measured with a laboratory moisture meter 
(model UM2000, Imal S.R.L, Modena, Italy). For the panels, the water immersion test was 
carried out in a heated tank (Model 76-B0066/B Water Bath, Equipos de Ensayo Controls 
S.A., Toledo, Spain). The thermal conductivity and resistance tests were conducted with 
a heat flow meter (NETZSCH Instruments Inc., Burlington, MA, USA). 

Figure 3. Specimens for the different tests.

2.2.2. Experimental Tests

The method that was followed was experimental. The tests were conducted in the
Materials Strength Laboratory of the Higher Technical College of Orihuela at Universi-
dad Miguel Hernández, Elche. The values were determined according to the European
Standards established for wood particleboards [50].

After they were manufactured, density [51], thickness swelling (TS) and water ab-
sorption (WA) after 2 and 24 h immersed in water [52], internal bonding strength (IB) [53],
modulus of elasticity (MOE) and modulus of rupture (MOR) [54] and thermal conductivity
and resistance [55] were measured (Table 2). The boards were finally evaluated according
to the European Standard [56].

Table 2. Characteristics of the tests performed.

Test N of Replicates
(Per Panel)

Size of
the Specimens Equipment Used

Relative Humidity 3 20 g Model UM2000, Imal s.r.l.

Density 6 50 × 50 mm Model IB700, Imal s.r.l.

Thickness Swelling (TS) 3 50 × 50 mm Model 76-B0066/B Water Bath, Controls S.A.
Model UM2000, Imal s.r.l.

Water Absorption (WA) 3 50 × 50 mm Model 76-B0066/B Water Bath, Controls S.A.
Model UM2000, Imal s.r.l.

Modulus of Rupture (MOR) 6 150 × 50 mm Model UM2000, Imal s.r.l.

Modulus of Elasticity (MOE) 6 150 × 50 mm Model UM2000, Imal s.r.l.

Internal Bonding Strength (IB) 3 50 × 50 mm Model UM2000, Imal s.r.l.

Thermal Conductivity 1 300 × 300 mm NETZSCH Instruments Inc.

The moisture content of the material was measured with a laboratory moisture meter
(model UM2000, Imal S.R.L, Modena, Italy). For the panels, the water immersion test was
carried out in a heated tank (Model 76-B0066/B Water Bath, Equipos de Ensayo Controls
S.A., Toledo, Spain). The thermal conductivity and resistance tests were conducted with
a heat flow meter (NETZSCH Instruments Inc., Burlington, MA, USA).

The mechanical tests and density were performed with the universal testing machine
(model IB700, Imal, S.R.L., Modena, Italy), which complies with the velocity of 5 mm·min−1

for the bending test and 2 mm·min−1 for internal bonding strength.
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For the statistical analyses, SPSS v. 28.0 software (IBM, Chicago, IL, USA) was used.
An analysis of variance (ANOVA) and Pearson correlation were performed. The standard
deviation was obtained for the mean values of the tests.

3. Results and Discussion
3.1. Physical Properties

The resulting boards were 5.95 ± 0.90 mm thick. Their average density could be
classified as medium-high, which is in accordance with other binderless particleboards
obtained by other authors. Boards with whole leaves had an average density of 887.8 kg/m3

and 936.3 kg/m3 when the leaves were shredded, as shown in Figure 4. It is possible that
whole leaves were less compressed on the hot press. More time and temperature in the hot
press resulted in higher density.

Agronomy 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

The mechanical tests and density were performed with the universal testing machine 
(model IB700, Imal, S.R.L., Modena, Italy), which complies with the velocity of 5 mm·min−1 
for the bending test and 2 mm·min−1 for internal bonding strength. 

For the statistical analyses, SPSS v. 28.0 software (IBM, Chicago, IL, USA) was used. 
An analysis of variance (ANOVA) and Pearson correlation were performed. The standard 
deviation was obtained for the mean values of the tests. 

3. Results and Discussion 
3.1. Physical Properties 

The resulting boards were 5.95 ± 0.90 mm thick. Their average density could be clas-
sified as medium-high, which is in accordance with other binderless particleboards ob-
tained by other authors. Boards with whole leaves had an average density of 887.8 kg/m3 
and 936.3 kg/m3 when the leaves were shredded, as shown in Figure 4. It is possible that 
whole leaves were less compressed on the hot press. More time and temperature in the 
hot press resulted in higher density. 

  
(a) (b) 

Figure 4. Density according to (a) temperature and (b) pressing time. CI: confidence interval. 

Whole-leaf panels produced lower thickness swelling (TS) at 24-h (13.66 to 18.33%) 
than when shredded (from 19.04 to 39.35%) as shown in Figure 5. The amount of natural 
waxes in the whole leaves probably had an influence on this property, acting as a repel-
lent. At a higher pressing temperature, the panels had more TS. Whereas pressing time 
did not seem to have any effect on this property in whole leaves, it reduced it on shredded 
leaves. P3 type boards (non-structural boards for use in a humid environment) [56] had a 
limit of 17% TS 24h; therefore, some boards met this requirement. 
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Whole-leaf panels produced lower thickness swelling (TS) at 24-h (13.66 to 18.33%)
than when shredded (from 19.04 to 39.35%) as shown in Figure 5. The amount of natural
waxes in the whole leaves probably had an influence on this property, acting as a repellent.
At a higher pressing temperature, the panels had more TS. Whereas pressing time did not
seem to have any effect on this property in whole leaves, it reduced it on shredded leaves.
P3 type boards (non-structural boards for use in a humid environment) [56] had a limit of
17% TS 24 h; therefore, some boards met this requirement.
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Figure 6 shows that WA after 24 h was higher when the leaves were shredded. Whole-
leaf boards could absorb water without swelling as much as shredded leaves. It is possible
that in shredded-leaf panels, pressing time influenced this property.
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3.2. Mechanical Properties

The mean values of the modulus of rupture (MOR) are shown in Figure 7. Whole-
leaf boards achieved an MOR of 5.02 N/mm2 and shredded boards 5.67 N/mm2. When
manufactured with longer time and temperature in the hot press, it could be possible to
strengthen the shredded panels.
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As can be observed in Figure 8, the greater modulus of elasticity (MOE) was achieved
when the boards were manufactured at 150 ◦C with shredded leaves. As in the previous
property, with shredded leaves, more time and temperature in the hot press improved the
results. Pressing temperature had no effects on whole leaves contrary to pressing time.

The internal bonding strength (IB) of the panels had a large variability of values,
as shown in Figure 9. IB was higher in shredded-leaf boards with a mean value of
0.051 N/mm2 than in whole leaves (0.012 N/mm2). The longer the panels were kept
in the hot press, the results in the shredded-leaf boards improved, but the deviations
were very high with temperature. The IB of the whole leaves probably indicated that
the self-bonding was only due to the waxes of the surface on the leaves and not to other
mechanisms that may have been occurring when the leaves were shredded.
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3.3. Thermal Properties

The thermal conductivity of the panels ranged from 0.065 to 0.085 W/m·K in whole-
leaf boards and from 0.080 to 0.089 W/m·K in shredded-leaf boards (Figure 10). These are
good results in comparison to commercial particle boards [57] with values of 0.180 W/m·K
and similar to cork boards with 0.065 W/m·K. Figure 10 indicates that since the deviation
bars overlap, no relationship could be found with the other two manufacturing variables.

Modern commercial insulation panels have thermal conductivities that range from
0.030 to 0.040 W/m·K but are manufactured with a high environmental cost. The olive
pruning leaf panels could replace them, but it would be necessary to double the thickness
of the panels, which, due to the density of the boards, is not operational. To compete
with modern insulators, it would be compulsory to improve insulating capabilities or
reduce densities.
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3.4. Statistical Analysis

As can be seen in Table 3, all the parameters have dependency relationships (sig < 0.05)
with the type of leaf (whole leaves or shredded). The particle size of the shredded leaves
ranged from 3 to 4 mm in diameter. It should be studied whether reducing this size would
improve the properties of the panels.

Table 3. ANOVA of the results of the tests.

Factor Properties Sum of
Squares d.f. Half

Quadratic F p-Value

Leaf type

Density (kg/m3) 84,534.65 1 84,534.65 10.99 0.001
TS 24 h (%) 1551.53 1 1551.52 49.02 <0.001

WA 24 h (%) 1213.56 1 1213.56 8.12 0.006
MOR (N/mm2) 15,08 1 15.08 26.26 <0.001
MOE (N/mm2) 754,422.53 1 754,422.53 15.24 <0.001

IB (N/mm2) 0.03 1 0.03 31.39 <0.001
Thermal C. (W/m·K) 0.00 1 0.00 12.69 0.002

Pressing
temperature

Density (kg/m3) 93,802.05 2 46,901.03 6.10 0.003
TS 24 h (%) 376.08 2 188.04 3.83 0.027

WA 24 h (%) 255.16 2 127.58 0.77 0.467
MOR (N/mm2) 1.19 2 0.60 0.89 0.416
MOE (N/mm2) 799,835.17 2 399,917.59 8.07 <0.001

IB (N/mm2) 0.00 2 0.00 0.13 0.879
Thermal C. (W/m·K) 0.00 2 0.00 0.49 0.619

Pressing time

Density (kg/m3) 115,661.14 1 115,661.14 15.47 <0.001
TS 24 h (%) 7.93 1 7.93 0.15 0.702

WA 24 h (%) 38.76 1 38.76 8.12 0.631
MOR (N/mm2) 13.36 1 13.36 22.78 <0.001
MOE (N/mm2) 130,082.85 1 130,082.85 15.24 0.123

IB (N/mm2) 0.00 1 0.00 3.04 0.085
Thermal C. (W/m·K) 0.00 1 0.00 0.098 0.757

d.f.: degrees of freedom. F: Fisher–Snedecor distribution.

The properties that were dependent on pressing time were density and MOR. The size
of the sample has not made it possible to assess the MOE and IB dependency relationship.
Those that were dependent on pressing temperature were density, TS 24 h and MOE. As in
the previous case, the WA 24 h was unrelated, and MOR and IB were as well.

According to Table 4, in order to improve the mechanical behavior of the panels
(MOR, MOE and IB), a smaller particle size of shredded leaves is needed. This is especially
influential in IB results. At the same time, the values of TS, WA and density would increase.
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Table 4. Pearson correlation of the results of the tests.

Factor Pearson Density
(kg/m3)

TS 24 h
(%)

WA 24 h
(%)

MOR
(N/mm2)

MOE
(N/mm2)

IB
(N/mm2)

Thermal. C.
(W/m·K)

Leaf type
Correlation −0.131 −0.612 ** −0.335 ** −0.257 ** −0.259 ** −0.591 ** −0.396

Sig (bilateral) 0.118 <0.001 0.004 0.002 0.002 <0.001 0.055
N 144 72 72 144 144 72 24

Pressing temp.
Correlation 0.231 ** 0.277 * 0.147 0.111 0.301 ** 0.045 0.136

Sig (bilateral) 0.005 <0.019 0.218 0.187 <0.001 0.707 0.528
N 144 72 72 144 144 72 24

Pressing time
Correlation 0.313 ** −0.046 0.058 0.372 ** 0.129 0.204 0.067

Sig (bilateral) <0.001 0.702 0.631 <0.001 0.123 0.085 0.757
N 144 72 72 144 144 72 24

* The correlation is significant at 0.05 level (bilateral). ** The correlation is significant at 0.01 level (bilateral).

If pressing temperature is higher, denser panels will be manufactured with more TS
24 h values and better MOE performance. With more pressing time, the panels will have
more density and MOR values. It is important to note that density plays an important role
in mechanical performance of the boards.

With less pressing temperature, pressing time and whole leaves, TS 24 h and density
will decrease.

Contrary to ANOVA statistics, the thermal conductivity was not influenced by any of
the manufacture values. This was probably due to the small number of tests of the boards,
with only 24 in total. To improve the thermal insultation capacity of the panels, further
research is needed.

3.5. Comparison with Other Studies of Panels Made of Leaves

Other studies have used leaves of different plants to manufacture panels (Table 5).
Using typha leaves, Dieye et al. [58] achieved excellent conductivity results (0.055 to
0.083 W/m·K). However, their panels required a natural binder (gum arabic) in very large
concentrations (from 33 to 50% wt). Tangjuank [59] studied the properties of thermal
insulation produced from pineapple leaves using another natural rubber latex as a binder
(in proportions from 1:2 to 1:4). He obtained a thermal conductivity that ranged from 0.035
to 0.043 W/m·K with densities from 178 to 210 kg/m3. The author built a box composed of
two panels and an air chamber inside, which improved its insulation capacity.

This study achieves binderless panels with thermal conductivity values from 0.065 to
0.089 W/m·K. These results could be improved by using natural binders or decreasing the
density of the panels.

With different adhesives, other authors have manufactured panels with good mechan-
ical and physical results. Masturi et al. [60] made a composite of northern red oak leaves
with 4–20% wt polyurethane. They discovered that, starting with 12% of polyurethane (PU),
a good WA 24 h was achieved. Yalinkilic et al. [61] made a tri-layer panel with waste tea
leaves with 8 to 10% urea-formaldehyde (UF) wt and 1% paraffin wax. Some of the panels
could be used in general applications. Aghakhani et al. [62] used sycamore leaves with
4% of Methylene Diphenyl Diisocyanate (MDD) as a binder. Their overall results showed
very good values, which exceeded the minimum requirements of European Standards for
furniture manufacturing.

Nemli et al. [63] manufactured grass clipping waste panels with 12% UF. Their pan-
els showed low results in comparison to when they added eucalyptus wood particles
for manufacturing the panels. They discovered that higher concentrations of grass de-
creased the performance of the panels and considered that this was probably caused by
the higher amount of lignin and lower cellulose content of the grass clippings. A similar
study researching the influence of adding particles of gingko tree leaves (1, 5 and 10%)
to conventional wood with 10% UF [64] showed that the addition of a small amount of
gingko leaves did not harm the physical and mechanical properties of particleboards made
of wood.
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Table 5. Properties obtained with boards made of leaves.

Source Material Binder Density
(kg/m3)

TS 24 h
(%)

WA 24 h
(%)

MOR
(N/mm2)

MOE
(N/mm2)

IB
(N/mm2)

[60] Red oak 4–20% PU 825–1261 1.38–107.35
[61] Tea 8–10% UF 550–750 7.50–41.00 37.50–135.00 2.20–12.50
[62] Sycamore 4% MDD 600–700 15.28–18.05 31.70–34.20 15.92–17.23 1958–2130 0.58–0.74
[63] Grass 12% UF 33.6 4.19 351.35 0.08
[48] Canary palm binderless 855 54.32 132.53 6.26 1045.92 0.29
[65] Oil palm binderless 800 65.00 130.00 2.00 0.00

This work Olive binderless 888–936 16.18–25.46 48.15–56.36 5.02–5.67 764.62–909.38 0.01–0.05

Two other investigations were focused on obtaining binderless panels of leaves from
palm trees. Ferrandez-Garcia et al. [48] used canary palm rachis (part of the leaf) to
manufacture binderless particleboards. The panels showed good mechanical properties but
low physical results. Hashim et al. [65] used oil palm fiber leaves to manufacture binderless
panels. They lacked internal bonding strength; hence, the rest of the mechanical properties
were very low. Panels made of leaves of olive waste pruning have the potential to improve
these results, and it should be stressed that the boards in this work offered better properties
than those achieved with other leaves’ fibers without adhesives.

4. Conclusions

Boards with olive pruning leaves without adhesives have been successfully obtained
with good results of thickness swelling (TS) at 24 h, water absorption (WA) at 24 h and
of thermal conductivity and can be used as an alternative for manufacturing thermal
insulation boards.

With a smaller particle size of shredded-leaf panels, the mechanical behavior of
the boards can improve (MOR, MOE and IB). With longer pressing times and higher
pressing temperatures, density can increase, improving the mechanical values since it
plays an important role in the mechanical performance of the boards. With less pressing
temperature, pressing time and whole leaves, TS 24 h and density will decrease.

The olive leaves are a low-cost renewable resource, and manufacturing products with
a long, useful life can be beneficial to the environment, as it is a method of carbon fixation
and therefore contributes to reducing CO2 in the atmosphere.
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