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Abstract: Bell pepper (Capsicum annuum) is a widely grown vegetable crop that is nutritious and
flavorful and economically important for growers worldwide. A significant limiting factor in the
postharvest storage and long-distance transport of peppers is gray mold caused by Botrytis cinerea.
The pathogen is widespread in nature, highly aggressive, and able to cause disease at cool refrigerated
temperatures during transport and storage. Fungicides have been relied on in the past to reduce bell
pepper rots in storage; however, concern over residues on the fruit and environmental degradation
have heightened the importance of natural and generally recognized as safe (GRAS) solutions that
effectively limit disease. Essential oils, plant extracts, inorganic chemicals, biocontrols, defense
activators, hot water treatments, and modified storage conditions have been tested to reduce losses
from gray mold. Despite significant amounts of research on natural methods of control of B. cinerea
postharvest, research specific to gray mold in peppers is limited. The objective of this review is to
summarize the research conducted with environmentally friendly alternatives to chemical fungicides
to control this important pathogen of peppers postharvest. To ensure a steady supply of healthy
and nutritious produce, more research is needed on the development, use, and application of non-
hazardous Botrytis control methods. Until an effective solution is found, using a combined approach
including environmental controls, sanitation, and GRAS products remain paramount to limit Botrytis
fruit rot of peppers postharvest.

Keywords: postharvest; solanaceae; integrated pest management; fungicides; GRAS; biological
control; gray mold

1. Introduction

Bell pepper is one of the most important vegetable crops grown worldwide for fresh
consumption and processing. There are five domesticated species of capsicum and over
20 wild ancestors; however, Capsicum annuum is the most widely cultivated [1]. C. annuum
has high horticultural value due to its pungency, flavor, and nutritional qualities, adding
color, flavor, and texture to many fresh and processed products. In the Mediterranean re-
gion, the pepper crop is grown during the winter and summer months for export and local
markets. High-quality fruits are uniform in shape, bright in color, large, firm, and without
blemishes [2,3]. In North America, the blocky bell pepper with four lobes is preferred, as
well as pungent chili peppers [1]. Bell peppers are typically produced in the open field
and in greenhouses [4]. In many regions, the pepper crop is grown in shade structures
and other forms of protected cultivation [5]. A major constraint to pepper production
are diseases from fungal and bacterial pathogens [6]. The most important pathogens
infecting pepper fruit during the growing season include Botrytis cinerea, Colletotrichum
spp., Alternaria spp., Phytophthora capsici, and Xanthomonas spp. [7,8]. Protected cultivation
reduces some stresses on the plants from intense sun and wind that provide entry for
pathogens; however, temperature and humidity fluctuation still occurs, allowing for dew
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formation and disease causing organisms to infect [9,10]. Even in arid regions, disease pres-
sure during the growing season remains significant due to humidity and dew formation [9].
Once harvested, peppers are typically washed, packaged, and stored at cool (2–10 ◦C)
temperatures prior to sales. This environment is optimal for fruit quality and allows transit
to distant markets; however, certain disease causing organisms can produce significant
damage prior to marketing including B. cinerea, Alternaria spp., Rhizopus stolonifer, and
Erwinia spp. B. cinerea is one of the most important postharvest pathogens due to its ability
to grow at low temperatures, aggressiveness, and distribution. It is generally accepted that
losses for perishable vegetables postharvest are high [11], and B. cinerea has a significant
role in reducing fruit quality in developed and developing countries [6]. The economic
costs of postharvest Botrytis fruit rot is variable, and significant market losses due to the
pathogen have been reported [7,12]. In Mediterranean or dry temperate areas, fruit rot
during storage and transport were significant [13,14]. In Pakistan growing regions, Botrytis
fruit rot was estimated at approx. 25% [15].

2. Pathogen Life Cycle

B. cinerea can cause disease during all phases of pepper crop production, but is pri-
marily a pathogen of the fruit [7,14]. In the field, greenhouse, and protected houses, spores
are present on the ground, in debris, and from neighboring diseased plants [9,10,16]. The
pathogen is ubiquitous in the environment and conidia spread readily via air currents. High
levels of conidia in pepper and eggplant poly-greenhouses have been recorded using spore-
samplers in Spain [17]. In Korea, cool nights (15 ◦C) and warm days were most conducive
for B. cinerea outbreaks and high spore loads in pepper growing greenhouses [18]. When
conditions favor disease, conidia are formed on infected plant parts in grape-like clusters
and are released with changes in relative humidity and wind [10]. After conidia land on
susceptible plants and fruit, they germinate, form a germ tube, and infect. Initial symptoms
include water-soaked and slightly sunken spots. The lesions quickly coalesce and form
large discolored and soft regions of the fruit, resulting in complete loss [7]. The pathogen
grows rapidly when environmental conditions are favorable (18–24 ◦C; > 93% RH) and can
quickly destroy susceptible plants, flowers, and postharvest commodities [8,10]. B. cinerea
can survive in debris [19] or as sclerotia and chlamydospores [10]. Once plants become
infected, spread by conidia is most important.

Aspects of the Postharvest Disease Cycle

B. cinerea affects many specialty crops and flowers postharvest. The pathogen is able
to cause disease from 0–26 ◦C [7,20], allowing it to cause disease in postharvest storage
at cool temperatures [21]. The source of postharvest outbreaks is not always evident;
fruit can be infected directly from inoculum present on neighboring fruit, from latent
infections, or at wound sites [7,14]. Rots are insidious and often do not appear until the
fruit arrive at retail setting; shipments with a significant percentage of infected fruit may
be rejected by the broker. The disease cycle of postharvest fruit rot of pepper caused by
B. cinerea has not been fully elucidated but likely shares similarities with other fruiting
vegetables [7]. Postharvest fungal diseases of pepper fruit caused by Alternaria alternata
and Fusarium spp. enter the fruit via natural openings. A. alternata was able to enter
pepper fruit via the blossom end of the fruit and cause internal rots postharvest [22],
while the calex-end of the pepper appears to be an important area of entry for Fusarium
subglutinans [23] and Erwinia carotovora [24]. These may also be avenues for B. cinerea
infection in addition to direct penetration of the cuticle. The pepper cuticle is very thick
and lacking stomata [25]; however, microscopic cracks are apparent, which may be an entry
site or provide nutrients for B. cinerea conidia [26]. Available nutrients and sugars on the
host surface are important for successful infection [27,28]. B. cinerea is known to produce
numerous enzymes, including cutinase, pectolytic enzymes, and cellulase, which allow for
dissolution of the cuticle and infection to progress [28]. B. cinerea has also been observed on
sunscalded areas of pepper fruit and anywhere where wounds are apparent [14]. Extended
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periods at cool temperatures were suggested as possibly enhancing gray mold postharvest.
Cold temperatures weaken the cuticle and cell structure, which can reduce resistance to the
pathogen [29]. Using early harvesting as a technique to limit disease as is practiced with
citrus, avocado, and other fruits is not an option for the fresh market sales of bell peppers
due to the defined changes in antioxidants, carotenoids, flavonoids, and sugars of the fruit
and other desired characteristics that develop with fruit ripening [30].

3. Trends in Fungicide Use

Intensive agriculture has resulted in an increase in agrochemical use across all cropping
systems [31]. Fungicides have been heavily relied upon in specialty crop production to
limit losses from B. cinerea infection pre- and postharvest [10,13,32,33]. Over the last
15 years, scrutiny of agrochemicals has increased, and numerous compounds have been
removed from the market [34]. Restrictions in agrochemical use due to governmental
regulations, consumer concerns over residues and environmental degradation, and the
development of extensive fungicide resistance has led to the search for natural compounds
with fungicidal activity [31,35]. Maximum residue limits are used by governmental agencies
to determine if the residues present in foodstuffs are dangerous to consumers [36]. In
general, agrochemical residues on produce in developed countries are low [37]; however,
the potential for toxic residues exists. Residues on fruit are a heightened concern, making
control of postharvest diseases of fruiting vegetables a unique challenge to the industry.
There are very few fungicides that can be applied to produce postharvest to limit losses
from B. cinerea, depending on the crop and market. For freshly consumed vegetables,
there are often no fungicides labeled for use, with few notable exceptions, including
citrus and apples [38]. Research on biological compounds with fungicidal activity has
increased significantly to meet market demands and alleviate concerns over residues [39],
and these compounds are increasingly important for growers. In addition to toxic residue
concerns, fungicide resistance is regularly observed in many fungi [40]. B. cinerea is a
highly variable pathogen and well documented as able to overcome commonly used
fungicides [41,42]. Resistance mechanisms to benzimidazole and dicarboximide classes
of chemistries have been described [43,44]. Over-production of ATP-binding cassette
transporters was the mechanism of resistance to the anilinopyrimidines, an important
class of fungicides [32]. Reports of resistance to Fludioxanil [45] cyprodinil [46] and the
recently developed succinate dehydrogenase inhibitors (SDHIs) fluopyram, fluxapyroxad,
and penthiopyrad [47] have highlighted the need to find alternatives. Liu et al. [33] tested
B. cinerea isolates from tomato greenhouses in China and found that resistance to the
SDHI fungicide Boscalid was moderate, potentially reducing the effectiveness of fungicide
management programs. The challenges of managing B. cinerea with traditional fungicide
chemistries are manifold and an integrated approach that reduces reliance on chemicals is
needed for continued successful production and postharvest storage of bell peppers.

4. Alternatives to Fungicides

Due to the high level of interest in natural and generally regarded as safe (GRAS)
products to control gray mold postharvest, numerous compounds including essential oils
and volatiles, plant extracts, agricultural by-products, inorganic chemicals, biocontrols, and
plant defense activators have been researched [48–52]. In addition, UV light, environmental
regulation, hot water treatment, and sanitation have been researched and found to have
an effect on B. cinerea development of fruiting vegetables in storage (Table 1). Postharvest
processing and storage is considered an ideal location for the use of biocontrols because it
is a controlled environment, protected from UV and precipitation, and the implementation
of control strategies is practical with equipment already present in many operations. There
is a good opportunity to optimize formulations to take advantage of organisms that are
adapted for specific conditions postharvest [53].
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Table 1. Reports of physical, chemical, microbial, or environmental treatments effective against gray
mold of bell pepper (Capsicum annuum L.) postharvest.

Biocontrol
Treatment

Method of
Biocontrol

Application
Fungicidal Effect Reference

Modified atmosphere NaCl pouches Reduced fungal growth [54]

Hot water Rinse and brush Direct, Host alteration [55]

Hinokitiol oil Fruit dip Direct fungicidal [49]

VOCs from cinnamon oil Sealed container Fungicidal,
fumigant effect [56]

Olive oil mill wastewater Fruit dip Induced response,
phenolic compounds [57]

Potassium bicarbonate Fruit dip Direct, fungistatic [58]

Hydrogen peroxide Fruit dip Direct, inhibition of spore
germination [48]

Harpin protein Foliar sprays
preharvest

Host physiology
alteration [59]

Multiple bacterial species Pipette Antagonistic suppression [60]

4.1. Essential Oils and Agricultural By-Products

A strong desire to identify compounds that are safe to humans and the environment
has resulted in the development of numerous plant oils and extracts as biofungicides [61,62].
These compounds are bioactive compounds with high antifungal activity [38]. Essential
oils have been researched intensively for activity against B. cinerea and other pathogens.
Wilson, et al. [63] tested over 300 essential oils and extracts for activity against B. cinerea
isolates and found 13 with high antifungal activity. The concentrations tested ranged
from 0.39–100%. The researchers suggested that these compounds could be used as safe
alternatives to conventional pesticides as both fungicides and fumigants. Hinokitiol, an
oil extract from Japanese Cyprus, inhibited B. cinerea growth in vitro and prevented gray
mold on bell peppers dipped in a solution at 750 µL/L [49]. This compound disintegrates
the plasma membrane of B. cinerea and genes for pathogenicity are downregulated [64].
Vapors from sage essential oils reduced postharvest pepper rot [65], while volatiles of
cinnamon oil did not prevent B. cinerea infection [56]. Peppers that were inoculated prior
to cinnamon oil treatment rotted. Cinnamon oil at 500 ppm in vitro completely inhibited
mycelial growth of B. cinerea, and 100 ppm reduced growth; conidial germination was
reduced but not prevented at any concentration [56]. Clove and olive oil (0.125–0.5%)
have also been tested and found to reduce B. cinerea in vitro and limit fungal growth on
peppers when applied as a pre-harvest spray [66]. Natural agricultural by-products such
as compost water extracts [67] and olive oil mill waste water [57] can control gray mold of
pepper; however, formulations must be optimized to facilitate practical application. The
reduction in fungal growth from olive oil mill waste water may have been due to a systemic
response or direct fungicidal action, as both peroxidase and phenolperoxidase activity were
increased in fruits after 2–5 days in storage and may be involved with the defense response
of the fruit [57].

4.2. Chitin and Chitosan

Chitin and chitosan are natural polymers that are safe to consumers and the envi-
ronment and able to prevent diseases of numerous crops caused by B. cinerea posthar-
vest [68]. Chitin is an abundant biopolymer extracted from exoskeletons of crustaceans and
is widely regarded as safe for human consumption. Chitosan, a polymer of β-1,4-linked
D-glucosamine, has known activity against B. cinerea, damaging hyphal cell walls that
come in contact with the compound [69] and activating the fruits defense response against
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the pathogen [70]. These compounds have been tested against numerous pathogens for
effective and safe disease control [71]. Chitin and chitosan are available in various forms,
which may provide different levels of disease control when used alone or in combination
with a microbial formulation or essential oil [72,73]. The yeast Candida utilis and chitosan
prevented tomato fruit rot at 0.25 and 0.5%, and chitosan at concentrations from 0.025–1.0%
inhibited A. alternata and Geotrichum candidum germination in vitro [74]. Cucumber plants
treated with chitosan (0.1%) showed lower gray mold disease severity levels than control
plants when inoculum was applied before and after treatment [75]. Longer time intervals
after treatment prior to inoculation resulted in greater levels of control. Tomatoes treated
with chitosan plus Ruta graveolens essential oil coating had significantly lower incidence
of gray mold growth and higher quality than untreated fruit [76]. A chitosan–oil dip for
peppers improved storage quality after 35 days at 8 ◦C due to smoother skin surface, better
sensory quality, and increases in certain antioxidant enzymes [77]. Chitosan mixed with
edible coatings reduced disease severity on bell peppers and improved storage quality by
increasing firmness, reducing weight loss, and reducing disease [50]; general decay was
reduced below 5%, although specific disease-causing agents were not recorded. Waxes
and edible coatings are known to improve certain quality characteristics of fruiting veg-
etables postharvest such as firmness and reduce water loss [78,79]. Adding chitosan or
other biopreparations to these coatings has been shown to be beneficial in postharvest
produce storage [50,80]. Wax mixtures with natural fungicidal compounds have been
tested on citrus to reduce the reliance on synthetic chemistries [81] and could be adopted to
pepper postharvest.

4.3. Calcium and Natural Compounds

The prevalence of calcium, low cost, and effectiveness make this an optimum posthar-
vest treatment for gray mold control. High calcium content in plant tissues is known to
reduce B. cinerea severity [19], and calcium is an important natural fungicide alternative
for control of gray mold [82,83]. Increasing tissue calcium content increases cross linking
of polygalacturonate polymers and reduces damage from decay causing organisms [84].
Fungal polygalacturonase is also inhibited by calcium [85]. Kamara et al. [86] found that cal-
cium chloride sprays reduced gray mold severity and increased the storage life of Egyptian
pepper cultivars. Apples were protected from Botrytis fruit rot postharvest by a calcium
(2%) dip prior to storage [87]. Postharvest dips of calcium may also be beneficial for peppers
during the postharvest washing and packaging process [2,55,88]. Calcium-containing salts
tested in vitro against B. cinerea from pepper demonstrated that calcium hydroxide was
the most effective at controlling the pathogen [89]. Other researchers have highlighted the
importance of combining calcium compounds and biocontrol agents to improve disease
control. For example, Botrytis fruit rot of pear was significantly reduced when CaCl2 and
the yeast Cryptococcus laurentii were combined and spread over fruit wounds [90]. The au-
thors noted that peroxidase activity in the fruits treated with calcium continually increased
up to 96 h after application (the last time point recorded), suggesting an induced response
of the fruit as well as a potential physical protection against the pathogen. Hydrogen
peroxide (Sanosil), a GRAS-certified disinfestant, inhibited B. cinerea conidial germination
and mycelial growth at 0.5 and 1.5%, respectively [48]. Dipping red bell peppers for 60 s
in a 0.5% solution improved storage quality and reduced decay. Vapors of acetic acid, a
naturally derived acid, completely prevented Botrytis fruit rot of tomato and other fruits
after 1 h exposure, and the treatment was effective at cool temperatures as low as 1 ◦C
demonstrating usefulness in cool storage conditions [91]. Elad [51] sprayed different antiox-
idants known to scavenge free radicals onto pepper leaves and found that four provided
significant reduction in B. cinerea at 0.1, 1.0, and 10 mM. Inhibition of ethylene production
by the antioxidants may have played a role in the disease reduction observed due to the
known effects of this compound on plant tissues and B. cinerea. Storage duration and
quality of green bell peppers was greatly enhanced by delaying the ripening process with
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hexanal vapors [92]. Multiple fruit quality evaluations were made, including water loss
and CO2 evolution, which decreased with hexanal treatments from 0.005 to 0.02% w/w.

4.4. Microbial Biological Control

Numerous microorganisms have shown activity against B. cinerea and other frequently
cited storage pathogens; however, limited research has been specifically conducted on
control of postharvest fruit rots [39]. Microbial compounds are applied pre- or postharvest
and may be used alone or with another compound [53]. Bacillus licheniformis reduced gray
mold on tomato plants and flowers [93], and Trichoderma harzianum was able to significantly
reduce B. cinerea development on beans [52]. Other microbial species such as Bacillus subtilis,
Rhodosporidium paludigenum, and Pichia guilliermondii have provided control against Botrytis
fruit rot of tomato [94–96]. The biocontrols can have direct action on the pathogen and
activate the plant’s defense response. Bacillus amyloliquefaciens effectively controlled gray
mold of tomatoes [97]. This biocontrol has known PGPR qualities when sprayed on pepper
plants [98] and improves antioxidant quality in the fruit [99]. Udalova, et al. [100] tested
foliar sprays of a humic acid (0.1%) product with and without B. subtilius on two pepper
cultivars and found that there was a significant increase in overall yield, which may have
been a result of plant activation. The fruits from treated plants also have had higher total
carbohydrates, ascorbic acid, and dry matter (%) at maturity. Microbial formulations that
have a beneficial effect on plant health could be applied at optimal times to reduce gray
mold. When the endophyte Beauveria bassiana was applied to the roots of tomato and chili
pepper, it provided protection against foliar B. cinerea [101]. This area of plant protection
needs further research to optimize formulations and application timing to improve disease
control postharvest.

4.5. Systemic Acquired Resistance

The potential to spray resistance inducers near harvest to prevent postharvest rots
would benefit farmers by reducing inputs and lowering the risk of surpassing MRLs.
Resistance inducers benefit plant health and protect the fruit by increasing quantities of
antifungal compounds, phytoalexins, or other protective factors [102]. Salicylic acid (SA) is
a well-known activator of induced resistance in plants that has been researched to control
bacterial and fungal plant pathogens [103]. SA, abscisic acid, and methyl jasmonate all
acted as resistance inducers of peppers, reducing Botrytis gray mold severity in peppers
harvested from plants treated with different concentrations of the SAR compounds [86].
Phenol content and defense related enzymes increased in fruits of all varieties tested,
which may have increased resistance levels. Spraying pepper plants in the field with
SA at 8 mM and citric acid at 30 mM reduced gray mold of peppers in storage [66] and
mycelial growth of the pathogen was sensitive to SA in vitro. When bell peppers were
sprayed at 50 g/L with harpin protein, a known resistance activator, B. cinerea growth was
reduced [59]. Greenhouse grown fruits from plants regularly sprayed with harpin protein
had higher soluble solids and acidity [104]. These treatments can also extend the storage
life of peppers under cool (7 ◦C) temperatures and modified atmosphere [105]. After
application, resistance inducers likely increase the levels of certain antifungal compounds
in the fruit. More research is needed to determine which SAR inducers enhance these
compounds in the fruit and to what magnitude and duration.

4.6. Heat Treatment and UV-C Application

Heat treatment of pepper fruit postharvest prior to storage can directly inhibit pathogens
and increase the resistance of the fruit [106,107]. Treating peppers with hot water at 55 ◦C for
12 s reduced decay and improved storability [55]. Physical removal of spores and possible
beneficial effects to the fruit’s cuticle were suggested to have reduced disease (Figure 1).
Heat treatments from 45 to 55 ◦C reduce spore germination and germ tube elongation.
Using irradiation can reduce gray mold by killing pathogen spores and inhibiting latent
infections. UV-C light was germicidal to B. cinerea conidia and prevented gray mold of
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bell pepper [108]. This treatment was also found to reduce damage from chilling injury
and general decay from Alternaria spp. and B. cinerea [109]. More research is needed
on this control strategy to determine practicality and economic feasibility for the pepper
industry. Effects on pepper quality would also need to be tested on additional cultivars
and fruit-types; high rates of UV-C applied to tomato resulted in undesirable effects on
fruit color [110].
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4.7. Packaging and Controlled Atmosphere

Environmental regulation and temperature have a major effect on B. cinerea and
disease development [111]. This is a well-established area of research, and in controlled
agricultural settings, such as greenhouses, reducing relative humidity is known to limit
gray mold during production [27]. In storage, RH levels and atmospheric conditions are
largely dependent on the crop being stored and the quantity. Disease severity levels are
reduced when storage containers are kept at low O2 and high CO2 levels [112]. In studies
on controlled storage, the severity of gray mold of eggplant was reduced for fruits stored at
13 ◦C at 7.5% CO and 1.5% O2 [21]. Storage at 10 ◦C was found to significantly reduce rots
of pepper compared to 21 ◦C [113]. Although cold storage helps to reduce fungal diseases,
it will not eliminate B. cinerea, especially where crops are held for long periods [114].
Peppers are typically washed after harvest, which can remove spores of B. cinerea but also
contributes to high humidity in postharvest packaging. Typical packaging techniques for
pepper may result in increased humidity during storage and transport unless perforations
are used [115]. Artificially reducing the humidity in packaging for peppers greatly reduced
B. cinerea and other pathogens [54]. Additionally, modifying packaging atmosphere using
moisture absorbance packets greatly increased the storage of green bell peppers by reducing
the respiration levels of the fruit [116]. Low temperatures in combination with modified
atmosphere were important for maintaining high ascorbic acid content.

5. Host Resistance

Genetic host resistance is an important component of integrated disease manage-
ment of specialty crops and has been used successfully against many diseases. Resistance
to B. cinerea has proven to be challenging due to the aggressive nature of the pathogen;
however, there are examples of successful breeding in some crops [117,118]. For vegeta-
bles, limited research has been conducted other than on tomatoes [119], where breeding
techniques were used to introduce qualitative resistance [120]. Complete resistance to
B. cinerea was not observed on other fruit crops and is likely difficult to find in wild host
sources [121]. Breeding resistance into specialty crops is difficult due to the many stages
during development at which B. cinerea can infect and the different mechanisms involved
in the resistance response [122]. Pepper fruit resistance has not been looked at significantly.
Kamara et al. [86] studied four local Egyptian pepper cultivars and found one that exhibited
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lower levels of gray mold after artificial inoculations. The mechanisms of this reduced
susceptibility are not known. Additional extensive screening of cultivars and breeding
efforts are needed to identify resistant fruit with desired horticultural traits.

Capsacin and Phytoalexins

Although not specifically associated with resistance, biological compounds in peppers
may confer resistance during infection and improve the fruits resistance. Capsacin is a
well-studied compound that is produced by hot peppers to give flavor and pungency and
is only found in the genus Capsicum. Numerous factors affect capsacin production in the
fruit, including the nutrition of the plant, the ability to produce peroxidase, and other host
factors [123,124]. Xing et al. [125] found that capsaicin was inhibitory to B. cinerea in vitro,
and that pH 5 was the most optimum for growth inhibition. Substantial research on the
production and metabolism of a similar metabolite capsidiol, a terpenoid phytoalexin,
has demonstrated that it is important in resistance to certain pathogens of pepper and
provides a source of resistance to non-pathogens [126–129]. Interestingly, B. cinerea is
known to degrade capsidiol to less toxic compounds [130]. The role of this phytoalexin in
susceptibility of pepper to Botrytis fruit rot is not completely clear. Other phytoalexins such
as 6-methoxymellein from carrots can limit B. cinerea growth [131]. Enhancing metabolites
within the fruit without negatively affecting fruit quality could improve postharvest storage
duration. This is an important research area that needs more attention to ensure fruit quality
remains high, even if fungicides or other biocontrols are not used.

6. Conclusions

B. cinerea remains a significant threat to bell peppers in postharvest storage and
transport [7]. Although agrochemical use has decreased in some production settings,
and research to find alternative methods of controlling pathogens has increased [34,39],
fungicides are still used widely during production to control gray mold and other diseases
of peppers. These practices will likely continue until satisfactory alternatives are found that
are safe and provide disease control. The importance of B. cinerea as a postharvest pathogen
complicates initiatives to reduce fungicides and the use of GRAS products due to the
difficulties inherent in managing this important pathogen. High fruit quality and nutritious
produce are essential for healthy diets, and society continues to focus on increasing produce
consumption. Consumers remain concerned about fungicide residues on produce, and
governmental restrictions are increasing in developed countries [36,132]. Additionally,
environmental degradation due to extensive agrochemical use is an important factor in the
need to find novel solutions. Natural products and resistance activators have been found
to improve the postharvest quality of bell peppers and reduce gray mold severity in many
studies, and continued research in this area is paramount. Despite the use and availability
of natural and GRAS certified products and even the use of fungicides, B. cinerea remains a
significant problem postharvest when conditions are favorable for disease. Future research
needs to address this discrepancy so that bell peppers can be stored and transported
without losses. Integrated control remains an important strategy and includes careful
control of environmental conditions, sanitation, applying natural and GRAS products, and
using fungicides judiciously to improve and maintain pepper quality postharvest.
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