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Abstract: Improving the grain yield of crops in both favourable and stressful environments is the
main breeding objective required to ensure food security. In this review, I outline a genotype-to-
phenotype approach that exploits the potential values of quantitative genetics and process-based
crop modelling in developing new plant types with high yields. The effects of quantitative trait locus
(QTL), for traits typically at the single-organ level over a short time scale, were projected for their
impact on crop growth during the whole growing season in the field. This approach can provide more
markers for selection programmes for specific environments whilst also allowing for prioritization.
Crop modelling is thus a powerful tool for ideotyping under contrasting conditions, i.e., use of
single-environment information for predicting phenotypes under different environments.
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1. Introduction

Crop yields have been substantially improved since the first ‘Green Revolution’ in the
mid-1960s when the high-yield modern crop varieties of rice and wheat were developed and
were subsequently adopted by farmers in Latin America and Asia. However, despite recent
achievements in plant breeding and genetics, the rate of increasing crop yields is declining,
and there is a need for multidisciplinary efforts towards a second green revolution [1]. Crop
modelling has long been considered a useful tool that assists in breeding [2–6]. However,
to date the contribution has been small [7,8].

This small contribution was most likely because crop physiologists and modelers did
not fully consider the genetic basis of model input parameters [9], although they often
refer to these model input parameters as ‘genetic coefficients’ [10–12]. The development of
molecular genetics provided a new approach for relating crop model input parameters to
their genetic coefficients, quantitative trait loci (QTLs). However, because of the complexity
of regulatory networks in plant and crop systems and given their complex interactions
with the environment factors, field crops show strong genotype–environment (G × E)
interactions. This complexity is especially the case when breeding for drought tolerance.
Sometimes, spectacular results obtained in one drought scenario might have limited value
for improving yield in other scenarios as drought varies in intensity and timing [13]. For
example, in wheat, selection for genotypes with higher transpiration efficiency (low ∆13C)
could improve yield by 10% in very dry environments [14], but the yield advantage could
disappear under moderate stress [14], and even hamper plant growth, resulting in smaller
plants with reduced transpiration, biomass and yield [15,16]. These G × E interactions
always result in inconsistency of morpho-physiological traits, which make the selection
criteria for breeding complex and unstable, especially under abiotic stressed environments.
Therefore, it is necessary to accurately model and predict G × E interactions for improving
breeding efficiency through marker-assisted selection (MAS).
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2. Integration of Crop Physiology with Genetics—QTL-Based Modelling

Since the pioneering work on plant modelling by C.T. de Wit [17], ecophysiological
crop models have been extensively developed by integrating knowledge from different dis-
ciplines, such as crop physiology, micrometeorology, soil science, and computing technolo-
gies [2,18,19]. Now, crop models based on solid crop-physiological knowledge can quantify
causality between relevant physiological processes and responses of these processes to
environmental variables. Therefore, in principle, these crop models enable predictions
beyond the environments in which the model parameters were derived and can reveal
how G–E interactions come about [20–23]. Crop-related model input parameters are also
referred to as ‘genetic coefficients’ because these model input parameters might be (at least
partly) under genetic control. Therefore, crop modelling could be used to give suggestions
for ideotype breeding [24].

However, crop models often do not consider the genetic basis of model parameters
that describe genotypic differences [9,25], nor do they consider how much genetic variation
exists in the genetic materials available for breeding. Yin et al. [21,26,27] first tried to
combine crop modelling with QTL mapping using a SUCROS-type crop model. The
QTL analysis was first applied to the model input traits. After the QTL analysis, the
identified QTLs were then coupled to the crop model by replacing the original measured
input trait values with those predicted based on the QTL effects [21]. This approach
was first showcased for predicting differences in yield among relatively similar lines
from a genetic population (Figure 1). They showed, however, that improved models
were needed in order to make this approach really successful and robust [22]. Later,
this QTL-based modelling approach was used to study specific crop traits such as leaf
elongation rate in maize, flowering time, and fruit quality [28–35]. These later studies
showed that this approach was robust in predicting genetic differences in bi-parental
crossing populations under different conditions (in terms of vapor pressure deficit, soil
moisture content, temperature, and photoperiod). However, most studies focused on
specific traits, as mentioned above. The QTL-based modelling approach applied to complex
traits (e.g., yield) was challenging [21,26,27,36,37], when compared with results applied to
single-crop traits. The reason is that yield is much more complex considering the hierarchy
from leaf photosynthesis to crop yield [38], and further improvements in the crop model
were suggested by Yin and Struik [38].
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allelic information and estimated QTL effects, model input trait values can be calculated based on the
genotype and used as inputs to crop models, thus replacing original measured input trait values. This
QTL-based approach can dissect complex traits (e.g., yield) into physiologically relevant component
traits, then integrate effects of QTL of the component traits over time and space at whole-crop level,
and in the end, predict yield of various allele combinations under different environmental conditions.
Such QTL-based modelling can identify the markers that are most important for yield determination
and accelerate plant breeding.

QTL-based modelling could potentially evaluate constraints in breeding due either
to limited genetic variation or to correlations between the traits. QTL-based modelling
could evaluate the effect of QTLs for traits at the organ level on crop yield under different
environments, which could be useful in breeding for specific environments. For example,
Chenu et al. [39], using the crop model APSIM-Maize, demonstrated that a QTL accelerating
leaf elongation could not only increase the yield in an environment with a water deficit
before flowering, but also reduce yield under terminal drought stress. QTL-based modelling
could also be useful in supporting marker-assisted selection [39].

In short, QTL-based crop modelling, combining ecophysiological modelling and
genetic mapping, can dissect complex yield traits into component traits, integrate effects of
QTLs of the component traits over time and space at the whole-crop level, and predict the
yield of various allele combinations under different environmental conditions.

3. Application of the Modelling Approach
3.1. Models Can Support the Quantitative Trait Loci (QTLs) Mapping

A pre-requisite for the proper use of phenotypic data for quantitative genetic analysis
is that the phenotypic data of different genotypes should be collected under the same
environmental conditions and at the same plant developmental stage. On the other hand,
quantitative genetic analysis requires screening of a large population to realize the required
genetic resolution based on the high power of the analyses. Complicated statistical analyses
and experimental designs were often used to remove environmental errors, for example,
caused by heterogeneity in the experimental field. However, for highly sensitive traits (such
as photosynthesis), microclimate fluctuations can also obscure the genetic effects existing in
the population. Ecophysiological models based on solid physiological knowledge could be
useful tools for standardizing the measurements [40]. Using model-based standardization,
several QTLs related to photosynthesis were found under field conditions. Ecophysiological
models can thus play a role in improving the quality of data on traits that are difficult to
phenotype. Another example was reported by Yin et al. [26], who mapped specific leaf area
(SLA) in a barley recombinant inbred population. After adjusting SLA values measured at
the same chronological time to values measured at the same physiological age, the effect on
SLA from the denso gene was no longer significant. The effect of the denso gene detected at
the same chronological time was therefore the consequence of its direct effect on flowering
time. An ecophysiological model can thus indeed assist QTL analysis by removing either
environmental noise or indirect effects from other traits.

3.2. Models Can Dissect Complex Traits into Physiological Components

Physiological modelling can dissect complex traits (e.g., photosynthesis or yield) into
physiological component traits. For example, in the study of Gu et al. [41], a photosynthesis
model was used to dissect photosynthesis into: (1) stomatal conductance gs, (2) mesophyll
conductance gm, and (3) electron transport capacity and Rubisco carboxylation capacity.
Gu et al. [36], using the crop model GECROS, connected and dissected yield trait into
seven physiological input parameters (i.e., seed dry weight, Sw; seed N concentration,
nso; maximum plant height, Hmax; minimum days for vegetative growth phase, mv; min-
imum days for reproductive (seed fill) phase, mR; specific leaf area constant, Sla; total
crop N uptake at crop maturity, Nmax). By dissecting complex traits into physiologically
meaningful component traits, it is possible to assess genetic variation for each component
trait and evaluate its relative importance by sensitive analyses or regression analyses. For
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example, by regression analysis, genetic variation in light-saturated photosynthesis and
transpiration efficiency was found to be mainly associated with variation in gs and gm [41].
Similarly, Prudent et al. [35], combining an ecophysiological modelling and QTL analysis,
identified key elementary processes and genetic factors underlying tomato fruit sugar
concentration. Dingkuhn et al. [42,43] showed that ecophysiological models can assist
phenotyping and genome-wide association studies by dissecting early vigour, phenology,
and spikelet sterility into their components. All these results show that the physiological
model can be helpful to prioritize target traits for breeding, although its possible impact
remains to be validated through actual breeding and field testing.

3.3. Models Can Integrate and Project Single-Organ Level Genetic Variation to Crop Level

Modelling can not only dissect complex traits into relevant physiological components
but also integrate the effects of QTLs of the component traits over time and space and
predict complex traits at the whole-crop level of various genetic make-ups under differ-
ent environmental conditions. This could be useful for evaluating the effect of changes
in a single-trait or single-trait-related QTL on a crop level, while keeping other traits
constant to avoid the confounding effects from other physiological processes, which is
not plausible in a ‘real’ experiment. For example, as stated earlier, improving photosyn-
thesis is generally thought to be crucial for improving plant production, but often no
correlation or even negative correlations between photosynthesis and plant production
were observed [36,44–47]. The reason for this discrepancy could be that plants differed
genetically in many aspects other than photosynthesis. Gu et al. [36] used the crop model
GECROS and found that the natural genetic variation in leaf photosynthesis within their
experimental materials would result in equivalent differences in production when scaled
up to the crop level. Integration and upscaling can also help evaluate the impacts of QTLs
for a specific organ-level trait at the crop level in a different environment. Chenu et al. [39],
using the crop model APSIM-Maize, evaluated the effects of a QTL which accelerated
leaf elongation on maize yield. This QTL could cause a yield increase in an environment
with a water deficit before flowering but reduced yield under terminal drought stress.
This information could be used in breeding for specific environments or for facing the
challenges caused by climate change. By incorporating a genome-wide association into an
ecophysilogical simulation model, Kadam et al. [8] showed that the model has the potential
to use single-environment information to predict the yield of genotypes under different
environments. Most importantly, the feature of integration could allow for designing
ideotypes of various genetic make-ups underlying physiological processes. Based on the
genetic variation and resulting QTLs for each physiological component in photosynthesis,
it was shown that the ideotype for leaf-level photosynthesis and TE could potentially be
improved by 17.0% and 25.1%, respectively [41].

3.4. QTL-Based Modelling Can Quantify Constraints in Breeding

Model simulation could inspire breeders. However, Stam [9] and Picheny et al. [25],
from a geneticist’s perspective, expressed their concerns that the ignorance of inheritability
of model input traits is a major constraint for breeders in adopting the results of model-
based approaches. Often in ideotype design by modelling, modellers implicitly assume
that plant traits can be combined at will into a single genotype. Such an unrealistic practice
ignores the possible existence of constraints, feedback mechanisms, and correlations among
traits. By integrating crop modelling with genetics—QTL-based modelling—it is possible
to evaluate constraints in breeding either due to limited genetic variation or to correlations.
For example, trade-offs were shown between improving photosynthesis and TE either
due to tight linkage or to the pleiotropic effects of QTLs related to gm and gs [41]. If the
linkage between gm and gs or co-location of QTLs of gm and gs could be broken, the virtual
ideotype could have both improved photosynthesis and TE. The quantitative importance of
breaking this linkage could be used together with the insights of geneticists about chances
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of success in guiding decisions in breeding programs, thus strengthening the scientific basis
for the breeding program design.

3.5. QTL-Based Modelling Can Assist Marker-Assisted Selection

Marker-assisted selection (MAS), combined with conventional breeding approaches,
has been used to effectively integrate major genes or QTLs with a significant effect into
widely grown varieties [48]. The use of cost-effective DNA markers and a MAS strategy
can provide opportunities for breeders to develop high-yielding, stress-tolerant, and better-
quality rice cultivars [49]. For example, pyramiding different resistance genes using MAS
provided opportunities to breeders to develop broad-spectrum resistance against diseases
and insects [50]. This thesis also showed that the existing GECROS model can be a useful
tool in enhancing marker-assisted breeding through a model-based ideotype design [36].
Using the principles for QTL-based modelling, as defined earlier [20,21], marker-based crop
modelling was performed to rank the markers identified for various yield-determining
physiological traits that are input parameters of GECROS [36]. Such an analysis detected
markers that breeders can prioritize in their MAS programmes for specific environments.
Compared with identification of markers through multiple regression for yield per se, the
model-based approach identified additional QTLs and could be complementary to the
analysis of yield per se.

4. Future Prospects of Integration of Crop Modelling and Plant Genetics

Generally, QTLs can be identified for a set of physiological parameters associated
with leaf photosynthesis, phenological development rates, morphological traits, etc. These
traits could be used as input parameters for the crop model. With their marker/QTL-based
estimates as input to the model, the QTL effects for traits, typically at the single-organ
level over a short time scale, were projected for their impact on crop growth during the
whole growing season in the field. In this way, the information from functional genomics
can be brought up to the crop level via modelling. For example, in the studies of Gu
et al. [36,40,41,51], leaf photosynthesis was analyzed and dissected into biophysical and
biochemical component traits by a detailed photosynthesis model, and then scaled up to the
crop level with the GECROS model, which uses the concept of carbon–nitrogen interactions
for balanced modelling of crop growth. This analysis showed that the modelling strategy
can promote communication across scales from the level of leaves, from the canopy to the
crop level.

Systems simulation modelling has long been suggested as a powerful tool that can
assist in understanding crop yield formation, crop improvement programmes [2]. However,
modelling studies at the crop level using some knowledge of fundamental plant biology
(biochemistry, genomics) are currently still sporadic [38]. Some model algorithms are based
on untested or empirical hypotheses, or even missing. For example, a better algorithm for
the spikelet number of rice is needed when applying the model to drought environments,
when high tissue organ temperature and high spikelet sterility can be expected [52]. This
indicates that model components related to sink formation still need to be improved,
especially for predictions for stressed environments. Besides, there are inherent spatial
variations between different crop fields, which limits the application of crop modelling
in predicting yields of large areas [53]. Nowadays, large amounts of data from remote
sensing and high throughput phenotyping, as well as modern statistical methods, such as
machine learning, deep learning, etc., provide opportunities to better capture the spatial and
temporal variations when crop modelling is coupled with the emerging data science [54–57],
which will strengthen the future application of crop modelling [53].

The QTL-based modelling approach could be further expanded. Gene-based crop
modelling has already practiced by White and Hoogenboom [10], Messina et al. [58], and
White et al. [12] but only on an empirical basis. The fast development of genomics with
second-generation genome sequencing and genome-wide association studies may enhance
opportunities for developing gene-based modelling. The advance of transcriptomics,
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proteomics, metabolomics, and phenomics may enhance the link between genome data,
metabolic pathways and processes, physiological component processes, and crop yield and
production. Accordingly, different temporal, spatial and structural scales are required for
different components, pathways, and processes of the model [38]. In the end, an approach
such as ‘crop systems biology’ [38] should enable in the silico assessment of crop response to
genetic fine-tuning under defined environmental scenarios, thereby providing a powerful
tool that can support breeding for complex crop traits.
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