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Abstract: To secure high yield, tropical oil palm plantations are fertilized, and understory vegetation
is controlled by chemical clearing with herbicides. These treatments cause a drastic turnover of soil
microbes and cause loss of beneficial mycorrhizal fungi. Here, we tested if reduced fertilization and
weeding instead of conventional treatments restored beneficial ecological groups associated with
roots. We conducted our study one year after the start of the reduced management in large-scale
oil palm plantations. We hypothesized that reduced fertilizer application and weeding result in
shifts of the root-associated species composition because changes in the management regimes affect
belowground biomass and nutrients in soil and roots. Alternatively, we hypothesized that the legacy
of massive soil fertilization and herbicide application preclude compositional shifts of root-associated
biota within short time periods. We did not find any significant treatment effects on root nutrient
contents, root biomass, and nutrients in soil. At the level of species (based on operational taxonomic
units obtained by Illumina sequencing) or phyla, no significant effects of reduced management were
observed. However, distinct functional groups showed early responses to the treatments: nematodes
decreased in response to weeding; yeasts and ectomycorrhizal-multitrophic fungi increased under
fertilizer treatments; arbuscular mycorrhizal fungi increased under fertilizer reduction. Since the
responsive ecological groups were represented by low sequence abundances, their responses were
masked by very high sequence abundances of saprotrophic and pathotrophic fungi. Thus, the
composition of the whole root-associated community was unaffected by reduced management. In
conclusion, our results show that changes in management regimes start to re-wire critical constituents
of soil–plant food webs.

Keywords: microbiome; mycorrhiza; plantation management; root biomass; sustainability; tropics

1. Introduction

The main driver of tropical rain forest transformation in south-east Asia is the ex-
pansion of oil palm plantations [1,2]. Palm oil is the most lucrative oil crop in the world
and Indonesia is one of the main producers and exporters of this commodity [3,4]. The
expansion of areas for palm oil production has benefited the economic situation of small-
holder farmers and decreased the country’s dependence on the import of fossil fuels [5,6].
However, the high deforestation rate to enlarge plantation areas [7,8] comes with ecological
trade-offs in biodiversity and ecosystem functions [9,10].

Multiple studies on Sumatera, a hotspot of expanding oil palm (Elaeis guineensis
Jacq.) cultivation, show that aboveground species richness is drastically declining after

Agronomy 2022, 12, 199. https://doi.org/10.3390/agronomy12010199 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy12010199
https://doi.org/10.3390/agronomy12010199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0002-1508-9031
https://orcid.org/0000-0002-1134-5026
https://orcid.org/0000-0002-8646-7925
https://orcid.org/0000-0001-8697-6394
https://doi.org/10.3390/agronomy12010199
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy12010199?type=check_update&version=1


Agronomy 2022, 12, 199 2 of 17

transformation of natural or secondary rain forests in oil palm plantations [11–13]. The
transformation of highly diverse ecosystems in monocultures results in nitrogen leaching,
loss in soil carbon stocks, disturbance in hydrology, degradation of root health, and losses
of many other ecosystem functions and services [13–17].

In contrast to species loss in most organismal groups (e.g., tree species, understory plant
species, insects, birds, bats, mammals, etc.) found in oil palm plantations [9,12,13,18,19],
the richness of soil microbes was less affected by or even increased in response to forest
transformation [19]. For instance, neither marker lipids for fungal and bacterial biomass
nor soil respiration varied with rain forest conversion [20]; the abundances of prokaryotic
organisms increased [21], while fungal abundances decreased marginally [22,23]. Protists,
another group of important eukaryotic soil microbes, remained stable [24]. However,
all these microbial groups showed drastic compositional shifts in oil palm plantations
compared to rain forests, suggesting significant functional turn-over [20–22,24,25]. For
example, the abundance of genes associated with nitrogen fixation significantly decreased
in plantation soils, indicating that the intensive management of oil palms results in a
reduction in prokaryotes with the ability for natural N2 fixation [25]. In comparison to rain
forest soils, loss in ectomycorrhizal fungi, reduction in root colonization with arbuscular
mycorrhizal fungi and increases in saprotrophic and pathogenic fungi were reported in oil
palm plantations [22,26].

Oil palm plantations are managed in different ways with regard to harvesting cycles,
pruning, weeding, and fertilization [27,28]. Fertilizers are applied to maintain productivity
of oil palms but the amounts of nutrients added are often far beyond those taken out by
fruit removal [29]. First results of experimental fertilizer reduction in large-scale company
estates indicated that oil palm management can be more sustainable without an immediate
negative impact on yield [29]. Weeding is performed either by cutting or by herbicide
application to remove the understory plants, which may compete for resources [30]. While
complete clearing practices, e.g., by glyphosate, have negative effects on soil compaction
and nutrient retention, weeding by mechanical cutting retains understory roots and is less
detrimental to belowground biological activities [31,32]. However, it is not understood
how mechanical weeding and fertilizer reduction influence soil biota associated with plant
roots in oil palm plantations.

Here, we used a management experiment in a large-scale state-owned estate to inves-
tigate the effects of reduced fertilizer application and mechanical weeding in comparison
with business-as-usual-practices on root-associated soil biota. We focused on roots because
they are a hot spot for numerous organisms [33–36] and influence key soil processes [37].
Apart from prokaryotes, phyla associated with roots include fungi, oomycetes, nema-
todes, protozoa, algae, and arthropods [33]. One year after the implementation of reduced
conventional management, we traced root-associated eukaryotes by Illumina sequencing.
Furthermore, we determined root and soil chemistry. We hypothesized that reduced fer-
tilizer application and weeding result in shifts of the root-associated species composition
because changes in the management regimes affect belowground organic biomass and
nutrients in soil and roots. We anticipated that the effects on the species composition
were moderate due to the relatively short duration (one year) of the reduced management
regimes. Alternatively, we hypothesized that the legacy of soil fertilization and herbicide
application preclude compositional shifts of root-associated biota within short time periods.

2. Materials and Methods
2.1. Research Plots and Experimental Treatments

We used sixteen oil palm research plots, which had been established in four blocks
located in two afdelings (i.e., a division maintained by a different manager) in a large-scale
state-owned estate (PTPN VI Batanghari) on Sumatera in Jambi province (Indonesia). The
location of the plots has been described by Darras et al. [29]. The geographic coordinates
of the sampling sites in those plots are listed in Supplementary Table S1. The climate in
PTPN VI is tropical humid with an average air temperature of 26.7 ± 0.4 ◦C and an annual
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sum of precipitation of 2075 ± 94 mm, including two peaks of rainfall in the rainy season
in November and March (Supplementary Figure S1). The soil type is an acid acrisol, which
is typical for lowland areas in the Jambi province. However, in the plantation the pH is
enhanced by lime applications (429 kg dolomite ha−1 year−1) resulting in pH values of
6.8 ± 0.1 (Supplementary Table S1). Furthermore, mineral nutrients (Mg, Ca, B, Cu, Zn,
and Mn) are added (142 kg ha−1 year−1).

In November 2016, four treatments were introduced, resulting in a fully factorial
experimental design: conventional fertilization and herbicide treatment (CH), conventional
fertilization and weeding (CW), reduced fertilization and herbicide treatment (RH), reduced
fertilization and weeding (RW) (4 treatments × 4 blocks = 16 plots). Conventional fertilizer
treatment consisted of the application of 260 kg N ha−1 year−1, 50 kg P kg ha−1 year−1,
and 220 kg K ha−1 year−1 applied 2 times a year, 1 m apart from the oil palm stem base.
Reduced fertilizer application corresponded to 130 kg N ha−1 year−1, 17 kg P kg ha−1

year−1, and 187 kg K ha−1 year−1 applied 2 times a year, 1 m apart from the stem base. The
conventional herbicide application was glyphosate treatment (4 times a year in a 2 m radius
around the palm stem basis, resulting in a dose of 1500 cm3 ha−1 year−1 and twice a year
glyphosate treatment in the inter-rows [middle between two rows of palm trees] resulting
in 750 cm3 ha−1 year−1). When mechanical weeding replaced the glyphosate treatment, the
herbs were cut with a brush cutter 4 times a year within a circle of 2 m radius around each
palm and twice a year in the inter-rows at the same time when the fertilizer was applied.
Each treatment was applied to the plot area of 50 m × 50 m. The inner 30 m × 30 m area
was used for sampling.

2.2. Collecting Samples in the Field

The oil palms (Elaeis guineensis Jacq.) had an age of about 19 years and were planted
in rows with a distance of 5 m between the rows. Sampling took place in December 2017.
We used the inter-rows, i.e., the middle of oil palm rows at a distance of about 2.5 m from
the stems, following the plantation structure from north to south for sample collection.
Before soil sampling, we determined soil temperature (Mextech Pen type soil thermometer
DT-9, Mumbai, India), soil moisture and pH (Takemura soil pH tester DM-13, Tokyo, Japan,
Supplementary Table S1). We collected 5 soil cores per row at a distance of about 5 m from
each other. If present, organic matter was removed and then a soil corer (5 cm in diameter)
was drilled to a depth of 10 cm into the upper soil layer. These five soil cores were pooled to
one sample. In each plot, three samples were collected, each in a different row. Each fresh
soil sample corresponded to a soil volume of 981.25 cm3. All samples (a total 16 × 3 = 48)
were cooled and immediately transported to the University of Jambi (Jambi, Indonesia) for
further processing.

2.3. Preparation of Soil and Root Samples

In the laboratory, the fresh samples were weighed and stored at 4 ◦C. The soil was
sieved through two layers of mesh widths of 1.5 cm and 0.5 cm, respectively, to separate
roots from the soil. Afterwards, the roots were washed in a 2 mm strainer, dried on the
surface quickly between tissue papers, and weighed. Then, the fine roots (less than 2 mm
in diameter) and coarse roots (more than 2 mm in diameter) were separated, weighed, and
stored in zipper plastic bags at −15 ◦C.

To measure soil water content, about 20 g of fresh, sieved soil was weighed and dried
in oven at a temperature of 105 ◦C for two days. The dry sample was weighed again and
used to determine the relative soil water content and soil bulk density:

Soil moisture content (%) =
aliquot o f f resh soil (g)− aliquot o f dry soil (g)

aliquot o f dry soil (g)
× 100

Soil Bulk Density
(

g cm−3
)

=
total dry soil (g)/number o f soil cores

π × r2 × h
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with r = radius of soil core = 2.5 cm, n = number of soil cores in one sample = 5, and h = depth
of soil sample = 10 cm.

Frozen and dry samples were transported to the University of Göttingen (Göttingen,
Germany) for further analyses. Aliquots of the frozen roots were used to determine the dry
mass after drying for 48 h in drying oven at 60 ◦C. The dry-to-fresh mass ratio was used to
determine the number of fine roots:

Biomass of fine roots
(

kg m−2
)

=

total mass o f f resh f ine roots per pooled sample (g)× dry
f resh mass ratio/1000

(5×π×r2 )

with n = 5 indicating the number of soil cores used for pooling and r = radius of the soil
corer of 2.5 cm.

2.4. Preparing Root Samples for Illumina Sequencing

Fine root samples (stored at −15 to −20 ◦C) were milled (Type MM400, Retsch GmbH,
Haan, Germany) for 1 min (frequency: 30 oscillations/sec) in 25 mL containers equipped
with a stainless-steel ball (20 mm) under liquid nitrogen. DNA was isolated from a 100 mg
homogenized sample using the innuPREP plant DNA Kit (SLS Protocol, Analytik Jena, Jena,
Germany). For DNA elution, a total amount of 100 µL nuclease-free water (AppliChem,
Darmstadt, Germany) was used. Isolated DNA was further purified with the MoBIO Power-
Clean Pro DNA Clean-Up Kit (Qiagen, Hilden, Germany) and eluted in 50 µL nuclease-free
water (AppliChem, Darmstadt, Germany). DNA yields were estimated by employing a
Quant-iT dsDNA HS assay kit (Thermo Fisher Scientific, Osterode am Harz, Germany) and
a Qubit fluorometer (Invitrogen GmbH, Karlsruhe, Germany) following the manufacturer’s
(Invitrogen) instructions. Amplification of the internal transcribed spacer region ITS1 was
conducted using the forward primer (Microsynth, Balgach, Switzerland) ITS1-F_KYO2 [38]
and the reverse primer (Microsynth) ITS2 [39]. Amplification of the fungal small subunit
ribosomal RNA (18S rRNA) amplicons was prepared using forward primer (Microsynth)
NS31 [40] and reverse primer (Microsynth) AML2 [41]. Primers were labeled with an Illu-
mina adapter overhang (Microsynth) (forward: TCGTCGGCAGCGTCAGATGTGTATAA
GAGACAG, reverse: GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG). The primer
sets NS31 and AML2 and ITS1-F_KYO2 and ITS2, respectively, were used in individual
polymerase chain reaction (PCR) assays before combining them for sequencing. The PCRs
were performed using 50 ng of template DNA (10 ng µL−1), 10 µL 5x Phusion GC buffer
(New England Biolabs, Germany), 0.15 µL of MgCl2 (50 mM New England Biolabs, Ger-
many), 1 µL of each primer (10 mM, Microsynth, Wolfurt, Austria), 1 µL dNTP mix (10 mM
each, Thermo Fisher Scientific, Osterode am Harz, Germany), 0.5 µL Phusion High-Fidelity
DNA Polymerase (2 U µL−1, New England Biolabs, Germany) and adjusted to a total
volume of 50 µL with nuclease-free distilled water. PCRs were performed in a Labcycler
(SensoQuest, Göttingen, Deutschland) with the following thermal cycling scheme: initial
denaturation at 98 ◦C for 5 min, 30 cycles of denaturation at 98 ◦C for 30 s, annealing for
20 s at 47 ◦C, and extension at 72 ◦C for 20 s, followed by a final extension period at 72 ◦C
for 5 min. All PCRs were performed in triplicate. The resulting PCR products were checked
by agarose gel electrophoresis for appropriate size, pooled and purified by magnetic bead
clean-up using the MagSi-NGSPrep Plus as recommended by the manufacturer (Mag-
naMedics Diagnostics B.V., Geleen, the Netherlands). Quantification of the PCR products
was performed using the Quant-iT dsDNA HS assay kit and a Qubit fluorometer following
the manufacturer’s instructions. Pooled PCR products were used to attach indices and
Illumina sequencing adapters using the Nextera XT Index kit (Illumina, San Diego, CA,
USA). Index PCR was performed using 5 µL of template PCR product, 2.5 µL of each index
primer, 12.5 µL of 2× KAPA HiFi HotStart ReadyMix and 2.5 µL PCR grade water. Thermal
cycling scheme was as follows: 95 ◦C for 3 min, 8 cycles for 30 s at 95 ◦C, 30 s at 55 ◦C and
30 s at 72 ◦C and a final extension at 72 ◦C for 5 min.



Agronomy 2022, 12, 199 5 of 17

The Göttingen Genomics Laboratory determined ITS1 and 18S rRNA gene sequences
by using the dual index paired-end approach (2 × 300 bp, v3 chemistry) and the Illumina
MiSeq platform. Paired-end sequencing data were quality-filtered with fastp (version
0.20.0) [42] using default settings with the addition of an increased per base phred score
of 20, base pair corrections by overlap (-c), as well as 5′- and 3′-end read trimming with
a sliding window of 4, a mean quality of 20 and minimum sequence size of 50 bp. After
quality control, the paired-end reads were merged using PEAR (version 0.9.11) [43] and
primers clipped using cutadapt (version 2.5) [44] with default settings. Sequences were then
processed using VSEARCH (v2.12.0). This included sorting and size-filtering of the paired
reads to ≥140 bp (–sortbylength –minseqlength 140), dereplication (–derep_fulllength).
Dereplicated amplicon sequence variants (ASVs) were denoised with UNOISE3 using de-
fault settings (–cluster_unoise – minsize 8) and chimeras were removed (–uchime3_denovo).
An additional reference-based chimera check was performed (–uchime_ref) [45] against the
SILVA SSU NR database (version 132) and UNITE database (v8.1). Raw reads were mapped
to ASVs (–usearch_global–id 0.97). The resulting ASVs (97% sequence identity) correspond
to operational taxonomic units (OTUs). The taxonomy was assigned using BLAST 2.9.0+
against the UNITE database (v8.1) and SILVA SSU 132 NR database [46,47]. The resulting
OTU count table was rarefied to 20,000 sequences per sample, using the rrarefy() function
of the package vegan v2.5.6 [48]. The annotation of fungal guilds was conducted with the
software FUNguild [49].

2.5. Element Analyses in Soil and Roots

Aliquots of dry root and soil samples were milled in a ball mill (MM400, Retsch, Haan,
Germany). The milled root samples (about 30 mg) were weighed in reagent vessels and
total elements were extracted by the microwave method (2 mL 65% HNO3, 2 mL 30% H2O2,
3 mL HPLC-grade water) [47]. The extracts were filtered (MN 640 WE, Macherey-Nagel,
Düren, Germany), the filters washed with HPLC-grade water, and the collected filtrate
adjusted to 25 mL with HPLC grade water.

To determine potentially plant-available nutrients, soil (100 mg) was extracted for
1 h in 15 mL Bray-1 solution (0.03 N NH4F and 0.025 N HCl) [50], and filtered through
phosphate-free pleated filters (5893 Blauband filter, Macherey-Nagel MN 619 G). The filters
were washed with ultra-pure water and the filtrates were adjusted to 25 mL. Aliquots of the
filtrates were measured by inductively coupled plasma optical emission spectrometry (ICP
OES, iCAP 7000 Series ICP–OES, Thermo Fisher Scientific, Dreieich, Germany). Elements
were calibrated with a series of concentrations by element standards (Einzelstandards,
Bernd Kraft, Duisburg, Germany).

To measure carbon (C) and nitrogen (N), milled root (2 mg) or soil (20 mg) powder
was weighed into tin capsules (IVA Analysentechnik, Meerbusch, Germany) using a mi-
crobalance (Cubis MSA 2.7S-000-DM, Sartorius, Göttingen, Germany). The samples were
measured in a CN analyzer (vario MICRO cube CN analyzer, Elementar Analysensysteme
GmbH, Langenselbold Germany). Acetanilide was used as the standard.

2.6. Statistical Analyses

Statistical analyses were conducted with R studio (version 1.2.5001, RStudio, Inc.,
Boston, MA, USA). Count data (Illumina data) were analyzed with generalized linear
models (GLM) and negative binomial distribution. Differences between treatments were
considered to be significant when Chi2 < 0.05. The distribution of continuous data (soil and
root chemistry) was checked by visual inspection of the residuals and was log-transformed
to meet the criteria of normal distribution if required. Data were used for analyses of
variance by two-way factorial analysis of variance (ANOVA). Tukey’s HSD test was
applied as the post hoc test to determine homogenous groups. Different letters in fig-
ures indicate significant differences at p < 0.05. The biodiversity indices (Shannon index,
species richness, evenness), dissimilarities of the communities by nonmetric multidimen-
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sional scales (nMDS), and environmental variables (envfit) were determined with the
vegan package [48].

3. Results
3.1. Soil Properties and Root Chemistry Are Not Affected by Reduced Management Intensity

The reduction in fertilizer and replacement of herbicides by manual weeding did
neither affect carbon, nitrogen, C/N ratio nor the contents of extractable elements in
soil (Table 1). Soil pH, soil bulk density, and soil humidity did not differ among the
treatments (Table 1). Nutrient element contents in roots were not significantly affected
by the diminished fertilization or by manual weeding instead of herbicide application
(Table 2).

Table 1. Potentially plant-available elements in soil (mg g−1 dry soil), soil pH, soil moisture (MC, %)
and bulk density (SBD, g cm−3).

Parameter CH CW RH RW pf Pw Pfxw

C 13.19 ± 1.15 12.55 ± 2.05 13.22 ± 1.60 14.15 ± 0.91 0.586 0.923 0.600
N 0.823 ± 0.069 0.808 ± 0.132 0.849 ± 0.095 0.858 ± 0.045 0.678 0.970 0.899
P 0.144 ± 0.033 0.164 ± 0.044 0.101 ± 0.019 0.186 ± 0.050 0.777 0.179 0.402
S 0.044 ± 0.002 0.054 ± 0.005 0.050 ± 0.005 0.052 ± 0.004 0.636 0.138 0.322
K 0.029 ± 0.005 0.032 ± 0.007 0.024 ± 0.002 0.025 ± 0.003 0.172 0.586 0.853

Na 0.042 ± 0.001 0.083 ± 0.023 0.058 ± 0.007 0.059 ± 0.008 0.754 0.094 0.124
Mg 0.139 ± 0.023 0.137 ± 0.019 0.144 ± 0.032 0.163 ± 0.033 0.573 0.761 0.685
Ca 0.395 ± 0.057 0.513 ± 0.095 0.410 ± 0.082 0.489 ± 0.081 0.961 0.224 0.808
Mn 0.005 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.006 ± 0.001 0.854 0.364 0.535
Fe 1.007 ± 0.055 1.086 ± 0.037 1.168 ± 0.051 1.110 ± 0.058 0.076 0.837 0.185
Al 5.99 ± 0.36 6.57 ± 0.49 6.28 ± 0.58 6.64 ± 0.57 0.724 0.357 0.828

C/N 16.07 ± 0.383 14.29 ± 1.350 15.43 ± 0.405 16.45 ± 0.400 0.324 0.618 0.072
Soil pH 6.76 ± 0.05 6.84 ± 0.03 6.85 ± 0.02 6.85 ± 0.04 0.227 0.300 0.300

MC 20.06 ± 0.50 20.70 ± 0.76 20.21 ± 0.98 19.45 ± 0.71 0.471 0.943 0.362
SBD 1.31 ± 0.02 1.28 ± 0.03 1.33 ± 0.03 1.30 ± 0.03 0.506 0.415 0.969

CH = conventional fertilization and herbicide treatment, CW = conventional fertilization and weeding, RH = re-
duced fertilization and herbicide treatment, RW = reduced fertilization and weeding. Data show means per
treatment (n = 4 plots per treatment and 3 replicates per plot, ± SE). Statistical analyses (p) show the results of a
two-way ANOVA with the main factors f = “fertilized” and w = “weeded”, and their interaction.

Table 2. Elements in fine roots (mg g−1 dry mass) and root biomass (kg m−2) in oil palm plantations.

Parameter CH CW RH RW Pf Pw Pfxw

C 427.1 ± 19.7 440.1 ± 22.7 457.9 ± 30.2 479.3 ± 28.5 0.179 0.506 0.871
N 5.91 ± 0.26 6.57 ± 0.49 5.86 ± 0.24 5.73 ± 0.24 0.180 0.429 0.233
P 0.321 ± 0.016 0.332 ± 0.043 0.400 ± 0.095 0.434 ± 0.075 0.170 0.729 0.856
S 0.680 ± 0.047 0.731 ± 0.052 0.651 ± 0.027 0.690 ± 0.035 0.404 0.285 0.882
K 0.318 ± 0.055 0.356 ± 0.052 0.391 ± 0.073 0.412 ± 0.116 0.415 0.708 0.914

Na 0.340 ± 0.033 0.318 ± 0.043 0.221 ± 0.026 0.291 ± 0.046 0.059 0.534 0.231
Mg 0.723 ± 0.085 0.724 ± 0.083 0.847 ± 0.109 0.965 ± 0.145 0.100 0.586 0.592
Ca 1.749 ± 0.188 1.892 ± 0.328 4.362 ± 2.313 2.891 ± 0.930 0.159 0.601 0.525
Mn 0.039 ± 0.012 0.033 ± 0.005 0.047 ± 0.018 0.037 ± 0.016 0.676 0.591 0.894
Fe 6.124 ± 2.041 5.127 ± 0.803 7.149 ± 2.983 3.868 ± 1.301 0.953 0.282 0.564
Al 11.87 ± 0.73 13.65 ± 1.04 12.33 ± 0.97 10.49 ± 1.19 0.184 0.981 0.077

C/N 73.3 ± 4.5 72.0 ± 7.1 80.3 ± 7.2 86.1 ± 7.3 0.122 0.738 0.596
RB 0.211 ± 0.032 0.252 ± 0.072 0.169 ± 0.040 0.165 ± 0.025 0.167 0.685 0.628

CH = conventional fertilization and herbicide treatment, CW = conventional fertilization and weeding, RH = re-
duced fertilization and herbicide treatment, RW = reduced fertilization and weeding. Data show means per
treatment (n = 4 plots per treatment and 3 replicates per plot, ± SE). Statistical analyses (p) show the results of a
two-way ANOVA with the main factors f = “fertilized” and w = “weeded”, and their interaction. Root biomass
(RB) was determined to a depth of 10 cm, n = 4 ± SE).
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3.2. Diversity of Root-Associated Biota Is Not Affected by Reduced Management Intensity, but
Nematodes Respond to Weeding

We kept all sequences for eukaryotic organisms and rarefied each sample to 20,000 sequences
(Figure 1A). In this data set, we found 10 eukaryotic phyla with abundances greater than
0.01% of total number of sequences (total rarefied sequences: 960,000). About 8% of
the sequences had no hit in the database and 14.1% were not assigned to any phylum
(Figure 1B). Fungal sequences were dominant (68.5%), reflecting our primer choice for
fungal taxa. Hits for streptophyta (plants without green algae) were mainly due to Elaies
sp. (>90%), as expected due to our sampling strategy, collecting specifically oil palm roots
(Supplementary Table S2).
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Figure 1. Rarefaction curves of individual samples (A) and relative abundances of phyla (B) associ-
ated with oil palm roots. CH = conventional fertilization and herbicide treatment, CW = conventional
fertilization and weeding, RH = reduced fertilization and herbicide treatment, RW = reduced fer-
tilization and weeding. Phyla with sequence abundances ≥0.01% were included. Numbers next
to phylum name indicate means (%) across all samples with 100% = 240,000 reads per treatment.
NoHit = read had no match in the database, NA = reads were not assigned to any phylum. Please
note that owing to primers bias, the relative abundance of a phylum cannot be compared across the
phyla, but only among the treatments.

Reduced fertilizer and weeding instead of herbicide-induced soil clearing had no
effect on the relative abundance of the root-associated phyla (GLM, negative binomial,
Chi2 > 0.05), with one notable exception: nematodes were less abundant on roots from plots,
where the ground vegetation was controlled by weeding instead of herbicide treatment
(Chi2 = 0.027) (Figure 2).

The nMDS ordination did not show significant clustering of phyla according to the
treatments (Figure 3A,B). Environmental variables that correlated with the ordination at
p < 0.1 were included (Figure 3B). At the conventional threshold of p < 0.05, only two
vectors, C and C/N ratio in roots, were retained (Figure 3B) and showed the closest match
with Elaies sp. (Figure 3A).

Neither weeding nor reduced fertilizer application affected the diversity of root-
associated taxa (Table 3). The mean number of taxa (OTU-based at the 97% identity level)
per plot was 787 with a Shannon index of 3.47. Evenness was low (Table 3), indicating
that the data sets were dominated by sequences of a few very abundant taxa. The most
abundant taxa were classified as saprotrophs or pathogens (Supplementary Table S2).



Agronomy 2022, 12, 199 8 of 17

Agronomy 2022, 12, x FOR PEER REVIEW  8  of  17 
 

 

 

Figure 2. Species richness of nematodes associated with oil palm roots. CW = conventional fertiliza‐

tion and weeding, RH = reduced fertilization and herbicide treatment, RW = reduced fertilization 

and weeding. Species richness in four plots per treatment with three replicate samples per plot. Data 

show boxplots (20% to 80%, horizontal line = mean). Different letters above the boxes indicate sig‐

nificant treatment effects at Chi2 < 0.05. 

The nMDS ordination did not show significant clustering of phyla according to the 

treatments (Figure 3A,B). Environmental variables that correlated with the ordination at 

p < 0.1 were included (Figure 3B). At the conventional threshold of p < 0.05, only two vec‐

tors, C and C/N ratio in roots, were retained (Figure 3B) and showed the closest match 

with Elaies sp. (Figure 3A). 

 

Figure 3. NMDS of phyla (A) and potential environmental drivers (B) associated with oil palm roots. 

Conventional fertilization and herbicide treatment = light blue circle, Conventional fertilization and 

weeding = pink circle, reduced fertilization and herbicide treatment = dark blue triangle, reduced 

fertilization and weeding = brown triangle. Stress(nMDS phyla) = 0.051. Lengths of the vectors in (B) are 

proportional to the correlation between ordination and environmental variable. Vectors with p < 0.1 

are shown. 

Figure 2. Species richness of nematodes associated with oil palm roots. CW = conventional fertiliza-
tion and weeding, RH = reduced fertilization and herbicide treatment, RW = reduced fertilization
and weeding. Species richness in four plots per treatment with three replicate samples per plot.
Data show boxplots (20% to 80%, horizontal line = mean). Different letters above the boxes indicate
significant treatment effects at Chi2 < 0.05.
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Figure 3. NMDS of phyla (A) and potential environmental drivers (B) associated with oil palm roots.
Conventional fertilization and herbicide treatment = light blue circle, Conventional fertilization and
weeding = pink circle, reduced fertilization and herbicide treatment = dark blue triangle, reduced
fertilization and weeding = brown triangle. Stress(nMDS phyla) = 0.051. Lengths of the vectors in (B)
are proportional to the correlation between ordination and environmental variable. Vectors with
p < 0.1 are shown.
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Table 3. Diversity indices for root-associated taxa in oil palm plantations.

Index CH CW RH RW Pf Pw Pfxw

Shannon 3.45 ± 0.46 3.65 ± 0.18 3.29 ± 0.25 3.49 ± 0.23 0.606 0.510 0.996
Richness 790 ± 87 856 ± 27 737 ± 48 768 ± 54 0.249 0.423 0.772
Evenness 0.047 ± 0.012 0.047 ± 0.008 0.039 ± 0.007 0.045 ± 0.007 0.564 0.733 0.741

Taxa were determined as virtual species (OTU-based). CH = conventional fertilization and herbicide treatment,
CW = conventional fertilization and weeding, RH = reduced fertilization and herbicide treatment, RW = reduced
fertilization and weeding. Data are means of n = 4 per treatment and 3 replicates per plot (±SE.). Statistical
analyses (p) show the results of a two-way ANOVA with the main factors f = “fertilized” and w = “weeded”, and
their interaction.

3.3. Fungal Guilds Are Shifted by Reduced Fertilizer and Weeding

Oil palm roots form mutualistic associations with arbuscular mycorrhizal fungi (AMF).
Reduced fertilizer application resulted in a significant increase in AMF (Figure 4A). Fungi
with a variable lifestyle, classified as symbiotroph–pathotroph–saprotroph showed higher
abundances on roots in the conventionally managed plantations than in other treatments
(Figure 4B). This increase was mainly due to high abundances of Entoloma sp. (Supple-
mentary Table S2) in conventional plots. We also assigned typical ectomycorrhizal fungal
genera and families (Amanita, Cortinarius, Inocybaceae, Xerocomellus, Coltricia, Russula,
Sebacinaceae and Hydnellum) to the category of fungi with a variable lifestyle (16.7% in this
category) because ectomycorrhizal fungi grow as saprotrophs in the absence of host plants.
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Figure 4. Species richness of fungal guilds associated with oil palm roots. (A): Arbuscular my-
corrhizal fungi, (B): Multiguild fungi with ectomycorrhizal potential; (C): yeasts; (D): lichenized
fungi; (E): saprotrophic fungi; (F): endophytic fungi. CW = conventional fertilization and weeding,
RH = reduced fertilization and herbicide treatment, RW = reduced fertilization and weeding. Species
richness in four plots per treatment with three replicate samples per plot. Data show boxplots (20% to
80%, horizontal line = mean). Different letters above the boxes indicate significant treatment effects at
Chi2 < 0.05.



Agronomy 2022, 12, 199 10 of 17

The abundance of yeasts was reduced with reduced fertilization (Chi2 = 0.012, Figure 4C).
This was also observed for lichenized fungi (Chi2 < 0.001), which benefited, however, from
weeding (Chi2 = 0.022, Figure 4D). Saprotrophic fungi and endophytes were unaffected by
the decreased management intensity (Figure 4E,F). Further fungal guilds (fungal parasites,
plant pathogens, other pathogens, unknown lifestyle) were unaffected by the different
treatments (Figure 5A–D).

The nMDS of the fungal guilds revealed that the second axis separated the conven-
tionally managed plots from those with reduced fertilizers (Figure 6A) with the exception
of one plot. Soil P was the only environmental parameter with a significant correlation
with the ordination of guilds (p < 0.05) (Figure 6B). Weeding did not lead to clear clustering
of the guilds. Fungi with close plant associations, such as AMF, lichenized fungi, endo-
phytes, and plant pathogens, clustered together (Figure 6A). This fungal group was aligned
with root biomass (p < 0.1) (Figure 6B). Fungi with variable lifestyle, including ectomyc-
orrhizal fungi and yeasts, showed a moderate correlation with root N, while saprotrophs
and fungal parasites were aligned with soil pH and root K, considering vectors at p < 0.1
(Figure 6A,B).
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Figure 5. Species richness of root-associated fungal guilds with potentially negative or unclear
effects on oil palms. (A): Plant pathogenic fungi; (B): path = other potentially pathogenic fungi,
(C): fungal parasitic fungi; (D): UNK = fungi with unknown lifestyle. CW = conventional fertilization
and weeding, RH = reduced fertilization and herbicide treatment, RW = reduced fertilization and
weeding. Species richness in four plots per treatment with three replicate samples per plot. Data show
boxplots (20% to 80%, horizontal line = mean). Different letters above the boxes indicate significant
treatment effects at Chi2 < 0.05.
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4. Discussion
4.1. Reduced Management Intensity Does Not Affect Root and Soil Chemistry or Diversity of
Root-Associated Phyla

To develop more sustainable management practices, experiments have been initiated
in the tropics in large-scale plantations, reducing fertilizer application and controlling
understory by weeding instead of herbicide application [29,30]. Here, we show that soil
and root mineral nutrients were unaffected in the initial phase, one year after the start
of the experimental treatments. This result agrees with other short-term studies, where
management was stopped or reduced [51–53] and might have been expected because
it is well known that agricultural soil usage has long-lasting legacy effects [54,55]. For
example, recovery of N cycling takes almost a decade [56,57]. In the plots used for our
experiment, short-term effects on mineral elements, carbon stocks, and gross N cycling
were not found [35] and the composition of active (RNA-based) and total (DNA-based)
communities of bacteria in bulk soil did not change in response to reduced management
treatments [58]. Plant species richness was unaffected by weeding compared to herbicide
treatment but the plant cover increased [29].

Since the previous analyses of bulk soil did not reveal early effects of management
reduction [29,58], we focused on eukaryotic organisms associated with roots. On basis of
OTUs, early effects on species richness, Shannon diversity or community composition were
not detected. At the level of phyla, a more differentiated pattern emerged. At this classifi-
cation level, we observed that weeding resulted in a significant reduction in nematodes.
Nematodes are an indicator species for soil health and crucial organisms in soil food webs
as predators and intermediary decomposers, but some species are harmful to plants [59].
Nematodes respond to changes in habitat conditions; for example, transformation of rain
forests into oil palm plantations caused a relative increase in species with short generation
times, compared to those with long generation times [60]. Since we used general primers,
species assignments in this phylum were not possible. Here, we can just speculate that
nematodes might have responded to differences in disturbance imposed by weeding com-
pared with chemical clearing. It is obvious that further analyses of this important phylum
are necessary to understand better the impact of management practices on soil food webs.
Since our study showed treatment effects in only one of ten phyla, which was represented
by a relatively low number of sequences, the composition of root-associated phyla was
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unaffected in response to reduced management. This result agrees with our hypothesis
that legacy effects are dominant and overshadow subtle shifts in distinct groups.

4.2. Fungal Guilds Show Differentiated Patterns to Reduced Fertilizer Application and Weeding

A focus of our study was on root-associated fungi, using general bar-coding primers
for fungi and specific ones for arbuscular mycorrhizal fungi (AMF). Here, we found a
significant increase in AMF abundances in response to fertilizer reduction. Previous studies
showed negative long-term effects of inorganic fertilizers on AMF [61,62], although the
magnitude of the responses varied with soil environment [63]. In Indonesian tropical
transformation systems, the abundance and colonization of oil palm roots with AMF was
decreased compared with roots of rainforest trees [17,22]. However, the opposite that
recovery of AMF is one of the earliest effects in the root-associated fungal community is a
novel result. This effect appears to be specific to roots since the presence of AMF in soil
was unaffected in plots of oil palm plantations after discontinuing fertilization [54]. The ob-
served recovery in AMF abundance has the potential for shifts in ecosystem functions since
mycorrhizal fungi play a prominent role in plant nutrition and increase plant protection
from pathogens [64,65]. Therefore, the early increase in AMF under reduced fertilization is
encouraging for the development of environmentally friendly managing techniques.

In contrast to AMF, root colonization with most other fungal guilds was unaffected
by reduced management. This included saprotrophic fungi, endophytic fungi, fungal
parasites, as well as plant and other pathogenic fungi. Since these guilds encompassed
the majority of fungal sequences under our experimental conditions, the separation of
guilds by nMDS ordination was not pronounced. Moderate differences occurred between
high and reduced fertilization on plots, where the understory was cleared by herbicide
treatments. The ordination indicated an association of increased abundances of multi-guild
fungi (including ectomycorrhizal fungi) and yeasts, which also have multiple ecological
functions as decomposers, mutualists, parasites or pathogens [66], with increased root bio-
mass or root N. Since yeasts are early colonizers of nutrient-rich substrates [66], which are
then followed by fungal saprotrophs, their increased abundances along with enhanced root
N might have been expected. However, it must be noted that these associations were weak
(p < 0.1), not meeting the conventional significance threshold of p < 0.05. Since we report
early effects after only one year of reduced management intensity, the observed trends may
nevertheless be a first hint and their development should be observed in future studies.

The presence of fungi with a potential ectomycorrhizal life style in the conventionally
managed plantations may be surprising since oil palm is typically colonized by AMF [27].
However, Rembold et al. [13] showed that the understory in oil palm plantations contains
forest tree and shrub species that can form ectomycorrhizae. We assume that re-growth
of mixed vegetation may be the reason for the presence of this important fungal group in
decade-old, often cleared plantations [22,67]. The surprising increase in multi-guild taxa in
the conventional plantations was due to enrichment in Entoloma sp., a species which has
been annotated as “ectomycorrhizal, fungal parasite, soil saprotroph” [68]. The increased
abundance of Entoloma sp. and yeasts in the conventionally managed plots suggests that
these guilds profit from high nutrient input and high decomposition rates of litter in the
humid tropics [69].

Another interesting observation was an increased abundance of lichenized fungi
in conventionally fertilized, weeded treatments. The most abundant genus detect here
was Chaenothecopsis, whose members are widely distributed [70,71]. Tropical species of
Chaenothecopsis have been reported to grow on angiosperm exudates [72] but the reasons
why this guild was enriched on roots from fertilized, weeded treatments, remain elusive.

We expected that manual weeding would influence root-associated fungal communi-
ties in comparison with chemical clearing by glyphosate because the former practice retains
living roots in the soil, whereas the latter results in complete die-off of monocots. How-
ever, overall, fungal communities were unaffected by weeding compared with glyphosate
treatment. Under controlled conditions, glyphosate treatments usually show short-term
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increases in bacterial activities and biomass, which disappear after a few days [73,74],
whereas the bacterial soil communities under the conditions of our study were also unaf-
fected [58]. It is therefore possible that the impact of weeding or glyphosate occurs on very
short times scales, but information on very short-term responses to herbicide treatments
of fungal communities in tropical soils is not available. Soil from long-term (>10 years)
herbicide-treated horticultural and fruit plantations on Java (Indonesia) contained five
fungal species that were able to grow on glyphosate as a sole P source, among them Acremo-
nium sp., Aspergillus sp., and Fusarium sp. [75]. Species from these genera were also found
in our study. Fusarium species are known as pathogenic-saprotrophic fungi. They were
particularly abundant on the oil palm roots of our study but were unaffected by short-term
reduced management regimes.

5. Conclusions

In conclusion, we found that the reduction in fertilizer application led to early increases
in the abundances of AMF and decreases in ectomycorrhizal-multitrophic fungi and yeasts.
While most fungal guilds were relatively invariant to weeding or glyphosate treatment,
the abundances of nematodes, which are important components of the soil decomposer
system, were reduced by weeding. These results support our first hypothesis that reduced
management intensities lead to subtle shifts in groups of root-associated taxa. These
taxa were apparently most sensitive to small changes in habitat conditions. Our short-
term study demonstrates that changes in management regimes start to re-wire critical
constituents of the soil–plant food webs. The guilds with significant responses to decreased
management intensity were represented by low abundances, while the invariant groups,
especially saprotrophic fungi, were represented by high abundances. Consequently, the
taxonomic composition of the whole community of root-colonizing biota superimposed
subtle biodiversity shifts. Future studies will show if the recovery of AMF proceeds during
longer time scales and can compensate to some extent for fertilizer reduction. This is
an important issue for the development of sustainable management practices, under the
premise of an economic need for plantation productivity.
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